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Phase Stability Problem

� Will a mixture (feed) at a given T , P , and
composition x split into multiple phases?

� A key subproblem in determination of phase
equilibrium, and thus in the design and analysis
of separation operations.

� Using tangent plane analysis, can be formulated as a
minimization problem, or as an equivalent nonlinear
equation solving problem.

� Equation system to be solved may have trivial
and/or multiple roots (optimization problem has
multiple local optima).

� Conventional techniques may fail to converge, or
converge to false or trivial solutions.
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Tangent Plane Analysis

� A phase at T , P , and feed composition z is unstable
if the Gibbs energy of mixing vs. composition
surface

m(x; v) = �gmix = �Ĝmix=RT

ever falls below a plane tangent to the surface at z

mtan(x) = m(z; vz) +
nX
i=1
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(xi � zi)

� That is, if the tangent plane distance

D(x; v) = m(x; v)�mtan(x)

is negative for any composition x, the phase is
unstable.

� In this context, \unstable" refers to both the
metastable and classically unstable cases.
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Optimization Formulation

� To determine if D ever becomes negative, determine
the minimum of D and examine its sign

min
x;v

D(x; v)

subject to

1�

nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
�nd the global minimum.
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Equation Solving Formulation

� Stationary points of the optimization problem can
be found be solving the nonlinear equation system
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EOS(x; v) = 0

� Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to �nd all the roots.
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Example 1

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK model
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� Five stationary points (four minima, one maximum).

� Standard local methods (e.g. Michelsen, 1982)
known to fail (predict stability when system is
actually unstable).
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Some Current Solution Methods

� Various local methods | Fast, but initialization
dependent (may use multiple initial guesses), and
not always reliable

� Some more reliable approaches

{ Exhaustive search on grid (Eubank et al., 1992)
{ Homotopy-continuation (Sun and Seider, 1995)
{ Topological degree (Wasylkiewicz et al., 1996)
{ Branch and bound (McDonald and Floudas,
1995, 1997): Guarantee of global optimum when
certain activity coe�cient models are used

� Interval analysis

{ Provides a general-purpose, model-independent
method for solving phase stability problem
with complete certainty.

{ Stadtherr et al. (1994,1995), McKinnon et al.
(1995,1996): Activity coe�cient models

{ Hua et al. (1995,1996,1997): Equation of state
models
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Interval Approach

� Interval Newton/Generalized Bisection (IN/GB)

{ Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution
tolerance

{ Can �nd with mathematical and computational
certainty either all the solutions or that
no solutions exist. (e.g., Kearfott 1987,1996;
Neumaier 1990)

� A general purpose and model-independent approach

{ Requires no simplifying assumptions or problem
reformulations

{ Can use for EOS models (with any mixing rule)
or with activity coe�cient models

� Details of algorithm given by Schnepper and
Stadtherr (1996)

� Implementation based on modi�cations of routines
from INTBIS and INTLIB packages (Kearfott and
coworkers)
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Example 1 | Phase Stability

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK model

Feed (z1; z2) Stationary Points (roots)

and CPU time (x1; x2; v [cm3/mol]) D

(0.0187, 0.9813) (0.885, 0.115, 36.6) 0.011

0.20 sec (0.0187, 0.9813, 207.3) 0.0

(0.031, 0.969, 115.4) 0.008

(0.077, 0.923, 64.1) -0.004

(0.491, 0.509, 41.5) 0.073

� CPU time on Sun Ultra 2/1300.

� All stationary points easily found, showing the feed
to be unstable.

� Presence of multiple real volume roots causes no
di�culties.
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Example 2 | Phase Stability

CO2, CH4, T = 220 K, P = 60.8 bar, PR model

Number of

Stationary CPU time

Feed (z1; z2) Points Dmin (sec)

(0.10, 0.90) 1 0.0 0.11

(0.20, 0.80) 3 -0.007 0.33

(0.30, 0.70) 3 -0.0002 0.36

(0.43, 0.57) 3 -0.001 0.35

(0.60, 0.40) 1 0.0 0.29

CPU times on Sun Ultra 2/1300.
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Example 3 | Phase Stability

Green et al. (1993) ternary, T = 400 K, P = 80 atm,
VDW model

Number of

Stationary CPU time

Feed (z1; z2; z3) Points Dmin (sec)

(0.83,0.085,0.085) 3 -0.0099 0.70

(0.77,0.115,0.115) 3 -0.0036 0.76

(0.72,0.14,0.14) 3 -0.0036 0.83

(0.69,0.155,0.155) 3 0.0 0.85

CPU times on Sun Ultra 2/1300.
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Example 4 | Phase Stability

N2, CH4, C2H6, T = 270 K, P = 76 bar, PR model

Number of

Stationary CPU time

Feed (z1; z2; z3) Points Dmin (sec)

(0.30,0.10,0.60) 3 -0.015 1.3

(0.15,0.30,0.55) 3 -0.001 3.4

(0.08,0.38,0.54) 1 0.0 2.5

(0.05,0.05,0.90) 1 0.0 0.54

CPU times on Sun Ultra 2/1300.
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Incorporating Local Techniques

� If a local method indicates instability then this is
the correct answer as it means a point at which
D < 0 has been found.

� If a local method indicates stability, however, this
may not be the correct answer since the local
method may have missed the global minimum in
D.

� Combined local/global approach:

{ Use local methods to try to demonstrate
instability.

{ If instability not found, only then use global
interval method to con�rm stability or identify
instability.
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Approach Used

� If m(z; vz) > 0 ) unstable

� Evaluate D at pure components. If any D < 0 )
unstable

� For a number of randomly chosen compositions:

{ If D < 0 ) unstable
{ If D � 0, then start a local solver (Newton)
and try to converge to a stationary point. If at
termination D < 0 ) unstable

� If still not shown unstable, then apply interval
approach to con�rm stability or �nd instability
missed by local techniques.

� This approach is implemented in the code INTSTAB
(available from the authors)
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E�ect of Local Approach

� Typical results comparing combined local/global
approach with global only approach

Example CPU time (sec)

Problem Stable? Global Local/Global

1 N 0.20 0.002

3 (feed 1) N 0.70 0.001

3 (feed 4) Y 0.85 0.88

4 (feed 1) N 1.3 0.002

4 (feed 4) Y 0.54 0.58

� CPU times on Sun Ultra 2/1300 using INTSTAB.

� For unstable mixtures, instability generally detected
in milliseconds.

� For stable mixtures, negligible increase in
computation time.
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Phase Split Problem

� Can formulate as global minimization of total Gibbs
energy, subject to material balance constraints. May
have multiple local minima.

� Can also formulate as equation solving problem:
equifugacity equations and material balances. May
have multiple solutions.

� Need to seek global solution, but local methods can
be applied since phase stability analysis can be used
as a global optimality test that can be applied to
any local solution (Baker et al., 1982).

� Correct solution of the phase stability problem is
thus the key to correct solution of the phase split
problem.

� Interval analysis guarantees correct solution of the
phase stability problem, and so can also guarantee
correct solution of the phase split problem.
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Global Solution of Phase Split Problem

� Can combine the global stability analysis with any
standard phase split (or 
ash) algorithm.

� One approach

{ Perform global stability analysis. If unstable, use
the local minima in D to generate initial guesses
for the solution to the phase split problem.

{ For each such initial guess, use a local optimizer
(SQP) to solve the phase split problem and then
test for stability.

{ If global solution not found increase number of
phases and continue.

� This approach is implemented in the code
INTFLASH (available from the authors)

16



Example 5 | Phase Split

CH4, CO2, H2S, T = 282.15 K, P = 59.5 bar, PR
model, z1 = 0.4995, z2 = 0.0977, z3 = 0.4028

Phase I �I 0.1748

(L) vI 41.95 cm3/mol

x
I (0.1047,0.0727,0.8226)

Phase II �II 0.8352

(V) vII 280.1 cm3/mol

x
II (0.5832,0.1030,0.3138)

CPU 2.05 sec

CPU times on Sun Ultra 2/1300 using INTFLASH.
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Example 6 | Phase Split

CH4, CO2, H2S, T = 208 K, P = 54.9 bar, PR model,
z1 = 0.4989, z2 = 0.0988, z3 = 0.4023

Phase I �I 0.0702

(V) vI 141.9 cm3/mol

x
I (0.9120,0.0417,0.0463)

Phase II �II 0.3816

(L) vII 53.46 cm3/mol

x
II (0.7539,0.0848,0.1613)

Phase III �III 0.5482

(L) vIII 35.69 cm3/mol

x
III (0.2685,0.1158,0.6157)

CPU 9.0 sec

CPU times on Sun Ultra 2/1300 using INTFLASH.
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Concluding Remarks

� Can combine speed of local methods with
reliability of global interval analysis to compute
multicomponent, multiphase equilibria with
complete certainty.

� Have solved many other problems using VDW,
PR and SRK equation of state models, as well
as problems using NRTL and UNIQUAC activity
coe�cient models.

� Interval analysis provides a general-purpose and
model-independent approach for solving phase
stability and phase split problems, providing
a mathematical and computational guarantee of
reliability.

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of phase behavior and in other process
modeling problems.
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