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Density Functional Theory

Popular tool for modeling adsorption phenomena

Basic idea: Model system free energy and
entropy as functionals of density distribution p(r)

Lattice (discrete density distribution) or nonlattice
models can be used

Determine equilibrium density profile by solving
appropriate minimization problem, generally by
numerical solution of a nonlinear equation
system for stationary points in the optimization
problem

This equation system may have multiple roots,
especially in regions of phase transitions and
hysteresis

For reliable study of phase behavior using DFT,
a solution technique is needed that can reliably
find all roots of a nonlinear equation system



Solution Methods

e Local methods with multiple initial guesses

— Broyden (e.g., Neimark and Ravikovitch, 1998)

— Successive substitution (e.g., Lastoskie et al.,
1993)

— No guarantee that all solutions are found

e Path tracking approach (Aranovich and
Donohue, 1998, 1999)

— No guarantee that all solutions are found

e We propose here using an interval-
Newton/generalized-bisection (IN/GB) approach

— Mathematical and computational guarantee
that all solutions are found



IN/GB Approach

Problem: Solve f(x) = 0 for all roots in initial interval
X (0)

Basic iteration scheme: For a particular subinterval
(box), X(*) arising from some branching (bisection)
scheme, perform root inclusion test:

Compute the interval extension (bounds on
range) of each function in the system

If there is any range for which O is not an element,
delete (prune) the box

If O is an element of every range, then compute
the image, N(*), of the box by solving the interval
Newton equation

F’(X(’“))(N(k) _ X(k)) — _f(X(k))

x(¥) is some point in the interior of X (*)

F' (X)) is an interval extension of the Jacobian
of f(x) over the box X (¥)



Interval Newton Method
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e There is no solution in X (%)



Interval Newton Method
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e There is a unique solution in X (*)
e This solution is in N(¥)

e Point Newton method will converge to solution



Interval Newton Method
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e Any solutions in X*) are in intersection of X ()
and N (%)

e If intersection is sufficiently small, repeat root
Inclusion test

e Otherwise, bisect the intersection and apply root
Inclusion test to each resulting subinterval



Example Problems

Solve the lattice-DFT model of Aranovich and
Donohue (1999) for phase behavior in nanoscale
pores

Single component systems containing from N =
2 to N = 20 layers (1 to 10 independent
variables) were considered (same problems
solved by Aranovich and Donohue)

For each system, the equation system
was solved for the density profile (layer
concentrations) pa(i), ¢ = 1,...,N for many
values of the bulk concentration p 4

An initial interval of [0,1] was used for each
variable p 4(¢)

All computations were done using a Sun Ultra
10/440 workstation



N =2
= 1, 29 = 3, GAA/kT = —1.4, GAS/kT = —1.0
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Example 2

N =2
21 — 1, 9 = 3, GAA/]CT = —1.9, €A5/kT — —.258

Result using path tracking method of Aranovich
and Donohue (1998).
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Example 2 (cont’d)

N =2
21 — 1, 9 = 3, GAA/]CT = —1.9, €A5/]€T — —.258

Result using IN/GB approach.
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Example 3

N =14
21 = 1, 29 = 4, GAA/kT = —1.1, GAS/]CT = —-3.0
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Example 3 (contd)

N
Plot of Gibbs adsorption I' = > "[p4(i) — pa]

1=1

Red — local (or global) minimum in optimization
problem (stable or metastable state)
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Example 4

N =6
21 — 1, 29 = 4, GAA/]CT = —1.1, €A5/kT = —-3.0
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Example 5

N =8
21 — 1, 29 = 4, GAA/]CT = —1.4, €A5/l€T = —4.0
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Gibbs Adsorption

Example 6

N =12
21 — 1, 29 = 4, GAA/]CT = —1.1, €A5/kT = —-3.0
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Example 7

N =20
21 = 1, 29 = 4, GAA/]CT = —1.0, GAs/kT = —-3.0
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Computational Performance

Layers | Variables | Average Solution Time
(V) (N/2) (ms)
2 1 1
4 2 2
6 3 3
8 4 6
12 6 19
20 10 316

e Average solution time is the average CPU time
required to obtain all solutions of the nonlinear
equation system for a particular given value of
the bulk concentration

e Times are on a Sun Ultra 10/440 workstation
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Concluding Remarks

e Interval Newton approach provides an efficient
and completely reliable method for solving DFT
models of adsorption in nanoscale pores

e Other types of problems solved using IN/GB

— Fluid phase stability and equilibrium (e.g. Hua et al.,
1998)

— Location of azeotropes (Maier et al., 1998, 1999, 2000)

— Location of mixture critical points (Stradi et al., 2000)

— Solid-fluid equilibrium (Xu et al., 2000)

— Parameter estimation (Gau and Stadtherr, 1999, 2000)

— General process modeling problems—up to 163
equations (Schnepper and Stadtherr, 1996)

e Continuing advances in hardware and software
(e.g., compiler support for interval arithmetic from
Sun Microsystems) will make this approach even
more attractive
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