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Density Functional Theory

� Popular tool for modeling adsorption phenomena

� Basic idea: Model system free energy and
entropy as functionals of density distribution �(r)

� Lattice (discrete density distribution) or nonlattice
models can be used

� Determine equilibrium density profile by solving
appropriate minimization problem, generally by
numerical solution of a nonlinear equation
system for stationary points in the optimization
problem

� This equation system may have multiple roots,
especially in regions of phase transitions and
hysteresis

� For reliable study of phase behavior using DFT,
a solution technique is needed that can reliably
find all roots of a nonlinear equation system
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Solution Methods

� Local methods with multiple initial guesses

– Broyden (e.g., Neimark and Ravikovitch, 1998)
– Successive substitution (e.g., Lastoskie et al.,

1993)
– No guarantee that all solutions are found

� Path tracking approach (Aranovich and
Donohue, 1998, 1999)

– No guarantee that all solutions are found

� We propose here using an interval-
Newton/generalized-bisection (IN/GB) approach

– Mathematical and computational guarantee
that all solutions are found
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IN/GB Approach

Problem: Solve f(x) = 0 for all roots in initial interval
X

(0)

Basic iteration scheme: For a particular subinterval
(box), X(k), arising from some branching (bisection)
scheme, perform root inclusion test:

� Compute the interval extension (bounds on
range) of each function in the system

� If there is any range for which 0 is not an element,
delete (prune) the box

� If 0 is an element of every range, then compute
the image, N(k), of the box by solving the interval
Newton equation

F 0(X(k))(N(k)
� x

(k)) = �f(x(k))

� x
(k) is some point in the interior of X(k)

� F 0
�
X

(k)
�

is an interval extension of the Jacobian
of f(x) over the box X(k)
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Interval Newton Method

� There is no solution in X(k)
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Interval Newton Method

� There is a unique solution in X(k)

� This solution is in N(k)

� Point Newton method will converge to solution
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Interval Newton Method

� Any solutions in X
(k) are in intersection of X(k)

and N(k)

� If intersection is sufficiently small, repeat root
inclusion test

� Otherwise, bisect the intersection and apply root
inclusion test to each resulting subinterval
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Example Problems

� Solve the lattice-DFT model of Aranovich and
Donohue (1999) for phase behavior in nanoscale
pores

� Single component systems containing from N =
2 to N = 20 layers (1 to 10 independent
variables) were considered (same problems
solved by Aranovich and Donohue)

� For each system, the equation system
was solved for the density profile (layer
concentrations) �A(i); i = 1; : : : ; N for many
values of the bulk concentration �A

� An initial interval of [0,1] was used for each
variable �A(i)

� All computations were done using a Sun Ultra
10/440 workstation
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Example 1

N = 2
z1 = 1, z2 = 3, �AA=kT = �1:4, �AS=kT = �1:0
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Example 2

N = 2
z1 = 1, z2 = 3, �AA=kT = �1:9, �AS=kT = �:258

Result using path tracking method of Aranovich
and Donohue (1998).
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Example 2 (cont’d)

N = 2
z1 = 1, z2 = 3, �AA=kT = �1:9, �AS=kT = �:258

Result using IN/GB approach.
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Example 3

N = 4
z1 = 1, z2 = 4, �AA=kT = �1:1, �AS=kT = �3:0
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Example 3 (cont’d)

Plot of Gibbs adsorption � =

NX

1=1

[�A(i)� �A]

Red ! local (or global) minimum in optimization
problem (stable or metastable state)
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Example 4

N = 6
z1 = 1, z2 = 4, �AA=kT = �1:1, �AS=kT = �3:0
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Example 5

N = 8
z1 = 1, z2 = 4, �AA=kT = �1:4, �AS=kT = �4:0
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Example 6

N = 12
z1 = 1, z2 = 4, �AA=kT = �1:1, �AS=kT = �3:0
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Example 7

N = 20
z1 = 1, z2 = 4, �AA=kT = �1:0, �AS=kT = �3:0
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Computational Performance

Layers Variables Average Solution Time
(N ) (N /2) (ms)
2 1 1
4 2 2
6 3 3
8 4 6

12 6 19
20 10 316

� Average solution time is the average CPU time
required to obtain all solutions of the nonlinear
equation system for a particular given value of
the bulk concentration

� Times are on a Sun Ultra 10/440 workstation
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Concluding Remarks

� Interval Newton approach provides an efficient
and completely reliable method for solving DFT
models of adsorption in nanoscale pores

� Other types of problems solved using IN/GB

– Fluid phase stability and equilibrium (e.g. Hua et al.,
1998)

– Location of azeotropes (Maier et al., 1998, 1999, 2000)
– Location of mixture critical points (Stradi et al., 2000)
– Solid-fluid equilibrium (Xu et al., 2000)
– Parameter estimation (Gau and Stadtherr, 1999, 2000)
– General process modeling problems—up to 163

equations (Schnepper and Stadtherr, 1996)

� Continuing advances in hardware and software
(e.g., compiler support for interval arithmetic from
Sun Microsystems) will make this approach even
more attractive
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