A New Approach for Reliable Computation of Homogeneous Azeotropes in Multicomponent Mixtures

Robert W. Maier, Joan F. Brennecke and Mark A. Stadtherr*

Department of Chemical Engineering University of Notre Dame, Notre Dame, IN 46556

Paper Number 75ℓ AIChE Annual Meeting, Los Angeles, CA, November 1997

^{*}Author to whom all correspondence should be addressed; Phone: (219) 631-9318; Fax: (219) 631-8366; E-mail: markst@nd.edu

Computing Homogeneous Azeotropes

- Why
 - Identify limitations in separation operations
 - Construction of residue curve maps for design and synthesis of separation operations
 - Evaluation of thermodynamic models
- How
 - Solve system(s) of nonlinear equations derived from equifugacity condition
 - These equation system(s) often have multiple and/or trivial roots, or may have no solutions

Formulation : Simultaneous Approach

$$x_i \left(\ln P - \ln P_i^{sat} - \ln \gamma_i \right) = 0, \ i \in \mathcal{C}$$

$$1 - \sum_{i \in \mathcal{C}} x_i = 0$$

- ${\mathcal C}$ is the set of all N components
- Ideal vapor phase
- P_i^{sat} and γ_i are functions of T
- All k-ary azeotropes $(k \le N)$ are solutions, as are all of the pure components (trivial roots)
- Need solution method <u>guaranteed</u> to find <u>all</u> solutions

Formulation : Sequential Approach

• If $x_i \neq 0$

$$\ln P - \ln P_i^{sat} - \ln \gamma_i = 0, \ i \in \mathcal{C}_{nz}$$

$$1 - \sum_{i \in \mathcal{C}_{nz}} x_i = 0$$

- C_{nz} is a set of k nonzero components
- All k-ary azeotropes $(k \leq N)$ for the chosen C_{nz} are solutions; there may be no solutions
- Solve (unordered) sequence of problems :

For $k = 2 \rightarrow N$:

For all combinations of k nonzero components, solve for all k-ary azeotropes

 Need solution method <u>guaranteed</u> to find <u>all</u> solutions of <u>all</u> problems, and to determine with certainty when there are no solutions

Formulation : Other Issues

- T dependence of γ_i
 - Treat explicitly using T-dependent parameters in γ_i model
 - Guess a reference temperature T_{ref} and treat T-dependent parameters as constants evaluated at $T_{ref} \Rightarrow$ No guarantee all azeotropes will be found, even if equations solved correctly
- Solutions of equifugacity equations may not be stable phases (liquid may split)
 - Need to check stability of liquid phase at azeotropic composition and temperature
 - Interval analysis also provides guaranteed method to determine stability (Stadtherr *et al.*, 1994)

Some Current Solution Methods

- Various local methods Fast, but initialization dependent and hard to find all roots
- Fidkowski et al. (1993) use a homotopycontinuation method
 - Simultaneous approach with explicit T-dependence of γ_i
 - Improved reliability but no guarantee that all roots are found
- Harding et al. (1997) use a branch and bound method
 - Simultaneous and sequential approaches, but T_{ref} approach for T-dependence of γ_i
 - Reformulation as a global optimization problem using convex underestimating functions
 - Mathematical guarantee that all roots are found

Interval Approach

- Interval Newton/Generalized Bisection (IN/GB)
 - Given a system of equations to solve, an initial interval (bounds on all variables), and a solution tolerance
 - IN/GB can find
 with mathematical and computational certainty
 either all the solutions or that no solutions exist.
 (e.g., Kearfott 1987,1996; Neumaier 1990)
- A general purpose approach : requires no simplifying assumptions or problem reformulations
- Details of algorithm given by Schnepper and Stadtherr (1996)
- Implementation based on modifications of routines from INTBIS and INTLIB packages (Kearfott and coworkers)

Example Problems

- Solved using both simultaneous and sequential approaches (with same results for azeotropic composition and temperature)
- Solved for case of T-dependent γ_i -model parameters and for the case of constant γ_i -model parameters
- Problem 1
 - Ethanol, Methyl Ethyl Ketone, Water
 - 1 atm, 10-100 $^{\circ}$ C, Wilson Equation
- Problem 2
 - Acetone, Chloroform, Methanol
 - 16.8 atm, 100-200 $^\circ\text{C},$ NRTL Equation
- Problem 3
 - Acetone, Methyl Acetate, Methanol
 - 1 atm, 10-100 $^\circ\text{C},$ Wilson Equation
- Times reported for Sun Ultra 1/140

Results - Problem 1

Azeotropes

γ_i parameters	E	MEK	W	T (°C)
	0.49	0.51	0.00	74.1
Constant	0.90	0.00	0.10	78.1
$(T_{ref} = 73.7 \ ^{\circ}\text{C})$	0.00	0.68	0.32	73.7
U U	0.23	0.54	0.23	72.8
	0.49	0.51	0.00	74.1
T-dependent	0.91	0.00	0.09	78.2
	0.00	0.68	0.32	73.7
	0.23	0.54	0.23	72.8

CPU Times (sec)

	Constant	T dependent
Sequential	0.21	0.34
Simultaneous	0.90	4.62

 $\mathsf{E}=\mathsf{Ethanol};\,\mathsf{MEK}=\mathsf{Methyl}\;\mathsf{Ethyl}\;\mathsf{Ketone}$ $\mathsf{W}=\mathsf{Water}$

Results - Problem 2

Azeotropes

γ_i parameters	А	C	Μ	T (°C)
Constant	0.33	0.67	0.00	181.8
$(T_{ref} = 152.4^{\circ}C)$	0.29	0.00	0.71	155.3
	0.00	0.41	0.59	151.6
	0.32	0.68	0.00	181.2
T-dependent	0.29	0.00	0.71	155.4
	0.00	0.41	0.59	151.6

CPU Times (sec)

	Constant	T dependent
Sequential	0.51	0.82
Simultaneous	0.94	6.15

A = Acetone; C = Chloroform; M = Methanol

Results - Problem 3

Azeotropes

γ_i parameters	А	MA	М	T (°C)
	0.53	0.47	0.00	55.7
$Constant^*$	0.75	0.00	0.25	54.5
	0.00	0.68	0.32	54.4
	0.27	0.47	0.26	54.3
	0.66	0.34	0.00	55.6
T dependent	0.79	0.00	0.21	55.4
	0.00	0.66	0.34	53.6

CPU Times (sec)

	Constant	T dependent
Sequential	0.40	1.04
Simultaneous	1.63	6.36

A = Acetone(1); MA = Methyl Acetate(2) M=Methanol(3)

*
$$\Lambda_{12}=$$
 0.480, $\Lambda_{21}=$ 1.550, $\Lambda_{13}=$ 0.768
 $\Lambda_{31}=$ 0.566, $\Lambda_{23}=$ 0.544, $\Lambda_{32}=$ 0.650

Concluding Remarks

- \bullet Have solved many other problems using Wilson, NRTL and UNIQUAC activity coefficient models with up to N=5
- Interval analysis provides an efficient, general purpose approach for solving azeotrope problems, providing a <u>mathematical and computational</u> guarantee of reliability
- Interval analysis provides powerful problem solving techniques with many other applications in the modeling of phase behavior and in other process modeling problems

Acknowledgments

- PRF: 30421-AC9
- NSF: DMI 96-96110, CTS 95-22835
- EPA: R824731-01-0
- DOE: DE-FG07-96ER14691
- Sun Microsystems, Inc.