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Abstract

The two-point boundary value problem (TPBVP) occurs in a wide variety of problems in

engineering and science, including the modeling of chemical reactions, heat transfer, and diffusion,

and the solution of optimal control problems. A TPBVP may have no solution, a single solution,

or multiple solutions. A new strategy is presented for reliably locating all solutions of a TPBVP.

The method determines narrow enclosures of all solutions that occur within a specified search

interval. Key features of the method are the use of a new solver for parametric ODEs, which is

used to produce guaranteed bounds on the solutions of nonlinear dynamic systems with interval-

valued parameters and initial states, and the use of a constraint propagation strategy on the Taylor

models used to represent the solutions of the dynamic system. Numerical experiments demonstrate

the use and computational efficiency of the method.

Keywords: Two-point boundary value problem; Ordinary differential equations; Initial value

problem; Interval analysis; Taylor model



1 Introduction

Systems of ordinary differential equations (ODEs) arise in mathematical models throughout

science and engineering. When an explicit condition (or conditions) that a solution must satisfy

is specified at one value of the independent variable, usually its lower bound, this is referred to as

an initial value problem (IVP). When the conditions to be satisfied occur at more than one value

of the independent variable, this is referred to as a boundary value problem (BVP). If there are

two values of the independent variable at which conditions are specified, then this is a two-point

boundary value problem (TPBVP). TPBVPs occur in a wide variety of problems, including the

modeling of chemical reactions, heat transfer, and diffusion. They are also of interest in optimal

control problems.

For a typical TPBVP, when expressed as system of first-order ODEs, there are one or more

unknown initial states. Solving the TPBVP is equivalent to finding these initial states. In other

cases, the initial states are known, but there are unknown model parameters, and solving the

TPBVP requires finding values for these parameters. There may also be a combination of unknown

initial states and parameters that must be determined to solve the TPBVP. A TPBVP may have

no solution, a single solution, or multiple solutions. There are many techniques available for the

numerical solution of TPBVPs for ODEs (Heath, 2002). The standard techniques can be divided

into two classes. The first class is based on solving a related IVP in order to obtain the TPBVP

solutions. Typical of this class are various shooting and multi-shooting approaches. The other

class involves converting the TPBVP into a system of algebraic equations, and includes methods

based on various versions of finite difference or collocation. Methods for solving TPBVPs usually

require users to provide an initial guess for the unknown initial states and/or parameters. A

common limitation to all of these approaches is that they can, at best, achieve convergence to a

local solution of the TPBVP, which means other solutions of interest may be missed.
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The problem of reliably identifying all solutions of a TPBVP was apparently first addressed only

recently, by Chen & Manousiouthakis (2005) and Chen (2006). They propose a type of shooting

method based on interval-valued initial states, which encloses solutions to the TPBVP within very

narrow intervals. To enclose the state variables in the associated interval IVPs, they propose using

a fourth-order Runge-Kutta method implemented using interval operations. They discuss the need

to bound local truncation error in order to guarantee the enclosures, and formulate an approach for

doing so. However, in the example given, it is not clear that this approach for bounding truncation

error is actually implemented.

In this paper, we will present a new approach that will rigorously guarantee the enclosure of all

solutions to the TPBVP. Like the method of Chen & Manousiouthakis (2005) and Chen (2006),

this method is based on interval analysis and involves a type of shooting approach. However,

the underlying interval methods that we use are much different than those employed by Chen &

Manousiouthakis (2005) and Chen (2006). A key feature is the use of a new validated solver (Lin

& Stadtherr, 2007) for parametric ODEs, which is used to produce guaranteed bounds on the

solutions of IVPs with both interval-valued initial conditions and parameters. This is combined

with a constraint propagation scheme to yield an approach that is both rigorous and efficient.

The remainder of this paper is organized as follows. In Section 2, we provide a mathematical

formulation of the TPBVP. In Section 3, we give a brief introduction to interval analysis and Taylor

models. In Section 4, we review the new validated method for parametric ODEs, which makes use

of interval analysis and Taylor models. Then, in Section 5, we describe a constraint propagation

procedure based on Taylor models, and outline algorithmically the proposed method for enclosing all

solutions of TPBVPs. Finally, in Section 6 we present the results of several numerical experiments

that demonstrate the proposed approach.
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2 Problem definition

This section provides the mathematical formulation of the two-point boundary value problem

(TPBVP) for ordinary differential equations (ODEs). The general ODE problem can be written as

an autonomous first-order system

x′ = f(x,θ) t ∈ [t0, tf ], (1)

where x(t) is the vector (length n) of unknowns (state variables), θ is a vector (length p) of

unknown parameters, and the independent variable bounds t0 and tf are finite. Here, only the

autonomous ODE system is considered, since a non-autonomous system can be easily transformed

into an autonomous one by introducing an additional state variable with derivative equal to one.

A system of first-order ODEs like Eq. (1) is normally supplemented by m = n + p boundary

conditions, which for a TPBVP involving the two points t = t0 and t = tf can be written

g(x(t0),x(tf),θ) = 0. (2)

Since x(tf) = xf depends on x(t0) = x0 and θ, this represents a system of m equations in m

unknowns, the n components of x0 and p components of θ. We assume that f is (k − 1)-times

continuously differentiable with respect to the independent variable t, and (q+1)-times continuously

differentiable with respect to the parameters θ and the initial values x0. Here k is the order of the

truncation error in the interval Taylor series (ITS) method to be used in the integration procedure

(to be discussed in Section 4), and q is the order of the Taylor model to be used to represent

dependence on parameters and initial values (to be discussed in Section 3.2). We also assume that

g is (q + 1)-times continuously differentiable with respect to θ and x0.

When a typical shooting method is used, values of the unknown parameters θ and initial values

x0 are assumed, and an IVP solver is applied to the ODE system to obtain xf . The assumed

values of θ and x0 are then iterated on until Eq. (2) is satisfied. As noted above, standard
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numerical methods for solving Eq. (2) can, at best, achieve convergence only to a local solution of

the TPBVP, which means that other solutions of interest may be missed. In this paper, we will

describe an approach for rigorously enclosing all solutions of Eq. (2) within very narrow intervals.

It is assumed that the solutions of interest lie in specified search intervals X0 and Θ; that is,

x0 ∈ X0 and θ ∈ Θ. These search intervals may be arbitrarily large, and in many practical cases

are determined on the basis of physical bounds.

3 Background

The approach described here for solving the TPBVP is based on interval analysis and employs

Taylor models. Thus, as background, we provide a brief summary of interval analysis and of Taylor

models. Much more detail on both topics is available elsewhere.

3.1 Interval analysis

A real interval X is defined by X =
[
X,X

]
=

{
x ∈ R | X ≤ x ≤ X

}
. Here an underline is

used to indicate the lower bound of an interval and an overline is used to indicate the upper

bound. A real interval vector X = (X1,X2, · · · ,Xn)T has n real interval components and can

be interpreted geometrically as an n-dimensional rectangle or box. Note that in this context

uppercase quantities are intervals, and lowercase quantities or uppercase quantities with underline

or overline are real numbers. Basic arithmetic operations with intervals are defined by X op Y =

{x op y | x ∈ X, y ∈ Y }, where op ∈ {+,−,×,÷}. Interval versions of the elementary functions

can be similarly defined. It should be emphasized that, when machine computations with interval

arithmetic operations are done, the endpoints of an interval are computed with a directed (outward)

rounding scheme. That is, the lower endpoint is rounded down to the next machine-representable

number and the upper endpoint is rounded up to the next machine-representable number. In this
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way, through the use of interval, as opposed to floating-point, arithmetic, any potential rounding

error problems are avoided. Several good introductions to interval analysis, as well as interval

arithmetic and other aspects of computing with intervals, are available (Hansen & Walster, 2004;

Jaulin et al., 2001; Kearfott, 1996; Neumaier, 1990). Implementations of interval arithmetic and

elementary functions are also readily available, and recent compilers from Sun Microsystems directly

support interval arithmetic and an interval data type.

In working with intervals, it is important to understand the computation of interval function

extensions, and the associated “dependency” problem. For an arbitrary function f(x), the interval

extension F (X) encloses all possible values of f(x) for x ∈ X. That is, F (X) ⊇ {f(x) | x ∈ X}

encloses the range of f(x) over X. It is often computed by substituting the given interval X

into the function f(x) and then evaluating the function using interval arithmetic. This so-called

“natural” interval extension is sometimes wider than the actual range of function values, though it

always includes the actual range. For example, the natural interval extension of f(x) = x/(x − 2)

over the interval X = [3, 4] is F ([3, 4]) = [3, 4]/([3, 4] − 2) = [3, 4]/[1, 2] = [1.5, 4], while the true

function range over this interval is [2, 3]. This overestimation of the function range is due to the

“dependency” problem, which may arise when a variable occurs more than once in a function

expression. While a variable may take on any value within its interval, it must take on the same

value each time it occurs in an expression. However, this type of dependency is not recognized when

the natural interval extension is computed. In effect, when the natural interval extension is used,

the range computed for the function is the range that would occur if each instance of a particular

variable was allowed to take on a different value in its interval range. For the case in which f(x) is

a single-use expression, that is, an expression in which each variable occurs only once, the natural

interval arithmetic will always yield the true function range. For example, rearrangement of the

function expression used above gives f(x) = x/(x − 2) = 1 + 2/(x − 2), and now F ([3, 4]) =
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1 + 2/([3, 4] − 2) = 1 + 2/[1, 2] = 1 + [1, 2] = [2, 3], the true range.

In some situations, including one encountered in Section 5.1, dependency issues can be avoided

through the use of the dependent subtraction operation (also known as the cancellation operation).

Assume that there is an interval S that depends additively on the interval A. The dependent

subtraction operation is defined by S ⊖A = [S −A,S −A]. For example, let A = [0, 1], B = [1, 2],

C = [2, 3] and S = A + B + C = [3, 6]. Say that only S is stored and that later it is desired

to compute A + B by subtracting C from S. Using the standard subtraction operation yields

S−C = [3, 6]− [2, 3] = [0, 4], which overestimates the true A+B. Using the dependent subtraction

operation, which is allowable since S depends additively on C, yields S ⊖C = [3, 6]⊖ [2, 3] = [1, 3],

which is the true A+B. For more general situations, there are a variety of other approaches that can

be used to try to tighten interval extensions (Hansen & Walster, 2004; Jaulin et al., 2001; Kearfott,

1996; Neumaier, 1990), including the use of Taylor models, as described in the next subsection.

3.2 Taylor models

Makino & Berz (1996) have described a remainder differential algebra (RDA) approach for

bounding function ranges and control of the dependency problem of interval arithmetic (Makino

& Berz, 1999). In this method, a function is represented using a model consisting of a Taylor

polynomial and an interval remainder bound. Such a model is called a Taylor model.

One way of forming a Taylor model of a function is by using the Taylor theorem. Consider a

function f : x ∈ X ⊂ R
n → R that is (q + 1) times partially differentiable on X and let x0 ∈ X.

The Taylor theorem states that for each x ∈ X, there exists a ζ ∈ R with 0 < ζ < 1 such that

f(x) = pf (x − x0) + rf (x − x0, ζ), (3)

where pf is a q-th order polynomial (truncated Taylor series) in (x − x0) and rf is a remainder,

which can be quantitatively bounded over 0 < ζ < 1 and x ∈ X using interval arithmetic or other
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methods to obtain an interval remainder bound Rf . A q-th order Taylor model Tf = pf + Rf

for f(x) over X then consists of the polynomial pf and the interval remainder bound Rf and is

denoted by Tf = (pf , Rf ). Note that f ∈ Tf for x ∈ X and thus Tf encloses the range of f over

X.

In practice, it is more useful to compute Taylor models of functions by performing Taylor model

operations. Arithmetic operations with Taylor models can be done using the RDA operations

described by Makino & Berz (1996, 1999, 2003), which include addition, multiplication, reciprocal,

and intrinsic functions. Using these, it is possible to start with simple functions such as the

constant function f(x) = k, for which Tf = (k, [0, 0]), and the identity function f(xi) = xi, for

which Tf = (xi0 + (xi − xi0), [0, 0]), and then to compute Taylor models for very complicated

functions. Therefore, it is possible to compute a Taylor model for any function representable in a

computer environment by simple operator overloading through RDA operations. It has been shown

that, compared to other rigorous bounding methods, the Taylor model often yields sharper bounds

for modest to complicated functional dependencies (Makino & Berz, 1996, 1999; Neumaier, 2003).

A discussion of the uses and limitations of Taylor models has been given by Neumaier (2003).

An interval bound on a Taylor model T = (p,R) over X is denoted by B(T ), and is found

by determining an interval bound B(p) on the polynomial part p and then adding the remainder

bound; that is, B(T ) = B(p) + R. The range bounding of the polynomial B(p) = P (X −x0) is an

important issue, which directly affects the performance of Taylor model methods. Unfortunately,

exact range bounding of an interval polynomial is NP hard, and direct evaluation using interval

arithmetic is very inefficient, often yielding only loose bounds. Thus, various bounding schemes

(Makino & Berz, 2004, 2005; Neumaier, 2003) have been used, mostly focused on exact bounding

of the dominant parts of P , i.e., the first- and second-order terms. However, exact bounding of a

general interval quadratic is also computationally expensive (in the worst case, exponential in the
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number of variables). Thus, we have adopted a very simple compromise approach, in which only

the first-order and the diagonal second-order terms are considered for exact bounding, and other

terms are evaluated directly. That is,

B(p) =

n∑

i=1

[
ai (Xi − xi0)

2 + bi(Xi − xi0)
]

+ Q, (4)

where Q is the interval bound of all other terms, and is obtained by direct evaluation with interval

arithmetic. In Eq. (4), since Xi occurs twice, there exists a dependency problem. However, we can

rearrange Eq. (4) such that each Xi occurs only once; that is,

B(p) =
n∑

i=1

[
ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

]
+ Q. (5)

In this way, the dependence problem in bounding the interval polynomial is alleviated so that a

sharper bound can be obtained. Since we prefer not to divide by a very small number, Eq. (5) will

be used only if |ai| ≥ ω, where ω is a very small positive number. If |ai| < ω, direct evaluation

with Eq. (4) will be used instead.

4 Validating solver for parametric ODEs

When a typical shooting method is applied to solve a TPBVP, there is a related IVP that must

be solved. For the method presented here for enclosing all solutions of the TPBVP, we also use

a type of shooting method, but the related IVP has interval-valued initial states and parameters.

Thus, we need an IVP solver for ODEs that can compute rigorous bounds on the state variables x

for the case in which the initial values and parameters are given by intervals. Interval methods (also

called validated methods or verified methods) for ODEs (Moore, 1966) provide a natural approach

for computing the desired enclosure of the state variables.

Interval methods for ODEs not only can determine guaranteed bounds on the state variables,

but can also verify that a unique solution to the problem exists. Traditional interval methods
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usually consist of two processes applied at each integration step (Moore, 1966). In the first process,

existence and uniqueness of the solution are proved using the Picard-Lindelöf operator and the

Banach fixed point theorem (Eijgenraam, 1981), and a rough enclosure of the solution is computed.

In the second process, a tighter enclosure of the solution is computed. In general, both processes

are realized by applying interval Taylor series expansions with respect to time, and using automatic

differentiation to obtain the Taylor coefficients. An excellent review of interval methods for IVPs

has been given by Nedialkov et al. (1999), and more recent work has been reviewed by Neher et al.

(2007). Much work has been done for the case in which the initial values are given by intervals,

and there are several available software packages that deal with this case, including AWA (Lohner,

1992), VNODE, (Nedialkov et al., 2001) and COSY VI (Berz & Makino, 1998). However, relatively

little work has been done on the case in which parameters are given by intervals. In our method

for enclosing all solutions of TPBVPs, we will use a new validated IVP solver for parametric

ODEs (Lin & Stadtherr, 2007) called VSPODE (Validating Solver for Parametric ODEs), which is

used to produce guaranteed bounds on the solutions of nonlinear dynamic systems with interval-

valued initial states and parameters. This IVP solver makes use, in a novel way, of the Taylor

model approach (Makino & Berz, 1996, 1999, 2003) to deal with the dependency problem on the

uncertain variables (parameters and initial values). We will summarize here the basic ideas of the

method used. Additional background and details are given by Lin & Stadtherr (2007).

Consider the following parametric ODE system, with state variables and parameters denoted

by x and θ, respectively:

x′ = f(x,θ), x(t0) = x0 ∈ X0, θ ∈ Θ, (6)

where t ∈ [t0, tN ] for some tN > t0. The interval vectors X0 and Θ represent enclosures of

initial values and parameters, respectively. It is desired to determine a validated enclosure of all

possible solutions to this initial value problem. We denote by x(t; tj ,Xj ,Θ) the set of solutions
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x(t; tj ,Xj ,Θ) = {x(t; tj ,xj ,θ) | xj ∈ Xj,θ ∈ Θ} , where x(t; tj ,xj,θ) denotes a solution of x′ =

f(x,θ) for the initial condition x = xj at tj . We will describe a method for determining enclosures

Xj of the state variables at each time step j = 1, . . . , N , such that x(tj; t0,X0,Θ) ⊆ Xj.

Assume that at tj we have an enclosure Xj of x(tj; t0,X0,Θ), and that we want to carry out an

integration step to compute the next enclosure Xj+1. Then, in the first phase of the method, the

goal is to find a step size hj = tj+1 − tj > 0 and an a priori enclosure (coarse enclosure) X̃j of the

solution such that a unique solution x(t; tj ,xj,θ) ∈ X̃j is guaranteed to exist for all t ∈ [tj , tj+1],

all xj ∈ Xj , and all θ ∈ Θ. We apply a traditional interval method, with high order enclosure,

to the parametric ODEs by using an interval Taylor series (ITS) with respect to time. That is, we

determine hj and X̃j such that for Xj ⊆ X̃
0

j ,

X̃j =
k−1∑

i=0

[0, hj ]
iF [i](Xj ,Θ) + [0, hj ]

kF [k](X̃
0

j ,Θ) ⊆ X̃
0

j . (7)

Here X̃
0

j is an initial estimate of X̃j, k denotes the order of the Taylor expansion, and the coefficients

F [i] are interval extensions of the Taylor coefficients f [i] of x(t) with respect to time. Satisfaction

of Eq. (7) demonstrates that there exists a unique solution x(t; tj ,xj ,θ) ∈ X̃j for all t ∈ [tj , tj+1],

all xj ∈ Xj , and all θ ∈ Θ.

In the second phase of the method, we compute a tighter enclosure Xj+1 ⊆ X̃j , such that

x(tj+1; t0,X0,Θ) ⊆ Xj+1. This will be done by using an ITS approach to compute a Taylor model

T xj+1 of xj+1 in terms of the initial values and parameters, and then obtaining the enclosure

Xj+1 = B(T xj+1). For the Taylor model computations, we begin by representing the interval

initial states and parameters by the Taylor models T x0 and T θ, respectively, with components

Txi0 = (m(Xi0) + (xi0 − m(Xi0)), [0, 0]), i = 1, · · · , n, (8)

and

Tθi
= (m(Θi) + (θi − m(Θi)), [0, 0]), i = 1, · · · , p. (9)
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Then, we can determine Taylor models T
f[i] of the interval Taylor series coefficients f [i](xi,θ)

by using RDA operations to compute T
f [i] = f [i](T xj

,T θ). Using an interval Taylor series for

xj+1 with coefficients given by T
f [i], and incorporating a novel approach for using the mean value

theorem on Taylor models, one can obtain a result for T xj+1 in terms of the parameters and initial

states. In order to address the wrapping effect (Moore, 1966), results are propagated from one time

step to the next using a new type of Taylor model, in which the remainder bound is not an interval,

but a parallelepiped. That is, the remainder bound is a set of the form P = {Av | v ∈ V }, where

A ∈ R
n×n is a real and regular matrix. If A is orthogonal, as from a QR-factorization, then P can

be interpreted as a rotated n-dimensional rectangle. Complete details of the computation of T xj+1

are given by Lin & Stadtherr (2007).

The approach outlined above, as implemented in VSPODE, has been tested by Lin & Stadtherr

(2007), who compared its performance with results obtained using the popular VNODE package

(Nedialkov et al., 2001) (in using VNODE, interval-valued parameters are treated as additional

state variables with interval-valued initial states). For the test problems used, VSPODE provided

tighter enclosures on the state variables than VNODE, and required significantly less computation

time. Information about the availability of VSPODE can be obtained by contacting the authors.

5 Solution method for TPBVPs

The proposed approach for enclosing all solutions of TPBVPs is based on a branch and reduce

framework. During the algorithm, the initial region Z(0) = (X
(0)
0 ,Θ(0))T = (X0,Θ)T is divided

into a sequence of subregions Z(k) = (X
(k)
0 ,Θ(k))T. Based on the solution criteria, as given by Eq.

(2), certain subregions are dynamically refined (reduced) while others are excluded from consid-

eration. For a given subregion Z(k), with corresponding initial state interval X
(k)
0 and parameter

interval Θ(k), an interval IVP solver, as discussed in Section 4, can be used to verify that a unique
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solution to the IVP exists for every x0 ∈ X
(k)
0 and every θ ∈ Θ(k), and also to obtain the final

state enclosure X f , which is guaranteed to enclose all solutions xf of the IVP for every x0 ∈ X
(k)
0

and every θ ∈ Θ(k). When VSPODE (Lin & Stadtherr, 2007) is used, this final state enclosure is

represented in terms of the parameters and the initial states by the Taylor model T
(k)
xf over Z(k).

A Taylor model T
(k)
g of the boundary condition functions g(x0,xf ,θ) can now be computed using

the Taylor model operations discussed in Section 3.2. That is, T
(k)
g = g(T x0 ,T

(k)
xf ,T θ), where T x0

and T θ are given by Eqs. (8-9) and T
(k)
xf is computed using VSPODE. This Taylor model can then

be used, in a constraint propagation procedure, to reduce or eliminate the subregion Z(k). For

this purpose, a constraint propagation method based on Taylor models is described in the next

subsection. This is followed by a summary of the overall algorithm.

5.1 Constraint propagation on Taylor models

Information given by a constraint can be used to eliminate inconsistent values from the domain

of its variables. This domain reduction can then be propagated to all constraints on that variable,

where it may be used to further reduce the domains of other variables. This process is known as

constraint propagation (Hansen & Walster, 2004; Jaulin et al., 2001), and is widely used in various

forms (e.g., hull consistency) in connection with interval methods. In this subsection, we show how

to apply such a constraint propagation procedure using Taylor models.

Let Tc be the Taylor model of the function c(x) over the interval x ∈ X, and say the equality

constraint c(x) = 0 needs to be satisfied. This means that, if it is possible to satisfy the constraint

anywhere in the interval X, the condition 0 ∈ B(Tc) must be satisfied. Thus, in the constraint

propagation procedure (CPP) used, we first check if either B(Tc) > 0 or B(Tc) < 0. If so, then no

x ∈ X will ever satisfy the constraint; thus, the CPP can be stopped and X discarded (eliminated

from the domain of x). If B(Tc) ≤ 0 ≤ B(Tc), then it may still be possible to eliminate part of the
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interval X; thus the CPP continues, using an approach based on the range bounding strategy for

Taylor models described above.

For some component i of x, let ai and bi be the polynomial coefficients of the terms (xi − xi0)
2

and (xi − xi0) of Tc, respectively. Note that xi0 ∈ Xi and is usually the midpoint xi0 = m(Xi); the

value of xi0 will not change during the CPP. For |ai| ≥ ω, the bounds on Tc can be expressed using

Eq. (5) as

B(Tc) = ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai
+ Si, (10)

where

Si =

n∑

j=1
j 6=i

[
aj

(
Xj − xj0 +

bj

2aj

)2

−
b2
j

4aj

]
+ Q. (11)

We can reduce the computational effort to obtain Si by recognizing that this quantity is just B(Tc)

less the i-th term in the summation, and B(Tc) was already computed earlier in the CPP. Thus,

for each i, Si can be determined by dependent subtraction (see Section 3.1) using

Si = B(Tc) ⊖
[
ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

]
. (12)

Now define the intervals Ui = Xi − xi0 + bi

2ai
and Vi =

b2
i

4ai
− Si, so that B(Tc) = aiU

2
i − Vi. With

Wi = Vi/ai, then B(Tc) = ai(U
2
i −Wi). The goal is to identify and retain only the part of Xi that

contains values of xi for which it is possible to satisfy c(x) = 0. Since B(Tc) = ai(U
2
i −Wi) bounds

the range of c(x) for x ∈ X, the constraint c(x) = 0 can be satisfied if 0 ∈ B(Tc), that is, since

|ai| ≥ ω is nonzero, if 0 ∈ U2
i −Wi. Then, the set Ui that satisfies the constraint can be determined

to be

Ui =





∅ if Wi < 0

[
−

√
Wi,

√
Wi

]
if Wi ≤ 0 ≤ Wi

−
√

Wi ∪
√

Wi if Wi > 0

. (13)

The part of Xi retained is then Xi = Xi ∩
(
Ui + xi0 − bi

2ai

)
.
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If |ai| < ω, then Eq. (5) should not be used (to avoid division by a very small number). However,

if |bi| ≥ ω then Eq. (4) can be used instead. Following a procedure similar to that used above, we

now define Ui = Xi − xi0 and Vi = −(B(Tc) ⊖ bi(Xi − xi0)), so that B(Tc) = biUi − Vi. Note that

all quadratic terms are now included in Vi. To identify bounds on the part of Xi that satisfies the

constraint, we can now use the condition 0 ∈ biUi−Vi. Then, the set Ui that satisfies the constraint

can be determined to be Ui = Vi/bi. The part of Xi retained is then Xi = Xi ∩ (Ui + xi0). If both

|ai| and |bi| are less than ω, then no CPP will be applied to reduce Xi.

The overall CPP is implemented by beginning with i = 1 and proceeding component by compo-

nent. If, for any i, the result Xi = ∅ is obtained, then no x ∈ X can satisfy the constraint; thus, X

can be discarded and the CPP stopped. Otherwise, the CPP proceeds until all components of X

have been updated. Note that, in principle, each time an improved (smaller) Xi is found, it could

be used in computing Si for subsequent components of X . However, this requires recomputing the

bound B(Tc), which, for the function c(x) that is of interest here, is expensive. Thus, the CPP

for each component is done using the bounds B(Tc) computed from the original X. If, after each

component is processed, X has been sufficiently reduced (by more than ω1 = 10% by volume), then

a new bound B(Tc) is obtained, now over the smaller X, and a new CPP is started. Otherwise,

the CPP terminates.

5.2 Algorithm

A step-by-step summary of the algorithmic procedure used is given below. For simplicity, the

counter k for the sequence of intervals tested is dropped, and Z will always indicate the current

subinterval being tested.

1. Initialization

(a) Set the domain tolerance ǫx and the function tolerance ǫg.
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(b) Set the current interval Z = (X0,Θ)T.

(c) Set the interval sequence (work list) L = ∅.

(d) Set the result list R = ∅.

2. Iteration

(a) Use VSPODE to compute a Taylor model T xf
of the final state over Z, and then obtain

T g.

(b) Use T g to perform the CPP for g = 0 to try to reduce Z.

(c) If Z = ∅, go to Step 4.

(d) If Size(Z) ≤ ǫx or |B(T g)| ≤ ǫg, store the current interval Z in R and go to Step 4.

(e) If Z is sufficiently reduced, go to Step 2a.

3. Branch

(a) Select a component to be bisected.

(b) Bisect the current interval into two subintervals.

(c) Store one of the two resulting subintervals in L.

(d) Set the other subinterval to be the current interval Z, and go to Step 2.

4. Subinterval selection

(a) If L = ∅, go to Step 5.

(b) Remove one subinterval from L as Z, and go to Step 2.

5. Terminate: all solutions have been enclosed and stored in R.

In Step 2(d), an ǫ-convergence test is performed. For Size(Z) we use the width (diameter)

of Z, w(Z) = maxi(Zi − Zi). That is, Size(Z) is given by the maximum element width in Z.
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The interval magnitude |B| is given by |B| = max{|Bi|, |Bi|, i = 1, . . . ,m}, that is, the largest

magnitude element endpoint in B. In Step 2(e), the interval Z is considered sufficiently reduced

if its volume at Step 2(e) is less than some percentage of its original volume at Step 2(a). In

the current implementation of the algorithm, this percentage is set to be 50%. The volume of

an interval is the product of its component widths. In Step 3(a), various strategies can be used

to select the component to be bisected. For the problems solved here, the component with the

largest relative width was selected for bisection. The relative width of component Zi is defined as

(
Zi − Zi

)
/max{|Zi|, |Zi|, 1}. In Step 3(c) and Step 4(b), we employ a depth-first strategy; that is,

subintervals are added to and removed from the front of L.

One drawback of shooting methods (Ascher et al., 1995) is that, for some values of the param-

eters θ and initial values of x0, the solution of the IVP may not exist for all t ∈ [t0, tf ] (i.e., it

may become unbounded before the integration procedure reaches tf). In such a case, the validating

solver for parametric ODEs would fail to obtain any meaningful solution enclosures for the final

state at tf . Therefore, we need to identify the regions of Z in which the solution of the IVP does

not exist. In general, the nonexistence of a solution is associated with abnormal values of state.

For engineering problems, natural bounds on the solution of the ODE problem are often known

independently, and can be used to detect abnormal states. For example, mole fraction values that

are negative or greater than one would represent abnormal states. Similarly, in a constant-volume

chemical reactor, the concentration of reactant cannot at any time be negative or greater than its

initial concentration. This natural bounding information can be used to discard regions of Z for

which solutions of the IVP do not exist because of abnormal state values. To do this, we enforce any

specified natural bounds at each integration step. If, for a particular subinterval Z, there is a time

step after which there is no intersection between the natural bounds and the enclosures of state

calculated using VSPODE, then this subinterval can be discarded since any point in it corresponds
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to an IVP whose solution violates the natural bounds. If solutions to the IVP exist with abnormal

state values, and it is of interest to find solutions to the TPBVP that traverse abnormal states,

then the natural bounds need not be imposed.

6 Computational studies

In this section, six example problems are used to illustrate the theoretical and computational

aspects of the proposed approach for enclosing all solutions of TPBVPs. All problems were solved

on an Intel Pentium 4 3.2GHz machine running Red Hat Linux. The VSPODE package, with a

k = 17 order interval Taylor series, q = 5 order Taylor model, and QR approach for wrapping,

was used to integrate the ODE system in each problem. A variable step size procedure was used.

Unless otherwise specified, a domain tolerance of ǫx = 10−6 was used and no function tolerance

was used (ǫg = 0). The algorithm was implemented in C++.

6.1 Bratu’s equation

Bratu’s equation is mathematically interesting as an example of bifurcation (Davis, 1962), and

was first studied as a simple case of a second-order ODE by Bratu (1910). The equation arises when

deriving the temperature distribution for a reaction in an infinite vessel with plane-parallel walls,

and also in a simplification of a combustion reaction within a cylindrical vessel (Frank-Kamenetskii,

1969). The differential equation is

y′′ + λ exp(y) = 0, t ∈ [0, 1] (14)

with boundary conditions y(0) = y(1) = 0.
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The equation can be written in general first-order ODE form, with y = x1 as

x′
1 = x2

x′
2 = −λ exp(x1)

t ∈ [0, 1] (15)

x1(0) = 0

x1(1) = 0.

We will consider the case with λ = 1.

For this problem, all parameters are specified, as is one initial state, x1(0). To solve this

TPBVP, we need to determine values of the unknown initial state, x2(0), for which the boundary

conditions are satisfied. We will look for solutions in the search interval x2(0) ∈ [0, 20]. Applying the

algorithm described above, two solution enclosures for x2(0) were found, requiring 15 iterations,

and 1.96 seconds of CPU time. The trajectories of y = x1 and the corresponding enclosures of

x2(0) are shown in Fig. 1. These results correspond to the known solution (Kierzenka, 2003) for

this problem. This example demonstrates the ease with which the algorithm described here can

automatically locate multiple solutions to the TPBVP.

6.2 Troesch’s problem

Troesch’s problem comes from the investigation of the confinement of a plasma column under

radiation pressure. The problem was first described and solved by Weibel (1958). It has become

a widely used test problem, and has been solved many times, including in analytical closed form

(Roberts & Shipman, 1976), by using a shooting method (Troesch, 1976), by using a Laplace

transform decomposition technique (Khuri, 2003), and most recently by using a modified homotopy
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perturbation technique (Feng et al., 2007). The differential equation is

y′′ = λ sinh(λy), t ∈ [0, 1] (16)

with boundary conditions y(0) = 0 and y(1) = 1.

This can be reformulated, with y = x1, as the first-order ODE system

x′
1 = x2

x′
2 = λ sinh(λx1)

t ∈ [0, 1] (17)

x1(0) = 0

x1(1) = 1.

The known analytical, closed-form solution (Roberts & Shipman, 1976) of Troesch’s problem is

y(t) =
2

λ
sinh−1

[
y′(0)

2
sc

(
λy, 1 − 1

4
(y′(0))2

)]
, (18)

where y′(0) = 2(1 − m)1/2 is the derivative at t = 0 and the constant m is the solution to the

equation

sinh(λ/2)

(1 − m)1/2
= sc(λ,m), (19)

with sc(λ,m) indicating the Jacobi elliptic function. We will consider the case with λ = 0.5.

Again in this problem, all parameters are specified, as is one initial state, x1(0). To

solve the TPBVP, we need to determine the unknown initial state, x2(0). The search in-

terval used is x2(0) ∈ [0, 10]. Using the new TPBVP algorithm, a single solution enclosure

x2(0) ∈ [0.95904379541306, 0.95904379541339] was found, requiring 5 iterations and 0.73 seconds

of CPU time. Table 1 shows the corresponding enclosures of y = x1 found using VSPODE. These

results are interesting because they demonstrate that a published “exact” solution (Khuri, 2003;

Feng et al., 2007) for this problem, obtained by numerical solution of the analytical closed form, is
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in fact not very accurate, as can be seen in Table 1. Both Khuri (2003) and Feng et al. (2007) used

this “exact” solution as a basis for comparison in assessing the performance of proposed numerical

approximation schemes. If they had used the rigorous solution enclosure reported here as a basis

for comparison, they would have found that their approximation methods were actually much more

accurate than they realized.

6.3 Characteristic values of Mathieu’s equation

Mathieu’s equation (Pryce, 1993; Blanch, 1964) was originally derived in the determination of

the vibrational modes of a stretched membrane with an elliptical boundary. It arises from the

separation of the two-dimensional wave equation, transformed to elliptical coordinates, into two

ODEs (McLachlan, 1947). The canonical form can be extracted from a number of applications,

including vibrating columns of fluids (Benjamin & Ursell, 1954), the stability of an inverted pen-

dulum (Acheson, 1993), and the vibration of a string (McLachlan, 1947). The problem in this

example is to compute characteristic values (eigenvalues) of Mathieu’s equation corresponding to

even, periodic solutions. These are the values of a for which solutions to the TPBVP

y′′ + (a − 2ρ cos 2t)y = 0, t ∈ [0, π], y′(0) = y′(π) = 0 (20)

exist. The solution to the TPBVP is normalized so that y(0) = 1. We will consider the case of

ρ = 5.
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With y = x1, the problem can be written in the general first-order ODE form

x′
1 = x2

x′
2 = −(a − 2ρ cos(2x3))x1

x′
3 = 1

t ∈ [0, π] (21)

x(0) = (1, 0, 0)T

x2(π) = 0.

Note that the additional state variable x3 = t is introduced to transform the problem into au-

tonomous form.

In this example, the initial values are all specified, but there is an unknown parameter, the

characteristic value a. To solve this TPBVP, we need to determine the values of a for which

the boundary conditions are satisfied. The search interval of [0, 100] was used for a. Applying the

algorithm described above, nine solution enclosures for a were found, as shown in Table 2, requiring

53 iterations and 6.56 seconds of CPU time. These results are enclosures of the first- through ninth-

order characteristic values, ar, r = 1, . . . , 9, of Mathieu’s equation. The value of r corresponds to

the number of times x1(t) crosses zero between t = 0 and t = π in the solution to the TPBVP. The

enclosures found are consistent with the graphical results and numerical approximation formulae

provided by Blanch (1964). There are a countably infinite set of characteristic values, of which we

have enclosed all those in the search interval of [0, 100]. The corresponding state trajectories for

x1 and x2 are shown in Fig. 2 and Fig. 3. This example demonstrates that the algorithm is able

to easily deal with problems that have a large number of solutions.
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6.4 Catalytic reaction in a flat particle

This example arises in a study of heat and mass transfer for a catalytic reaction within a

porous catalyst flat particle (Hlaváček et al., 1968). The differential equation is the direct result

of a material and energy balance. Assuming a flat geometry for the particle and that conductive

heat transfer is negligible compared to convective heat transfer yields the differential equation

y′′ = λy exp

[
γβ(1 − y)

1 + β(1 − y)

]
t ∈ [0, 1], (22)

where γ = 20 is a dimensionless energy of activation, and β = 0.4 is a dimensionless parameter

describing heat evolution. The boundary conditions are y′(0) = 0 and y(1) = 1.

The problem can be written, with y = x1, in the general first-order ODE form

x′
1 = x2

x′
2 = λx1 exp

[
γβ(1 − x1)

1 + β(1 − x1)

]

t ∈ [0, 1] (23)

x2(0) = 0

x1(1) = 1.

Depending on the value of λ, there exists a different number of solutions. We consider the cases

with λ = 0.05, 0.1, and 0.15.

For this problem, all parameters and one initial state, x2(0), are specified. To solve this TPBVP,

we need to determine values of the unknown initial state, x1(0), for which the boundary conditions

are satisfied. The search interval used is x1(0) ∈ [0, 1]. The results of applying the new algorithm for

TPBVPs, including computational performance, are shown in Table 3. Three solution enclosures

are found for the case of λ = 0.1, and only one solution enclosure for both λ = 0.05 and λ = 0.15.

These results are consistent with the bifurcation diagram given by Seydel (1999).
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6.5 Tubular reactor model

This is the single example used by Chen & Manousiouthakis (2005) and Chen (2006) in con-

nection with their approach for identifying all solutions to the TPBVP. The example involves a

tubular reactor, whose model could be simplified to a system of two first-order ODEs:

x′
1 = x2

x′
2 = 6(x2 − 0.05(1 − x1)e

10x1/(1+0.5x1))

t ∈ [0, 1] (24)

x2(0) = 6x1(0)

x2(1) = 0.

Here, t represents the dimensionless distance down the reactor, and x1(t) is the dimensionless

concentration in the reactor at the position t. There are natural bounds on x1 of x1 ∈ [0, 1]. These

natural bounds are checked at each VSPODE integration step, as described in Section 5.2.

In this example, there are no unknown parameters, but the initial value x1(0) is unknown. The

natural bounds are used for the search interval, thus x1(0) ∈ [0, 1]. Following Chen (2006), a domain

tolerance of ǫx = 10−10 was used on this problem. Chen (2006) tried step sizes of both h = 0.001

and h = 0.0001 in the Runge-Kutta procedure used. As noted above, we used a variable step size

procedure in VSPODE. Our algorithm for solving TPBVPs was applied and terminated after 1716

iterations and 657.5 seconds of computation time. Examining the results list R showed that there

were five solution enclosures. However, three of these were extremely close together, suggesting

that only one of them actually enclosed a solution. In this case, one can either 1) examine each

of the closely-spaced enclosures further until all but one can be eliminated, or 2) simply collapse

the closely-spaced enclosures into one solution enclosure by taking their interval hull. The latter is

usually sufficient, and is what is done here. Thus, the total of five solution enclosures is collapsed
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to three. This is in contrast to the results of Chen & Manousiouthakis (2005) and Chen (2006), in

which a total of 1627 solution enclosures were found for h = 0.001, and 1628 for h = 0.0001, with

collapse to three enclosures in both cases. The three solution enclosures found using our algorithm

and using the method of Chen (2006) are given in Table 4. The trajectories for x1 and x2 for each

solution are shown in Figures 4 and 5. The computation time required by Chen’s (2006) method

is not reported. Thus, to compare the performance of the two approaches, we use the widths of

the enclosures found. Using the results shown in Table 4, it is seen that the enclosure widths for

the method described here are 5.8% (enclosure 1), 0.24% (enclosure 2), and 0.25% (enclosure 3) of

the enclosures found by Chen & Manousiouthakis (2005) and Chen (2006). Thus, for the second

and third enclosures, the algorithm used here provides between two and three orders of magnitude

better resolution.

6.6 Steady-state “Brusselator” with diffusion

This is a reaction-diffusion system in a fixed, bounded, one-dimensional medium (Kub́ıček et al.,

1978). The reaction system is

A ⇄ X

2X + Y ⇄ 3X

B + X ⇄ Y + D

X ⇄ E.

The system is open, allowing the concentrations of the reactants A and B to be maintained at a

constant level throughout the reaction/diffusion medium. For the case of all forward rate constants

set to one and all reverse rate constants set to zero, the steady-state concentration profiles for X
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and Y are described by

DX
∂2X

∂z2
= BX + X − A − X2Y (25)

DY
∂2Y

∂z2
= X2Y − BX.

Here, A, B, X and Y are real and indicate the concentrations of the corresponding chemical species,

DX and DY are the diffusion coefficients for X and Y, respectively, and the spatial coordinate in the

reaction/diffusion medium is the independent variable z ∈ [0, L]. We will consider first the problem

with the fixed concentration boundary conditions X(0) = X(L) = A and Y (0) = Y (L) = B/A.

This problem can be rewritten, with x1 = X, x3 = Y , and independent variable t = z/L as the

first-order ODE system

x′
1 = x2

x′
2 =

L2

DX

[
(B + 1)x1 − A − x2

1x3

]

x′
3 = x4 (26)

x′
4 =

L2

DY

(
x2

1x3 − Bx1

)

t ∈ [0, 1]

x1(0) = x1(1) = A

x3(0) = x3(1) = B/A.

We use the constant values DX = 0.0016, DY = 0.008, A = 2, and B = 4.6 (Kub́ıček et al., 1978;

Seydel, 1988).

In this example, all parameters are specified, as are two of the initial states, x1(0) and x3(0).

To solve the TPBVP, we need to determine the unknown initial states, x2(0) and x4(0). This

TPBVP is known to be challenging; depending on the value of L, it may have a large number of

solutions. We consider several cases using a series of values of L, namely, L = 0.1, 0.15, 0.20, 0.25,
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and 0.30. The search intervals on x2(0) and x4(0) are set to [−50, 50]. Physically, x1 and x3 are

concentrations, for which we assume natural bounds of [0, 10], and x2 and x4 are concentration

gradients (proportional to the diffusive fluxes of X and Y), for which we assume natural bounds

of [−50, 50]. The results of applying the new algorithm, including its computational performance,

are shown in Table 5, which gives point approximations of the narrow solution enclosures found.

These results are consistent with the bifurcation diagrams given by Kub́ıček et al. (1978). Note

that the trivial (spatially uniform) solution x2(0) = x4(0) = 0, which exists for any value of L, is

not listed in the results, though the algorithm finds it in all cases. Especially for the larger values

of L considered, this problem is indeed challenging, requiring a substantial computational effort.

Nevertheless, the algorithm described here is able to rigorously enclose all solutions in the search

space of interest.

We can also consider the case of zero-flux boundary conditions,

x2(0) = x2(1) = 0 (27)

x4(0) = x4(1) = 0,

which is also a challenging problem. In this case, we need to determine the unknown initial states,

x1(0) and x3(0). As in the previous case, we assume natural bounds of [−50, 50] for the concentra-

tion gradients and [0, 10] for the concentrations. The search interval used for both unknown initial

states (concentrations) is [0, 10]. The results for this case are summarized in Table 6. The trivial

(spatially uniform) solution, x1(0) = 2, x3(0) = 2.3, which exists for any value of L, is not listed

in the results, though the algorithm finds it in all cases. The results for L = 0.1, 0.15, 0.20, and

0.25 correspond to the bifurcation diagrams of Kub́ıček et al. (1978). However, for L = 0.30, four

of the solution enclosures found do not appear in these bifurcation diagrams, and may represent

solutions not found by Kub́ıček et al. (1978).
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7 Concluding Remarks

We have presented here a new technique for solving the two-point boundary value problem

(TPBVP). The method computes narrow and rigorously guaranteed enclosures of all solutions of a

TPBVP occurring within a specified search interval. The technique is based on the use of interval

analysis and features 1. Use of a new validated solver for parametric ODEs, which is used to produce

guaranteed bounds on the solutions of nonlinear ODE systems with interval-valued parameters and

initial states; 2. Use of a constraint propagation strategy on the Taylor models used to represent the

solutions of the dynamic system. Several numerical experiments have demonstrated the usefulness

of the method.
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Table 1: Results for Troesch’s problem for λ = 0.5, showing VSPODE enclosures of the true solution
and a published “exact” solution that is not accurate.

t VSPODE enclosure of x1 “exact” literaturea solution for x1

0.1 [ 0.095944349089, 0.095944349293 ] 0.0951769020

0.2 [ 0.192128747640, 0.192128747661 ] 0.1906338691

0.3 [ 0.288794400884, 0.288794400894 ] 0.2866534030

0.4 [ 0.386184846359, 0.386184846363 ] 0.3835229288

0.5 [ 0.484547164743, 0.484547164746 ] 0.4815373854

0.6 [ 0.584133248444, 0.584133248446 ] 0.5810019749

0.7 [ 0.685201148301, 0.685201148303 ] 0.6822351326

0.8 [ 0.788016522649, 0.788016522650 ] 0.7855717867

0.9 [ 0.892854216135, 0.892854216137 ] 0.8913669875

a Khuri (2003), Feng et al. (2007)
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Table 2: Enclosures of characteristic values of Mathieu’s equation.

r ar

1 [ 1.8581875415, 1.8581875416 ]

2 [ 7.4491097395, 7.4491097396 ]

3 [ 11.5488320363, 11.5488320364 ]

4 [ 17.0965816843, 17.0965816844 ]

5 [ 25.5499717499, 25.5499717500 ]

6 [ 36.3608999793, 36.3608999794 ]

7 [ 49.2614549085, 49.2614549086 ]

8 [ 64.1988423870, 64.1988423871 ]

9 [ 81.1564549921, 81.1564549922 ]
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Table 3: Results for catalytic reaction in a flat particle.

λ Enclosure x1(0) Iterations CPU (s)

0.05 1 [ 0.970345, 0.970346 ] 17 2.12

1 [ 0.922680, 0.922681 ]

0.1 2 [ 0.505872, 0.505873 ] 28 4.30

3 [ 0.064468, 0.064469 ]

0.15 1 [ 0.016558, 0.016559 ] 26 5.01

Table 4: Results for tubular reactor problem. Underlines indicate the digits that are the same in
both the lower and upper bounds.

Enclosure x1(0) with new algorithm x1(0) found by Chen (2006)a

1 [ 0.01004246249794, 0.01004246255616 ] [ 0.010042462, 0.010042463 ]

2 [ 0.01844542857226, 0.01844542862799 ] [ 0.018445417, 0.018445440 ]

3 [ 0.03738712379708, 0.03738712397696 ] [ 0.037387088, 0.037387160 ]

a step size h = 0.0001
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Table 5: Computational results for “Brusselator” reaction-diffusion problem with fixed concentra-
tion boundary conditions. Spatially uniform solutions are not shown.

L Solution (x2(0), x4(0)) Iterations CPU (s)

0.1 1 (15.6681, -4.8567) 20523 2847

2 (-2.3150, 0.7457)

0.15 1 (9.1534, -3.8407) 59677 18291

2 (-4.6754, 2.1050)

0.2 1 (1.8794, 0.4881) 86577 15037

2 (18.6155, -6.5040)

3 (2.2066, -1.3165)

4 (-5.5272, 3.4277)

5 (-5.6169, 2.8125)

6 (-5.5457, 0.9602)

0.25 1 (23.4979, -8.3461) 200097 40727

2 (16.7635, -5.7769)

3 (-1.8836, 2.7344)

4 (-2.7949, 0.5932)

5 (-4.1053, 3.9949)

6 (-8.3434, 2.8572)

0.3 1 (28.8501, -9.7524) 902361 212127

2 (28.4637, -10.0349)

3 (23.5717, -8.9347)

4 (8.4488, -1.9617)

5 (-5.6412, 0.8180)

6 (-8.3076, 2.1976)

7 (-9.2360, 3.0261)

8 (-9.5101, 4.4103)
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Table 6: Computational results for “Brusselator” reaction-diffusion problem with zero-flux bound-
ary conditions. Spatially uniform solutions are not shown.

L Solution (x1(0), x3(0)) Iterations CPU (s)

0.1 1 (3.2401, 1.7756) 11380 1230

2 (0.9895, 2.5105)

0.15 1 (3.5793, 1.4852) 20249 2414

2 (0.6837, 2.9160)

0.2 1 (3.3498, 1.5895) 52385 7414

2 (3.2401, 1.7756)

3 (1.9773, 2.6156)

4 (0.9895, 2.5105)

0.25 1 (3.6295, 1.5463) 226765 42693

2 (2.5340, 2.1115)

3 (0.7469, 2.6970)

4 (1.5099, 2.4063)

0.3 1 (3.5595, 1.5794) 570842 124607

2 (3.5793, 1.4852)

3 (3.2401, 1.7756)

4 (2.7700, 2.0559)

5 (0.9895, 2.5105)

6 (0.6837, 2.9160)

7 (0.8569, 2.5998)

8 (1.5169, 2.2721)
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List of Figure Captions

Figure 1. State trajectories of Bratu’s equation.

Figure 2. Trajectories of x1 for Mathieu’s equation. The uppermost curve leaving x1(0) = 1 on

the ordinate corresponds to the characteristic value a1, the curve below that corresponds to

a2, and so on, with the lowermost curve leaving x1(0) = 1 corresponding to a9.

Figure 3. Trajectories of x2 for Mathieu’s equation. The uppermost curve leaving x2(0) = 0 on

the ordinate corresponds to the characteristic value a1, the curve below that corresponds to

a2, and so on, with the lowermost curve leaving x2(0) = 0 corresponding to a9.

Figure 4. Trajectories of x1 in tubular reactor problem.

Figure 5. Trajectories of x2 in tubular reactor problem.
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Figure 1: State trajectories of Bratu’s equation.
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Figure 2: Trajectories of x1 for Mathieu’s equation. The uppermost curve leaving x1(0) = 1 on the

ordinate corresponds to the characteristic value a1, the curve below that corresponds to a2, and so

on, with the lowermost curve leaving x1(0) = 1 corresponding to a9.
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Figure 3: Trajectories of x2 for Mathieu’s equation. The uppermost curve leaving x2(0) = 0 on the

ordinate corresponds to the characteristic value a1, the curve below that corresponds to a2, and so

on, with the lowermost curve leaving x2(0) = 0 corresponding to a9.
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Figure 4: Trajectories of x1 in tubular reactor problem.
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Figure 5: Trajectories of x2 in tubular reactor problem.
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