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Abstract. In many applications of interest in chemical engineering it is necessary to
deal with nonlinear models of complex physical phenomena, on scales ranging from
the macroscopic to the molecular. Frequently these are problems that require solving
a nonlinear equation system and/or finding the global optimum of a nonconvex
function. Thus, the reliability with which these computations can be done is often an
important issue. Interval analysis provides tools with which these reliability issues
can be addressed, allowing such problems to be solved with complete certainty.
This paper will focus on three types of applications: 1) Parameter estimation in
the modeling of phase equilibrium, including the implications of using locally vs.
globally optimal parameters in subsequent computations; 2) Nonlinear dynamics,
in particular the location of equilibrium states and bifurcations of equilibria in
ecosystem models used to assess the risk associated with the introduction of new
chemicals into the environment; 3) Molecular modeling, with focus on transition
state analysis of the diffusion of a sorbate molecule in a zeolite.

1. Introduction

In many applications of interest in chemical engineering it is necessary
to deal with nonlinear models of complex physical phenomena, on scales
ranging from the macroscopic to the molecular. Frequently these are
problems that require solving a nonlinear equation system and/or find-
ing the global optimum of a nonconvex function. Thus, the reliability
with which these computations can be done is often an important issue.
For example, if there are multiple solutions to the model, have all been
located? If there are multiple local optima, has the global solution been
found? Interval mathematics can provide the modeler with the tools
needed to resolve these issues with mathematical and computational
certainty, thus providing a degree of problem-solving reliability not
available when using standard methods.

In recent years, it has been shown that strategies based on an
interval-Newton approach can be used to reliably solve a wide vari-
ety of global optimization and nonlinear equation solving problems in
chemical engineering, including computation of fluid phase equilibrium
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from activity coefficient models [37, 46, 49], cubic equation-of-state
(EOS) models [6, 21, 22, 48] and statistical associating fluid theory
[54], calculation of critical points from cubic EOS models [47], location
of azeotropes [34] and reactive azeotropes [35], computation of solid-
fluid equilibrium [44, 55], parameter estimation using standard least
squares [9] and error-in-variables (EIV) [10, 12, 11], and calculation of
adsorption in nanoscale pores from a density function theory model
[36]. In each case, the interval approach provides a mathematical and
computational guarantee either that all solutions have been located in
a nonlinear equation solving problem or that the global optimum has
been found in an optimization problem.

In this paper, we will summarize recent work on three types of
applications: 1) Parameter estimation in the modeling of phase equi-
librium, including the implications of using locally vs. globally optimal
parameters in subsequent computations; 2) Nonlinear dynamics, in par-
ticular the location of equilibrium states and bifurcations of equilibria
in ecosystem models used to assess the risk associated with the in-
troduction of new chemicals into the environment; and 3) Molecular
modeling, with focus on transition state analysis of the diffusion of a
sorbate molecule in a zeolite. In the next section, we provide a brief
outline of the interval-Newton methodology used for nonlinear equation
solving and global optimization in the applications of interest.

2. Background

Several good introductions to interval computations are available [19,
24, 28, 40]. Of particular interest here is the interval-Newton method.
Given an n × n nonlinear equation system f(x) = 0 with a finite
number of real roots in some initial interval, this technique provides the
capability to find tight enclosures of all the roots of the system that lie
within the given initial interval. For the unconstrained minimization
of φ(x), a common approach is to seek stationary points, that is, to
solve the nonlinear system f(x) = ∇φ(x) = 0. The global optimum
will be one of the roots of this nonlinear equation system, but there
may be other roots as well, representing local optima and saddle points.
To identify the global optimum, it is critical that none of the roots be
missed, and such a guarantee can be provided by the interval-Newton
approach. For a constrained optimization problem, the interval-Newton
method can be applied to solve the KKT or Fritz-John conditions. In
this section, we first summarize the interval-Newton methodology used,
and then give a couple of simple examples that demonstrate the power
of the approach.
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2.1. Methodology

Given some initial interval X (0), the interval-Newton algorithm is
applied to a sequence of subintervals. For a subinterval X (k) in the
sequence, the first step is the function range test. An interval extension

F (X (k)) of the function f(x) is calculated. An interval extension pro-
vides upper and lower bounds on the range of values that a function
may have in a given interval. It is often computed by substituting the
given interval into the function and then evaluating the function using
interval arithmetic. Thus the interval extension is often wider than the
actual range of function values, but it always includes the actual range.
If there is any component of the interval extension F (X (k)) that does
not include zero, then the interval can be discarded, since no solution of
f(x) = 0 can exist in this interval. The next subinterval in the sequence

may then be considered. Otherwise, testing of X (k) continues. During
this step, other interval-based techniques (e.g., constraint propagation)

may also be applied to try to shrink or eliminate X (k).
For a global minimization problem, the next step is the objective

range test. The interval extension Φ(X (k)), containing the range of

φ(x) over X (k) is computed. If the lower bound of Φ(X (k)) is greater

than a known upper bound on the global minimum, then X (k) can be
discarded since it cannot contain the global minimum and need not
be further tested. If it is known that X (k) contains a point that can
be used to update (reduce) the upper bound on the global minimum

(i.e., if the upper bound of Φ(X (k)) is less than the current upper
bound on the global minimum), then this update is performed. This
can be done in many different ways. A simple, cheap approach that
we have used effectively is to evaluate φ(x) at the midpoint of X (k)

and use this to update the upper bound. Another approach is to use
a local minimization routine starting at the midpoint of X (k). For this
purpose, we have used the simple, low-overhead direct search algorithm
of Hooke and Jeeves [20, 27]. Use of the local minimizer involves ad-
ditional computational overhead, but in most cases leads to a better
upper bound on the global minimum. In cases when all the stationary
points are desired rather than just the global minimum, this test step
can be turned off.

The next step is the interval-Newton test. The linear interval
equation system

F ′(X(k))(N (k)
− x(k)) = −f(x(k)) (1)

is solved for a new interval N (k), where F ′(X(k)) is an interval ex-
tension of the Jacobian of f(x), and x(k) is an arbitrary point in

X(k). It has been shown [19, 28, 40] that any root contained in X (k) is
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also contained in the image N (k). This implies that if the intersection
between X(k) and N (k) is empty, then no root exists in X (k), and also
suggests the iteration scheme X (k+1) = X(k)∩N (k). In addition, it has
also been shown [19, 28, 40] that, if N (k) ⊂ X(k), then there is a unique

root contained in X (k) and thus in N (k). Thus, after computation of
N (k) from Eq. (1), there are three possibilities: (1) X (k) ∩ N (k) = ∅,

meaning there is no root in the current interval X (k) and it can be
discarded; (2) N (k) ⊂ X(k), meaning that there is exactly one root in

the current interval X (k); (3) neither of the above, meaning that no

conclusion can be drawn. In the last case, if X (k) ∩N (k) is sufficiently
smaller than X (k), then the interval-Newton test can be reapplied
to the resulting intersection, X (k+1) = X(k) ∩ N (k). Otherwise, the
intersection X (k) ∩N (k) is bisected, and the resulting two subintervals
are added to the sequence (stack) of subintervals to be tested. If an
interval containing a unique root has been identified, then this root
can be tightly enclosed by continuing the interval-Newton iteration,
which will converge quadratically [28] to a desired tolerance (on the
enclosure diameter).

This approach is referred to as an interval-Newton/generalized-
bisection (IN/GB) method. At termination, when the subintervals in
the sequence have all been tested, either all the real roots of f(x) = 0

have been tightly enclosed, or it is determined that no root exists.
Applied to nonlinear equation solving problems, this can be regarded
as a type of branch-and-prune scheme on a binary tree. Applied to
global optimization problems, with the objective range test turned on,
it can be regarded as a type of branch-and-bound scheme, again on
a binary tree. It should be emphasized that the enclosure, existence,
and uniqueness properties discussed above, which are the basis of the
IN/GB method, can be derived without making any strong assump-
tions about the function f(x) for which roots are sought. The function
must have a finite number of roots over the search interval of interest;
however, no special properties such as convexity or monotonicity are
required, and f(x) may have transcendental terms. The function need
only be Lipschitz continuous over the interval of interest, thus functions
with slope discontinuities can also be handled; in this case, F ′(X (k))
is replaced by a suitable Lipschitz matrix [40].

Clearly, the solution of the linear interval system given by Eq.
(1) is essential to this approach. To see the issues involved in
solving such a system, consider the general linear interval system
Az = B, where the matrix A and the right-hand-side vector B

are interval-valued. The solution set S of this system is defined by

S =
{

z
∣

∣

∣ Ãz = b, Ã ∈ A, b ∈ B
}

. However, in general this set is not an
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interval and may have a very complex, polygonal geometry. Thus to
“solve” the linear interval system, one instead seeks an interval Z con-
taining S. Computing the interval hull (the tightest interval containing
S) is NP-hard [42], but there are several methods for determining an
interval Z that contains but overestimates S. Various interval-Newton
methods differ in how they solve Eq. (1) for N (k) and thus in the
tightness with which the solution set is enclosed. By obtaining bounds
that are as tight as possible, the overall performance of the interval-
Newton approach can be improved, since with a smaller N (k) the
volume of X(k) ∩N (k) is reduced, and it is also more likely that either
X(k) ∩ N (k) = ∅ or N (k) ⊂ X(k) will be satisfied. Thus, intervals
that may contain solutions of the nonlinear system are more quickly
contracted, and intervals that contain no solution or that contain a
unique solution may be more quickly identified, all of which leads to a
likely reduction in the number of bisections needed.

Frequently, N (k) is computed component-wise using an interval
Gauss-Seidel approach, preconditioned with an inverse-midpoint ma-
trix. Though the inverse-midpoint preconditioner is a good general-
purpose preconditioner, it is not always the most effective approach
[28]. Recently, a hybrid preconditioning approach (HP/RP), which
combines a simple pivoting preconditioner with the standard inverse-
midpoint scheme, has been described by Gau and Stadtherr [13] and
shown to achieve substantially more efficient computational perfor-
mance than the inverse-midpoint preconditioner alone, in some cases by
multiple orders of magnitude. However, it still cannot yield the tightest
enclosure of the solution set, which, as noted above, is in general an
NP-hard problem. Lin and Stadtherr [31, 33] have recently suggested
a strategy (LISS LP) based on linear programming (LP) for solving
the linear interval system, Eq. (1), arising in the context of interval-
Newton methods. Using this approach, exact component-wise bounds
on the solution set can be calculated, while avoiding exponential time
complexity. In numerical experiments [31, 33], LISS LP has been shown
to achieve further computational performance improvements compared
with HP/RP.

2.2. Examples

To provide some initial examples of the power of this methodology, we
use two global optimization problems, both of which have a very large
number of local minima.
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2.2.1. Trefethen Challenge Problem

This is a global optimization problem given by Trefethen [50] as part
of a set of challenge problems in which at least 10 digits of precision
were required in the final results. The global minimum of the function

f(x, y) = exp(sin(50x)) + sin(60 exp(y)) + sin(70 sin(x)) + sin(sin(80y))

− sin(10(x + y)) + (x2 + y2)/4

(2)

is sought, where x ∈ [−1, 1] and y ∈ [−1, 1]. On the unit square ([0, 1]×
[0, 1]) alone, the function has 667 local minima, as well as many other
stationary points.

This global optimization problem was solved successfully, with more
than 10 digits of precision, in only 0.16 seconds CPU time on a Sun
Blade 1000 model 1600 workstation, using the LISS LP approach. The
results for the global optimum are

x ∈ [−0.02440307969437517,−0.02440307969437516],

y ∈ [0.2106124271553557, 0.2106124271553558],

and
f ∈ [−3.306868647475245,−3.306868647475232]

This proves to be a very easy problem to solve using the interval
approach.

2.2.2. Siirola’s Problem

This problem is to find the global minimum of the function

f(x) = 100
N
∏

i=1

5
∑

j=1

(

j5

4425
cos(j + jxi)

)

+
1

N

N
∑

i=1

(xi − x0,i)
2, (3)

where xi ∈ [x0,i − 20, x0,i + 20] and x0,i = 3, i = 1, ..., N . This is used
as a test problem by Siirola et al. [45]. There are 2048 local minima
for the case N = 2 and on the order of a hundred million (108) local
minima for the case N = 5. The problem also has multiple (N) global
minimizer points. The problems were solved for the cases of N = 2 to
N = 6 on a Dell workstation (1.7 GHz Intel Xeon processor running
Linux) using LISS LP with local minimizer.

Results are shown in Table I. For each value of N , there are N
global minimizer points, all of which have been found. The global
minimizer points can all be expressed in terms of only two numbers,
denoted in Table I as x∗

i and x∗
j 6=i. The i-th global minimizer point

will have the value x∗
i for its i-th element, and the value x∗

j 6=i for
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Table I. Global solution of Siirola’s problem.

Global Minimizer Points

N x∗
i x∗

j 6=i Global Minimum CPU time (s)

2 4.6198510288 5.2820519601 -88.1046253312 0.07

3 4.6201099154 5.2824296177 -87.6730486951 2.12

4 4.6202393815 5.2826184940 -87.4572049443 33.95

5 4.6203170683 5.2827318347 -87.3276809494 413.61

6 4.6203688625 5.2828074014 -87.2413242244 4566.42

its other N − 1 elements. Again this proves to be a relatively easy
problem to solve using the interval methodology. The results also show
the exponential complexity that may be associated with deterministic
global optimization (in general, an NP-hard problem).

The subsequent sections will now focus on three types of actual
applications in chemical engineering, involving parameter estimation,
nonlinear dynamics, and molecular modeling.

3. Parameter Estimation in VLE Modeling

Because of its importance in the design of separation systems such as
distillation, much attention has been given to modeling the thermo-
dynamics of phase equilibrium in fluid mixtures, especially the case
of vapor-liquid equilibrium (VLE). Typically these models take the
form of excess Gibbs energy models or equation-of-state models, with
binary parameters in the models determined by parameter estimation
from experimental data. As an example, we consider here the estimation
from binary VLE data of the energy parameters in the Wilson equation
for liquid-phase activity coefficient.

3.1. Problem Formulation

Expressed in terms of the molar excess Gibbs energy gE for a binary
system, and the liquid-phase mole fractions x1 and x2, the Wilson
equation is

gE

RT
= −x1 ln(x1 + Λ12x2) − x2 ln(x2 + Λ21x1) (4)

from which expressions for the activity coefficients are

ln γ1 = − ln(x1 + Λ12x2) + x2

[

Λ12

x1 + Λ12x2
−

Λ21

Λ21x1 + x2

]

(5)
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lnγ2 = − ln(x2 + Λ21x1) − x1

[

Λ12

x1 + Λ12x2
−

Λ21

Λ21x1 + x2

]

. (6)

The binary parameters Λ12 and Λ21 are given by

Λ12 =
v2

v1
exp

[

−
θ1

RT

]

(7)

Λ21 =
v1

v2
exp

[

−
θ2

RT

]

, (8)

where v1 and v2 are the pure component liquid molar volumes, T is
the system temperature, R is the gas constant, and θ1 and θ2 are the
energy parameters that need to be estimated.

Given VLE measurements and assuming an ideal vapor phase, ex-
perimental values γ1,exp and γ2,exp of the activity coefficients can be
obtained from the relation

γi,exp =
yi,expPexp

xi,expP
0
i

, i = 1, 2, (9)

where xi,exp and yi,exp are, respectively, the experimental liquid- and
vapor-phase mole fractions of component i, Pexp is the experimental
pressure, and P 0

i is the vapor pressure of pure component i at the sys-
tem temperature T . For the example problem here we follow Gmehling
et al. [15] and use the relative least squares objective

φ(θ) ≡
n
∑

j=1

2
∑

i=1

(

γji,exp − γji,calc(θ)

γji,exp

)2

, (10)

where the γji,calc(θ) are calculated from the Wilson equation at condi-
tions (temperature, pressure and composition) coincident to those used
when measuring γji,exp, and n is the number of data points.

3.2. Results and Discussion

This parameter estimation problem has been solved for a large number
of systems, and results presented in the DECHEMA VLE Data Collec-
tion [15]. Gau et al. [9] applied an interval-Newton approach to a few
systems to determine the globally optimal parameters, and found that,
in several cases, the parameters reported in the DECHEMA collection
were only locally optimal parameters. A particularly interesting prob-
lem is the system benzene (1) – hexafluorobenzene (2), for which there
are ten data sets, both isothermal and isobaric, found in DECHEMA.
As shown in Table II, using the interval-Newton methodology (IN/GB),
new globally optimal parameter values are discovered in five of the
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Table II. Parameter estimation for benzene(1) – hexafluorobenzene(2) system.

Data Volume: Data T (oC) or DECHEMA IN/GB No. of Local CPU

Set Page1 points P (mmHg) θ1 θ2 φ(θ) θ1 θ2 φ(θ) Minima time(s)

1* 7:228 10 T=30 437 -437 0.0382 -468 1314 0.0118 2 19.2

2* 7:229 10 40 405 -405 0.0327 -459 1227 0.0079 2 17.6

3* 7:230 10 50 374 -374 0.0289 -449 1157 0.0058 2 15.8

4* 7:233 11 50 342 -342 0.0428 -424 984 0.0089 2 14.1

5 7:231 10 60 -439 1096 0.0047 -439 1094 0.0047 2 12.4

6 7:232 9 70 -424 1035 0.0032 -425 1036 0.0032 2 10.1

7* 7:234 17 P=300 344 -347 0.0566 -432 993 0.0149 2 22.5

8 7:235 16 500 -405 906 0.0083 -407 912 0.0083 2 18.3

9 7:236 17 760 -407 923 0.0057 -399 908 0.0053 1 17.9

10 7:226 29 760 -333 702 0.0146 -335 705 0.0146 2 26.1

1Refers to volume and page numbers in DECHEMA VLE Data Collection [15].
∗New globally optimal parameters found.
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ten cases. CPU times are on a Sun Ultra 2/1300 workstation. It is
interesting that, in the results from the DECHEMA collection, θ1 is
found to be negative for half of the data sets and positive for the
other half. Though not noted by Gmehling et al. [15], this should
raise some suspicions about the quality of these parameter estimation
results. When the globally optimal parameter values are found, θ1 is
consistently negative.

While the globally optimal parameter values provide a somewhat
better prediction of activity coefficients, as measured by the relative
least squares objective φ, it is not clear whether this better fit will
actually result in more accurate calculations of vapor-liquid equilibrium
from the activity coefficient model. To test this, for the five cases in
which new globally optimal parameters were found, we used both the
locally optimal parameters (DECHEMA) and the globally optimal pa-
rameters (IN/GB) to predict the presence and location of homogeneous
azeotropes. A homogeneous azeotrope is an equilibrium state in which
the vapor and liquid phases have the same composition. Knowledge
of azeotropes is critical in the design of distillation operations. Since
separation by distillation is based on the difference in composition be-
tween liquid and vapor phases, if there is a homogeneous azeotrope at
some composition, it will create a bottleneck beyond which no further
separation can occur. The method of Maier et al. [34], which employs an
interval method and is guaranteed to find all homogeneous azeotropes,
or determine with certainty that there are none, was used to do the
computation of azeotropes.

Results of the azeotrope calculations are shown in Table III, along
with experimental data indicating that this system has two homo-
geneous azeotropes. However, when the locally optimal parameters
reported in DECHEMA are used in azeotrope prediction, there are
three cases in which no azeotrope is found, and in the remaining two
cases only one azeotrope is found. Using the globally optimal parame-
ters found using the interval method, two azeotropes are predicted in all
cases. In this case, by finding the globally, as opposed to locally, optimal
parameter values, it clearly makes the difference between predicting
physical reality or not. If the DECHEMA parameters are used, one
would conclude that the Wilson equation is a very poor model. How-
ever, when the globally optimal parameters values are used, it appears
that the Wilson equation is actually a relatively good model, though a
better prediction of the azeotrope compositions would be desirable.

The difference between the use of the globally and locally optimal
parameters can also have an effect on many other types of calculations.
For example, Ulas et al. [52] demonstrate how batch distillation optimal
control profiles are affected by using the globally optimal parameter
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Table III. Azeotrope prediction for benzene (1) – hexafluorobenzene (2) system.

Data T (oC) or DECHEMA IN/GB Experiment

Set P (mmHg) x1 x2 P or T x1 x2 P or T x1 x2 P or T

1 T=30 0.0660 0.9340 P=107 0.0541 0.9459 P=107 0.15 0.85 P=107

0.9342 0.0658 121 0.95 0.05 120

2 40 0.0315 0.9685 168 0.0761 0.9239 168 0.16 0.84 167

0.9244 0.0756 185 0.93 0.07 183

3 50 NONE 0.0988 0.9012 255 0.17 0.83 254

0.9114 0.0886 275 0.90 0.10 273

4 50 NONE 0.0588 0.9412 256 0.17 0.83 254

0.9113 0.0887 274 0.90 0.10 273

7 P=300 NONE 0.1612 0.8388 T=54.13 0.20 0.80 T=54.55

0.9315 0.0685 52.49 0.89 0.11 52.50
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values predicted by IN/GB, versus the locally optimal parameters pub-
lished in DECHEMA. Since batch distillation is a dynamic process, the
uncertainties in model parameters are translated into time-dependent
uncertainties. Two different time-dependent relative volatility profiles
are obtained using global and local parameter values for the Wilson
model. These profiles are statistically analyzed and represented by
Ito processes. The batch distillation optimal control problem is then
solved for three cases: the stochastic global case (relative volatility is
represented by an Ito process, obtained from global parameters), the
stochastic local case (relative volatility is represented by an Ito process,
obtained from local parameters) and the deterministic case (relative
volatility is taken as constant). The results of these case studies show
that the stochastic global reflux ratio profile results in the highest prod-
uct yield and the product purity is significantly closer to the specified
purity for optimal control.

In addition to problems involving a simple least squares objective,
such as discussed above, the interval methodology can also be applied
to parameter estimation problems in which the error-in-variables (EIV)
approach is used. For example, Gau and Stadtherr [10, 12, 11], consider
EIV parameter estimation problems in the modeling of VLE, reaction
kinetics, and heat exchange networks, and solve them using the HP/RP
algorithm for the interval-Newton method. When the EIV approach is
used, the dimensionality of the optimization problem becomes much
larger. The largest problem solved was a heat exchanger network prob-
lem with 264 variables [12]. Parameter estimation problems that require
solving a nonlinear and nonconvex optimization problem, and for which
there is thus the potential for multiple local optima, occur in many
areas of engineering and science. This is an area in which use of an in-
terval approach to guarantee global optimality could have a significant
impact.

4. Nonlinear Dynamics: Ecological Modeling

A problem of frequent interest in many fields of science and engineering
is the study of nonlinear dynamics. Through the use of bifurcation
diagrams, a large amount of information concerning the number and
stability of equilibria in a nonlinear ODE model can be concisely rep-
resented. Bifurcations of equilibria are typically found by solving a
nonlinear algebraic system consisting of the equilibrium (steady-state)
conditions along with one or more augmenting functions. Typically this
equation system is solved using some continuation-based tool (e.g.,
AUTO [7]). However, in general, these methods do not provide any



13

guarantee that all bifurcations will be found, and are often initialization
dependent. Thus, without some a priori knowledge of system behavior,
one may not know with complete certainty if all bifurcation curves
have been identified and explored. We demonstrate here the use of an
interval-Newton methodology as a way to ensure that all equilibrium
states and bifurcations of interest are found.

In particular, we are interested in locating equilibrium states and
bifurcations in food chain models. These models are descriptive of a
wide range of behaviors in the environment, and are useful as a tool to
perform ecological risk assessments. Our interest in ecological modeling
is motivated by its use as one tool in studying the impact on the envi-
ronment of the industrial use of newly discovered materials. Clearly
it is preferable to take a proactive, rather than reactive, approach
when considering the safety and environmental consequences of using
new compounds. Of particular interest is the potential use of room
temperature ionic liquid (IL) solvents in place of traditional solvents
[5]. IL solvents have no measurable vapor pressure (i.e., they do not
evaporate) and thus, from a safety and environmental viewpoint, have
several potential advantages relative to the traditional volatile organic
compounds (VOCs) used as solvents, including elimination of hazards
due to inhalation, explosion and air pollution. However, ILs are, to
varying degrees, soluble in water; thus, if they are used industrially on a
large scale, their entry into the environment via aqueous waste streams
is of concern. The effects of trace levels of ILs in the environment are
today not well known and thus must be studied. Single species toxicity
information is very important as a basis for examining the effects that
a contaminant will have on an environment. However, this information,
when considered by itself, is insufficient to predict impacts on a food
chain, food web, or an ecosystem. Ecological modeling provides a means
for studying the impact of such perturbations on a localized environ-
ment by focusing not just on the impact on one species, but rather
on the larger impacts on the food chain and ecosystem. Of course,
ecological modeling is just one part of a much larger suite of tools,
including toxicological [8, 23], hydrological and microbiological studies,
that must be used in addressing this issue.

Food chain models are often simple, but display rich mathemat-
ical behavior, with varying numbers and stability of equilibria that
depend on the model parameters (e.g., [16, 38]). Therefore, bifurcation
analysis is quite useful in characterizing the mathematical behavior of
predator/prey systems, as it allows for the concise representation of
model behavior over a wide range of parameters. We will focus on one
particular food chain model here, namely a tritrophic (prey, predator,
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superpredator) Rosenzweig-MacArthur model, as described in much
more detail by Gwaltney et al. [18]

4.1. Problem Formulation

The Rosenzweig-MacArthur model features a logistic prey (i = 1), and
hyperbolic (Holling Type II) predator (i = 2) and superpredator (i = 3)
responses. In terms of the biomasses x1, x2 and x3, the model is given
by

dx1

dt
= x1

[

r

(

1 −
x1

K

)

−
a2x2

b2 + x1

]

(11)

dx2

dt
= x2

[

e2
a2x1

b2 + x1
−

a3x3

b3 + x2
− d2

]

(12)

dx3

dt
= x3

[

e3
a3x2

b3 + x2
− d3

]

. (13)

Here r is the prey growth rate constant, K is the prey carrying capacity
of the ecosystem, the di are death rate constants, the ai represent
maximum predation rates, the bi are half-saturation constants, and
the ei are predation efficiencies.

The equilibrium (steady-state) condition is simply

dx/dt = 0, (14)

which in this case is subject to the feasibility condition x ≥ 0. Thus,
once all the model parameters have been specified, there is a 3 × 3
system of nonlinear equations to be solved for the equilibrium states.
The stability of these states can be determined from the eigenvalues
of the Jacobian J (of dx/dt). According to linear stability analysis, for
an equilibrium state to be stable, all of the eigenvalues of the Jaco-
bian must have negative real parts. In addition to equilibrium states,
we are also interested in computing bifurcations of equilibria. These
include the appearance and disappearance of equilibrium states (fold
or saddle node bifurcation), the exchange of stability of two equilibria
(transcritical bifurcation), and the change of stability of an equilibrium
point (Hopf bifurcation). Three types of codimension-1 bifurcations,
namely fold, transcritical and Hopf, and two types of codimension-
2 bifurcations, namely double-fold (or double-zero) and fold-Hopf are
of particular interest. For codimension-1 bifurcations there is one free
parameter and one additional augmenting condition that must be sat-
isfied. For a fold or transcritical bifurcation the additional condition is
that an eigenvalue of the Jacobian is zero, or equivalently

det[J(x, α)] = 0, (15)
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where α is the free parameter. For a Hopf bifurcation the additional
condition is that the Jacobian has a pair of complex conjugate eigen-
values whose real parts are zero. This condition can also be expressed
[30] in terms of a bialternate product as

det[2J(x, α) � I] = 0. (16)

It can also be shown that to locate a double-fold or a fold-Hopf
codimension-two bifurcation of equilibrium, the equilibrium condition
can be augmented with the two additional equations

det[J(x, α, β)] = 0 (17)

det[2J(x, α, β) � I] = 0 (18)

and two additional variables (free parameters) α and β.
Whether one is looking for equilibrium states, or the bifurcations

of equilibria discussed above, there is a system of nonlinear equations
to be solved that may have multiple solutions, or no solutions, and
the number of solutions may be unknown a priori. For simple models,
including the Rosenzweig-MacArthur model, it may be possible to solve
for some of equilibrium states and bifurcations analytically, but for
more complex models a computational method is needed that is capable
of finding, with certainty, all the solutions of the nonlinear equation
system.

4.2. Results and Discussion

Following Gragnani et al. [16], the parameters used were set to a2 =
5/3, b2 = 1/3, e2 = 1, d2 = 0.4, a3 = 0.05, b3 = 0.5, e3 = 1, and
d3 = 0.01. A bifurcation diagram with the prey carrying capacity, K,
and the prey growth rate constant, r, as the free parameters was then
computed using the IN/GB methodology, with the result shown in Fig.
1. In an r vs. K bifurcation diagram the values of r at which bifurcations
occur are plotted as a function of K. Such a diagram was generated here
by using the IN/GB method to repeatedly solve the augmented systems
for r and x for slightly different values of K, going from K = 0 to K =
2 in steps of K = 0.005. There may be some values of K for which one
of the augmented systems has an infinite number of solutions for r (i.e.,
the vertical line in Fig. 1). This case cannot be handled directly by the
IN/GB technique, or could be missed entirely by the stepping in K.
Thus, to ensure that all of the bifurcations are found, it is necessary to
also scan in the r direction. That is, the IN/GB method was also used
to repeatedly solve the augmented systems for K and x for slightly
different values of r, in this case going from r = 0 to r = 2 in steps of r
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Figure 1. Bifurcation diagram of r vs. K. TE: Transcritical of equilibrium; FE: Fold
of equilibrium; H: Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-2.

= 0.005. To locate codimension-two bifurcations (double-fold and fold-
Hopf), the IN/GB method was used to solve the doubly-augmented
system given by Eqs. (14,17,18) for K, r and x. The average CPU time
(1.7 GHz Intel Xeon processor running Linux) for each solution of Eqs.
(14,15) for fold and transcritical bifurcations was about 0.6 seconds,
and for each solution of Eqs. (14,16) for Hopf bifurcations was about
1.4 seconds. Solving Eqs. (14,17,18) for codimension-two bifurcations
required about 39 seconds. The initial intervals used for the components
of x were in all cases [0, 5000] and for the parameters K and r were [0,
2].

As shown in Fig. 1, fold and transcritical bifurcation of equilibria
curves were both found, and are labeled FE and TE respectively. Hopf
bifurcation curves were also found, and are labeled H or Hp (for planar
Hopf). A planar Hopf bifurcation is one that occurs in a independent
two-variable subset of state space. A single fold-Hopf bifurcation was
located; this point is represented as an open diamond and labeled FH
(no double-fold bifurcations were found). This bifurcation diagram cor-
responds exactly with the known K vs. r bifurcation diagram for this
model, as reported by Gragnani et al. [16] This confirms the utility and
accuracy of the IN/GB algorithm for computing bifurcation of equilib-
ria diagrams. Bifurcation diagrams such as this can be very easily and
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Figure 2. Bifurcation diagram of d2 vs. K. TE: Transcritical of equilibrium; FE:
Fold of equilibrium; H: Hopf; Hp: Planar Hopf.

automatically generated using the IN/GB methodology, with complete
certainty that all bifurcation curves have been found.

Using the same procedure as described above, a d2 vs. K bifurcation
diagram for the Rosenzweig-MacArthur model was also generated. The
predator death rate constant d2 is now a free parameter, and r is now a
fixed parameter set at r = 1. The resulting bifurcation diagram is shown
in Fig. 2. This diagram illustrates that at a constant prey carrying
capacity and growth rate constant (r = 1), increasing or decreasing
the predator death rate will cause macroscopic changes (bifurcations)
in system behavior. For relatively small values of K, there are two
transcritical bifurcations that occur as d2 is changed, and for larger
values of K there are also two Hopf bifurcations. No double-fold or fold-
Hopf codimension-two bifurcations were found. In order to more closely
observe these changes in behavior, solution branch diagrams showing
the equilibrium states were generated by using IN/GB to solve Eq. (14)
for the case of K = 1. Fig. 3 gives the solution branch diagrams for x

as d2 is varied from 0 to 2.
Based on the bifurcation diagram (Fig. 2) at K = 1, we would expect

that as d2 is increased from 0 to 2, there should be observed first a
Hopf bifurcation (the planar Hopf is not observed in this case, due to
the sign of the third eigenvalue) and then two transcritical bifurcations.
This is what is in fact seen in Fig. 3. These diagrams illustrate that
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Figure 3. Solution branch diagram illustrating the change in equilibrium states
(species biomass) with changes in d2. From left to right: prey, predator, and
superpredator biomasses. K = 1 and r = 1 for all three plots.

there is a minimum predator death rate constant d2 that results in
stable system behavior. At low predator death rates, the system is
unstable and likely exhibits cycles of population booms and busts. As
the predator death rate increases, enough predators are dying off at
any given time to prevent the cycles from occurring, and the cycles
collapse to a stable steady-state in a Hopf bifurcation. These results
also give a sense of the effects of releasing a toxin that specifically
targets the predator trophic level, and increases the predator death
rate constant. Prior to examining these diagrams, one would expect
that such a release would have an impact on both the predator and
the superpredator populations. The plot of x3 in Fig. 3 shows that
increasing the predator death rate constant causes a linear decrease
in the stable superpredator biomass. However, according to the plot
of x2 in Fig. 3, the stable predator population is not affected until
the superpredator population reaches zero. Though these results may
seem somewhat counterintuitive, they are indicative of the complex
interactions that may occur in food chains. An ecotoxin released at a
very low concentration could affect organisms at different trophic levels
to varying degrees. For the case considered here, one might observe an
impact on the superpredator population and thus assume that the effect
of the ecotoxin was at that level, even though the actual effect is on
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the predator level (death rate constant d2). Using models such as this
one can obtain insights into the impacts of an ecotoxin that might not
otherwise be apparent.

The interval methodology has been applied successfully to several
other ecological models by Gwaltney et al. [18] and Gwaltney and
Stadtherr [17]. We anticipate that this methodology will also be useful
for computing equilibrium states and bifurcations of equilibria in a wide
variety of other problems in engineering and science in which nonlinear
dynamical behavior is of interest. For example, interval methodologies
have been successfully applied to the problem of locating equilib-
rium states and singularities in some traditional chemical engineering
problems such as reactor and reactive distillation systems [4, 14, 39, 43].

5. Molecular Modeling: Transition State Analysis

Transition-state theory is a well-established methodology which, by
providing an approach for computing the kinetics of infrequent events,
is useful in the study of numerous physical systems. Classically, it as-
sumes that there exists a potential energy hypersurface which divides
the space into a reactant region and a product region. Although the
theory was originally for interpretation of chemical reaction rates, it can
be amended for non-reacting systems, including desorption/adsorption
and diffusion processes in which no chemical bonds are broken or made.

Of particular interest here is the problem of computing the diffu-
sivity of a sorbate molecule in a zeolite. This can be done using the
methodology of transition-state theory, as described by June et al. [25]
It is assumed that diffusive motion of the sorbate molecules through
the zeolite occurs by a series of uncorrelated hops between potential
minima in the zeolite lattice. A sorption state or site is constructed
around each minimum of the potential energy hypersurface. A first
order rate constant, kij , is then associated with the rate of transition
between a given pair of neighboring sites, i and j. Any such pair of
sites is then assumed to be separated by a dividing surface on which
a saddle point of the potential energy hypersurface is located. The
saddle point can be viewed as the transition state between sites, and
a couple of steepest decent paths from the saddle point connect the
minima associated with the i and j sites. After rate constants have
been determined for all possible transitions between the sorption sites,
a continuous-time/discrete-space Monte Carlo calculation can then be
used to determine the self-diffusivity of the sorbate molecules. Obvi-
ously, in this application, and in other applications of transition-state
theory, finding all local minima and saddle points of the potential
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energy surface, V, is critical. We demonstrate here, using a sorbate-
zeolite system, the use of the interval-Newton methodology to find all
stationary points of a potential energy surface.

Stationary points satisfy the condition g = ∇V = 0; that is, at a
stationary point the gradient of the potential energy surface is zero.
Using the eigenvalues of H = ∇2

V, the Hessian of the potential energy
surface, stationary points can be classified into local minima, local
maxima, and saddle points (of order determined by the number of
negative eigenvalues). There are a number of methods for locating
stationary points. A Newton or quasi-Newton method, applied to solve
the nonlinear equation system ∇V = 0, will yield a solution whenever
the initial guess is sufficiently close to a stationary point. This method
can be used in an exhaustive search, using many different initial guesses,
to locate stationary points. The set of initial guesses to use might be
determined by the user (intuitively or arbitrarily) or by some type of
stochastic multistart approach. Another popular approach is the use
of eigenmode-following methods, as done, for example, by Tsai and
Jordan [51]. These methods can be regarded as variations of Newton’s
method. In an eigenmode-following algorithm, the Newton step is mod-
ified by shifting some of the eigenvalues of the Hessian (from positive
to negative or vice versa). By selection of the shift parameters, one can
effectively find the desired type of stationary points, e.g. minima and
first-order saddles. There are also a number of other approaches, many
involving some stochastic component, for finding stationary points.

In the context of sorbate-zeolite systems, June et al. [25] use an
approach in which minima and saddle points are located separately.
A three-step process is employed in an exhaustive search for min-
ima. First, the volume of the search space (one asymmetric unit) is
discretized by a grid with a spacing of approximately 0.2Å, and the
potential and gradient vector are tabulated on the grid. Second, each
cube formed by a set of nearest-neighbor grid nodes is scanned, and the
three components of the gradient vector on the eight vertices of the cube
checked for changes in sign. Finally, if all three components are found to
change sign on two or more vertices of the cube, a BFGS quasi-Newton
minimization search algorithm is initiated to locate a local minimum,
using the coordinates of the center of the cube as the initial guess. Two
different algorithms are tried for determining the location of saddle
points. One searches for global minimizers in the function gTg, i.e. the
sum of the squares of the components of the gradient vector. The other
algorithm, due to Baker [3], searches for saddle points directly from an
initial point by maximizing the potential energy along the eigenvector
direction associated with the smallest eigenvalue and by minimizing
along directions associated with all other eigenvalues of the Hessian.
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All the methods discussed above, however, have a major shortcom-
ing, namely that they provide no guarantee that all local minima and
first-order saddle points will actually be found. One approach to re-
solving this difficulty is given by Westerberg and Floudas [53], who
transform the equation-solving problem ∇V = 0 into an equivalent
optimization problem that has global minimizers corresponding to the
solutions of the equation system (i.e., the stationary points of V). A
deterministic global optimization algorithm, based on a branch-and-
bound strategy with convex underestimators, is then used to find these
global minimizers. Whether or not all stationary points are actually
found depends on proper choice of a parameter (alpha) used in obtain-
ing the convex underestimators, and Westerberg and Floudas do not
use a method that guarantees a proper choice. However, there do exist
techniques [1, 2], based on an interval representation of the Hessian,
that in principle could be used to guarantee a proper value of alpha,
though likely at considerable expense computationally. We demonstrate
here an approach in which interval analysis is applied directly to the
solution of ∇V = 0 using an interval-Newton methodology. This pro-
vides a mathematical and computational guarantee that all stationary
points of the potential energy surface will be found (or, more precisely,
enclosed within an arbitrarily small interval).

5.1. Problem Formulation

Zeolites are materials in which AlO4 and SiO4 tetrahedra are the
building blocks of a variety of complex porous structures characterized
by interconnected cavities and channels of molecular dimensions [26].
Silicalite contains no aluminum and thus no cations; this has made it a
common and convenient choice as a model zeolite system. The crystal
structure of silicalite, well known from X-ray diffraction studies [41],
forms a three-dimensional interconnected pore network through which a
sorbate molecule can diffuse. In this work, the phase with orthorhombic
symmetry is considered and a rigid lattice model, in which all silicon
and oxygen atoms in the zeolite framework are occupying fixed posi-
tions and there is perfect crystallinity, is assumed. One spherical sorbate
molecule (united atom) will be placed in the lattice, corresponding to
infinitely-dilute diffusion. The system is comprised of 27 unit cells, each
of which is 20.07×19.92×13.42Å with 96 silicon atoms and 192 oxygen
atoms.

All interactions between the sorbate and the oxygen atoms of the
lattice are treated atomistically with a truncated Lennard-Jones 6-12
potential. That is, for the interaction between the sorbate and oxygen
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atom i the potential is given by

Vi =







a
r12
i

− b
r6
i

ri < rcut

0 ri ≥ rcut,
(19)

where a is a repulsion parameter, b is an attraction parameter, rcut

is the cutoff distance, and ri is the distance between the sorbate and
oxygen atom i. This distance is given by

r2
i = (x − xi)

2 + (y − yi)
2 + (z − zi)

2, (20)

where (x, y, z) are the Cartesian coordinates of the sorbate, and
(xi, yi, zi), i = 1, . . . , N are the known Cartesian coordinates of the
N = 192 oxygen atoms. The silicon atoms, being recessed within the
SiO4 tetrahedra, are neglected in the potential function [29]. Therefore,
the total potential energy, V, of a single sorbate molecule in the absence
of neighboring sorbate molecules is represented by a sum over all lattice
oxygens,

V =
N
∑

i=1

Vi. (21)

The interval-Newton methodology will be applied to determine the
sorbate locations (x, y, z) that are stationary points on the potential
energy surface V given by Eq. (21), that is, to solve the nonlinear
equation system ∇V = 0. To achieve tighter interval extensions of
the potential function and its derivatives, and thus improve the perfor-
mance of the interval-Newton method, the mathematical properties of
the Lennard-Jones potential and its first- and second-order derivatives
can be exploited, as described in detail by Lin and Stadtherr [32].

5.2. Results and Discussion

The interval-Newton methodology described above (LISS LP) is now
applied to find the stationary points of the potential energy surface V

for the case of xenon as a sorbate in silicalite, as described by June
et al. [25] Due to the orthorhombic symmetry of the silicalite lattice,
the search space is only one asymmetric unit, [0, 10.035] × [0, 4.98] ×
[0, 13.42]Å, which is one-eighth of a unit cell. This defines the initial
interval for the interval-Newton method, namely X (0) = [0, 10.035]Å,
Y (0) = [0, 4.98]Å, and Z(0) = [0, 13.42]Å. Following June et al. [25],
stationary points with extremely high potential, such as V > 0, will
not be sought. To do this, we calculate the interval extension of V over
the interval currently being tested, and if its lower bound is greater
than zero, then the current interval is discarded. All computations
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Table IV. Stationary points of the potential energy surface of xenon in
silicalite

No. Type Energy(kcal/mol) x(Å) y(Å) z(Å) Connects

1 minimum -5.9560 3.9956 4.9800 12.1340

2 minimum -5.8763 0.3613 0.9260 6.1112

3 minimum -5.8422 5.8529 4.9800 10.8790

4 minimum -5.7455 1.4356 4.9800 11.5540

5 minimum -5.1109 0.4642 4.9800 6.0635

6 1st order -5.7738 5.0486 4.9800 11.3210 (1, 3)

7 1st order -5.6955 0.0000 0.0000 6.7100 (2′, 2)

8 1st order -5.6060 2.3433 4.9800 11.4980 (1, 4)

9 1st order -4.7494 0.1454 3.7957 6.4452 (2, 5)

10 1st order -4.3057 9.2165 4.9800 11.0110 (3, 4)

11 1st order -4.2380 0.0477 3.9147 8.3865 (2, 4)

12 1st order -4.2261 8.6361 4.9800 12.8560 (3, 5′)

13 1st order -4.1405 0.5925 4.9800 8.0122 (4, 5)

14 2nd order -4.1404 0.5883 4.8777 8.0138 (4,5),(4,4′)

15 2nd order -4.1027 9.1881 4.1629 11.8720 (2,3),(4,5)

were performed on a Dell workstation running a 1.7 GHz Intel Xeon
processor under Linux.

Using the LISS LP strategy for the interval-Newton method, a total
of 15 stationary points were found in a computation time of 724 s. The
locations of the stationary points, their energy value, and their type
are listed in Table IV. Five local minima were found, along with 8 first-
order saddle points and two second-order saddle points. June et al. [25]
report the same five local minima, as well as 9 of the 10 saddle points.
They do not report finding the lower energy second-order saddle point
(saddle point #14 in Table IV).

For each first-order saddle point in Table IV, we followed June et

al.’s method [25] to associate the saddle point with the transition state
between two specific minima. The saddle point first was perturbed by
10−5Å in either direction along the eigenvector of the Hessian matrix
associated with the negative eigenvalue. A steepest descent method
using a step of 0.01Å was taken in the direction −g. After 500 iterations,
the steepest descent calculation was terminated and a Newton method
was used to locate the minima connected through the saddle point. The
results of these calculations are given in the rightmost column of Table
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IV. For example, the lowest energy saddle point (#6) can be viewed as
connecting minima #1 and #3. In some cases the descent path from
a saddle point led to a state outside the initial search box. Since the
search box is one asymmetric unit, for each state found outside the
search box, we can always find the equivalent state inside the search
box through the symmetry operator and/or the periodic operator. In
Table IV this is indicated by marking the state number with a prime.
Thus, saddle point #7 connects minimum #2 with an equivalent point
in a neighboring asymmetric unit. As expected, the results found for
the states connected by the first-order saddle points is consistent with
the analysis of June et al. [25]

A similar procedure was used on the two second-order saddle points,
but using both negative eigenvalues. For example, in the case of sad-
dle point #15, beginning with perturbations in either direction along
the eigenvector associated with the most negative eigenvalue leads to
a connection between minima #2 and #3. Repeating with the least
negative eigenvalue leads to a connection between minima #4 and #5.
Thus, this saddle point can be viewed as providing a crossconnection
involving these four points. However, there are lower energy connections
between all except #2 and #3. Though June et al. [25] do not identify
this point as a second-order saddle, they do identify it as associating
minima #2 and #3.

The second-order saddle point #14, not reported by June et al. [25],
is very close to the first-order saddle point #13, and slightly lower in
energy. Apparently neither of the two methods tried by June et al.

[25] was able to locate this point. The first method they tried uses the
same grid-based optimization scheme used to locate local minima in
V, but instead applied to minimize gTg. However, stationary points
#13 and #14 are approximately 0.1Å apart, while the grid spacing
they used was approximately 0.2Å. This illustrates the danger in using
grid-based schemes for finding all solutions to a problem. By using the
interval methodology described here, one never needs to be concerned
about whether or not a grid spacing is fine enough to find all solutions.
The second method they tried was Baker’s algorithm [3], as described
briefly above, but it is unclear how they initialized the algorithm. A
key advantage of the interval method is that no point initialization is
required. Only an initial interval must be supplied, here corresponding
to one asymmetric unit, and this is determined by the geometry of
the zeolite lattice. Thus, in this context the interval methodology is
initialization independent.

Lin and Stadtherr [32] have also studied two other sorbate-zeolite
systems, and used the interval methodology to find all stationary points
on the potential energy surfaces. While we have concentrated here on
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problems involving transition-state analysis of diffusion in zeolites, we
anticipate that the methodology will be useful in many other types of
problems in which transition-state theory is applied.

6. Concluding Remarks

We have demonstrated that the interval-Newton approach is a pow-
erful, deterministic approach to the solution of a number of global
optimization problems, as well as nonlinear equation solving problems,
such as those that arise in chemical engineering and other areas of
engineering and science. Problems with a very large number of local
optima can be effectively solved, as can problems with a relatively
large number of variables. Continuing improvements in methodology,
together with advances in software and hardware will make this an
increasingly attractive problem solving tool.

The validation provided by the interval approach comes at the ex-
pense of additional computation time. Essentially one has a choice
between fast methods that may give the wrong answer, or a slower
method that is guaranteed to give the correct answer. Thus, a modeler
may need to consider the trade off between the additional computing
time and the risk of getting the wrong answer to a problem. Certainly,
for “mission critical” situations, the additional computing expense is
well spent.
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39. Mönnigmann, M. and W. Marquardt: 2002, ‘Normal Vectors on Manifolds of
Critical Points for Parametric Robustness of Equilibrium Solutions of ODE
Systems’. J. Nonlinear Sci. 12, 85–112.

40. Neumaier, A.: 1990, Interval Methods for Systems of Equations. Cambridge,
England: Cambridge University Press.



28

41. Olson, D. H., G. T. Kokotailo, S. L. Lawton, and W. M. Meier: 1981, ‘Crystal
Structure and Structure-Related Properties of ZSM-5’. J. Phys. Chem. 85,
2238–2243.

42. Rohn, J. and V. Kreinovich: 1995, ‘Computing Exact Componentwise Bounds
on Solution of Linear Systems with Interval Data Is NP-Hard’. SIAM J. Matrix.

Anal. 16, 415–420.
43. Schnepper, C. A. and M. A. Stadtherr: 1996, ‘Robust Process Simulation using

Interval Methods’. Comput. Chem. Eng. 20, 187.
44. Scurto, A. M., G. Xu, J. F. Brennecke, and M. A. Stadtherr: 2003, ‘Phase

Behavior and Reliable Computation of High-Pressure Solid-Fluid Equilibrium
with Cosolvents’. Ind. Eng. Chem. Res. 42, 6464–6475.

45. Siirola, J. D., S. Hauen, and A. W. Westerberg: 2002, ‘Agent-based Strategies
for Multiobjective Optimization’. AIChE Annual Meeting, Indianapolis, IN,
Paper 265g.

46. Stadtherr, M. A., C. A. Schnepper, and J. F. Brennecke: 1995, ‘Robust Phase
Stability Analysis Using Interval Methods’. AIChE Symp. Ser. 91(304), 356.

47. Stradi, B. A., J. F. Brennecke, J. P. Kohn, and M. A. Stadtherr: 2001, ‘Reliable
Computation of Mixture Critical Points’. AIChE J. 47, 212–221.

48. Stradi, B. A., G. Xu, J. F. Brennecke, and M. A. Stadtherr: 2000, ‘Modeling
and Design of an Environmentally Benign Reaction Process’. AIChE Symp.

Ser. 96(323), 371–375.
49. Tessier, S. R., J. F. Brennecke, and M. A. Stadtherr: 2000, ‘Reliable Phase

Stability Analysis for Excess Gibbs Energy Models’. Chem. Eng. Sci. 55,
1785.

50. Trefethen, N.: 2002, ‘A Hundred-dollar Hundred-digit Challenge’. SIAM News

35, 1.
51. Tsai, C. J. and K. D. Jordan: 1993, ‘Use of An Eigenmode Method to Locate

The Stationary-Points on The Potential-Energy Surfaces of Selected Argon
And Water Clusters’. J. Phys. Chem. 97, 11227–11237.

52. Ulas, S., U. M. Diwekar, and M. A. Stadtherr: 2005, ‘Uncertainties in Parameter
Estimation and Optimal Control in Batch Distillation’. Comput. Chem. Eng.

29, 1805–1814.
53. Westerberg, K. M. and C. A. Floudas: 1999, ‘Locating All Transition States

and Studying the Reaction Pathways of Potential Energy Surfaces’. J. Chem.

Phys. 110, 9259–9295.
54. Xu, G., J. F. Brennecke, and M. A. Stadtherr: 2002, ‘Reliable Computation of

Phase Stability and Equilibrium from the SAFT Equation of State’. Ind. Eng.

Chem. Res. 41, 938–952.
55. Xu, G., A. M. Scurto, M. Castier, J. F. Brennecke, and M. A. Stadtherr: 2000,

‘Reliable Computation of High Pressure Solid-Fluid Equilibrium’. Ind. Eng.

Chem. Res. 39, 1624–1636.


