Combined Local and Global Approach to Reliable Computation of Phase Equilibria

James Z. Hua* Department of Chemical Engineering University of Illinois, Urbana, IL 61801

Joan F. Brennecke and Mark A. Stadtherr[†] Department of Chemical Engineering University of Notre Dame, Notre Dame, IN 46556

Paper Number 80b AIChE Annual Meeting, Los Angeles, CA, November 1997

^{*}Currently at Shell Chemical Company, Houston, TX

[†]Author to whom all correspondence should be addressed; Phone: (219) 631-9318; Fax: (219) 631-8366; E-mail: markst@nd.edu

Phase Stability Problem

- Will a mixture (feed) at a given T, P, and composition x split into multiple phases?
- A key subproblem in determination of phase equilibrium, and thus in the design and analysis of separation operations.
- Using tangent plane analysis, can be formulated as a minimization problem, or as an equivalent nonlinear equation solving problem.
- Equation system to be solved may have trivial and/or multiple roots (optimization problem has multiple local optima).
- Conventional techniques may fail to converge, or converge to false or trivial solutions.

Tangent Plane Analysis

• A phase at *T*, *P*, and feed composition z is unstable if the Gibbs energy of mixing vs. composition surface

$$m(\mathbf{x}, v) = \Delta g_{mix} = \Delta \hat{G}_{mix}/RT$$

ever falls below a plane tangent to the surface at \mathbf{z}

$$m_{tan}(\mathbf{x}) = m(\mathbf{z}, v_{\mathbf{z}}) + \sum_{i=1}^{n} \left(\frac{\partial m}{\partial x_{i}}\right)\Big|_{\mathbf{z}} (x_{i} - z_{i})$$

• That is, if the *tangent plane distance*

$$D(\mathbf{x}, v) = m(\mathbf{x}, v) - m_{tan}(\mathbf{x})$$

is negative for any composition \mathbf{x} , the phase is unstable.

• In this context, "unstable" refers to both the metastable and classically unstable cases.

Optimization Formulation

• To determine if D ever becomes negative, determine the minimum of D and examine its sign

$$\min_{\mathbf{x},v} D(\mathbf{x},v)$$

subject to

$$1 - \sum_{i=1}^{n} x_i = 0$$

$$EOS(\mathbf{x}, v) = 0$$

• Trivial local optimum (minimum or maximum) at the feed composition $\mathbf{x} = \mathbf{z}$; may be multiple nontrivial optima. Need technique <u>guaranteed</u> to find the global minimum.

Equation Solving Formulation

• Stationary points of the optimization problem can be found be solving the nonlinear equation system

$$\left[\left(\frac{\partial m}{\partial x_i} \right) - \left(\frac{\partial m}{\partial x_n} \right) \right] - \left[\left(\frac{\partial m}{\partial x_i} \right) - \left(\frac{\partial m}{\partial x_n} \right) \right]_{\mathbf{z}} = 0,$$

$$i = 1, \dots, n - 1$$

$$1 - \sum_{i=1}^{n} x_i = 0$$

$$EOS(\mathbf{x}, v) = 0$$

 Trivial root at the feed composition x = z; may be multiple nontrivial roots. Need technique guaranteed to find <u>all</u> the roots.

Example 1

CH_4, H_2S, $T\,=\,190\,$ K, $P\,=\,40\,$ atm, $\,z_1\,=\,0.0187,$ SRK model

- Five stationary points (four minima, one maximum).
- Standard local methods (e.g. Michelsen, 1982) known to fail (predict stability when system is actually unstable).

Some Current Solution Methods

- Various local methods Fast, but initialization dependent (may use multiple initial guesses), and not always reliable
- Some more reliable approaches
 - Exhaustive search on grid (Eubank et al., 1992)
 - Homotopy-continuation (Sun and Seider, 1995)
 - Topological degree (Wasylkiewicz et al., 1996)
 - Branch and bound (McDonald and Floudas, 1995, 1997): Guarantee of global optimum when certain activity coefficient models are used
- Interval analysis
 - Provides a general-purpose, model-independent method for solving phase stability problem with complete certainty.
 - Stadtherr et al. (1994,1995), McKinnon et al. (1995,1996): Activity coefficient models
 - Hua et al. (1995,1996,1997): Equation of state models

Interval Approach

- Interval Newton/Generalized Bisection (IN/GB)
 - Given a system of equations to solve, an initial interval (bounds on all variables), and a solution tolerance
 - Can find with mathematical and computational certainty either all the solutions or that no solutions exist. (e.g., Kearfott 1987,1996; Neumaier 1990)
- A general purpose and model-independent approach
 - Requires no simplifying assumptions or problem reformulations
 - Can use for EOS models (with any mixing rule) or with activity coefficient models
- Details of algorithm given by Schnepper and Stadtherr (1996)
- Implementation based on modifications of routines from INTBIS and INTLIB packages (Kearfott and coworkers)

Example 1 — Phase Stability

CH_4, H_2S, $T\,=\,190\,$ K, $P\,=\,40\,$ atm, $\,z_1\,=\,0.0187,$ SRK model

Feed (z_1, z_2)	Stationary Points (roots)	
and CPU time	$(x_1,x_2,v \; [cm^3/mol])$	D
(0.0187, 0.9813)	(0.885, 0.115, 36.6)	0.011
0.20 sec	(0.0187, 0.9813, 207.3)	0.0
	(0.031, 0.969, 115.4)	0.008
	(0.077, 0.923, 64.1)	-0.004
	(0.491, 0.509, 41.5)	0.073

- CPU time on Sun Ultra 2/1300.
- All stationary points easily found, showing the feed to be unstable.
- Presence of multiple real volume roots causes no difficulties.

Example 2 — Phase Stability

 CO_2 , CH_4 , T= 220 K, P= 60.8 bar, PR model

	Number of		
	Stationary		CPU time
Feed (z_1, z_2)	Points	D_{min}	(sec)
(0.10, 0.90)	1	0.0	0.11
(0.20, 0.80)	3	-0.007	0.33
(0.30, 0.70)	3	-0.0002	0.36
(0.43, 0.57)	3	-0.001	0.35
(0.60, 0.40)	1	0.0	0.29

CPU times on Sun Ultra 2/1300.

Example 3 — Phase Stability

Green et al. (1993) ternary, T= 400 K, P= 80 atm, VDW model

	Number of		
	Stationary		CPU time
Feed (z_1, z_2, z_3)	Points	D_{min}	(sec)
(0.83,0.085,0.085)	3	-0.0099	0.70
(0.77, 0.115, 0.115)	3	-0.0036	0.76
(0.72,0.14,0.14)	3	-0.0036	0.83
(0.69,0.155,0.155)	3	0.0	0.85

CPU times on Sun Ultra 2/1300.

Example 4 — Phase Stability

 $\mathsf{N}_2\text{, }\mathsf{CH}_4\text{, }\mathsf{C}_2\mathsf{H}_6\text{, }T$ = 270 K, P = 76 bar, PR model

	Number of		
	Stationary		CPU time
Feed (z_1, z_2, z_3)	Points	D_{min}	(sec)
(0.30,0.10,0.60)	3	-0.015	1.3
(0.15,0.30,0.55)	3	-0.001	3.4
(0.08,0.38,0.54)	1	0.0	2.5
(0.05,0.05,0.90)	1	0.0	0.54

CPU times on Sun Ultra 2/1300.

Incorporating Local Techniques

- If a local method indicates instability then this is the correct answer as it means a point at which D < 0 has been found.
- If a local method indicates stability, however, this may not be the correct answer since the local method may have missed the global minimum in D.
- Combined local/global approach:
 - Use local methods to try to demonstrate instability.
 - If instability not found, only then use global interval method to confirm stability or identify instability.

Approach Used

- If $m(\mathbf{z}, v_{\mathbf{z}}) > 0 \Rightarrow \text{unstable}$
- Evaluate D at pure components. If any $D < 0 \Rightarrow \mbox{unstable}$
- For a number of randomly chosen compositions:
 - If $D < 0 \Rightarrow$ unstable
 - If $D \ge 0$, then start a local solver (Newton) and try to converge to a stationary point. If at termination $D < 0 \Rightarrow$ unstable
- If still not shown unstable, then apply interval approach to confirm stability or find instability missed by local techniques.
- This approach is implemented in the code INTSTAB (available from the authors)

Effect of Local Approach

• Typical results comparing combined local/global approach with global only approach

Example		CPU time (sec)	
Problem	Stable?	Global	Local/Global
1	N	0.20	0.002
3 (feed 1)	N	0.70	0.001
3 (feed 4)	Y	0.85	0.88
4 (feed 1)	N	1.3	0.002
4 (feed 4)	Y	0.54	0.58

- CPU times on Sun Ultra 2/1300 using INTSTAB.
- For unstable mixtures, instability generally detected in milliseconds.
- For stable mixtures, negligible increase in computation time.

Phase Split Problem

- Can formulate as global minimization of total Gibbs energy, subject to material balance constraints. May have multiple local minima.
- Can also formulate as equation solving problem: equifugacity equations and material balances. May have multiple solutions.
- Need to seek global solution, but local methods can be applied since phase stability analysis can be used as a global optimality test that can be applied to any local solution (Baker et al., 1982).
- Correct solution of the phase stability problem is thus the key to correct solution of the phase split problem.
- Interval analysis guarantees correct solution of the phase stability problem, and so can also guarantee correct solution of the phase split problem.

Global Solution of Phase Split Problem

- Can combine the global stability analysis with any standard phase split (or flash) algorithm.
- One approach
 - Perform global stability analysis. If unstable, use the local minima in D to generate initial guesses for the solution to the phase split problem.
 - For each such initial guess, use a local optimizer (SQP) to solve the phase split problem and then test for stability.
 - If global solution not found increase number of phases and continue.
- This approach is implemented in the code INTFLASH (available from the authors)

Example 5 — Phase Split

CH₄, CO₂, H₂S, T = 282.15 K, P = 59.5 bar, PR model, $z_1 = 0.4995$, $z_2 = 0.0977$, $z_3 = 0.4028$

Phase I	eta^I	0.1748
(L)	v^{I}	41.95 cm 3 /mol
	\mathbf{x}^{I}	(0.1047,0.0727,0.8226)
Phase II	β^{II}	0.8352
(V)	v^{II}	280.1 cm 3 /mol
	\mathbf{x}^{II}	(0.5832,0.1030,0.3138)
CPU	2.05 sec	

CPU times on Sun Ultra 2/1300 using INTFLASH.

Example 6 — Phase Split

CH₄, CO₂, H₂S, T = 208 K, P = 54.9 bar, PR model, $z_1 = 0.4989$, $z_2 = 0.0988$, $z_3 = 0.4023$

Phase I	eta^I	0.0702
(V)	v^{I}	141.9 cm 3 /mol
	\mathbf{x}^{I}	(0.9120,0.0417,0.0463)
Phase II	β^{II}	0.3816
(L)	v^{II}	53.46 cm 3 /mol
	\mathbf{x}^{II}	(0.7539,0.0848,0.1613)
Phase III	β^{III}	0.5482
(L)	v^{III}	35.69 cm 3 /mol
	\mathbf{x}^{III}	(0.2685,0.1158,0.6157)
CPU	9.0 sec	

CPU times on Sun Ultra 2/1300 using INTFLASH.

Concluding Remarks

- Can combine speed of local methods with reliability of global interval analysis to compute multicomponent, multiphase equilibria with complete certainty.
- Have solved many other problems using VDW, PR and SRK equation of state models, as well as problems using NRTL and UNIQUAC activity coefficient models.
- Interval analysis provides a general-purpose and model-independent approach for solving phase stability and phase split problems, providing a mathematical and computational guarantee of reliability.
- Interval analysis provides powerful problem solving techniques with many other applications in the modeling of phase behavior and in other process modeling problems.

Acknowledgments

- PRF: 30421-AC9
- NSF: DMI 96-96110, CTS 95-22835
- EPA: R824731-01-0
- DOE: DE-FG07-96ER14691
- Sun Microsystems, Inc.