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Interval Analysis

� A real interval X = [a; b] = fx 2 < j a � x � bg is
a segment on the real number line

� An interval vector X = (X1; X2; :::;Xn)
T is an n-

dimensional rectangle or “box”

� Basic interval arithmetic for X = [a; b] and Y =
[c; d] is X op Y = fx op y j x 2 X; y 2 Y g

X + Y = [a+ c; b+ d]

X � Y = [a� d; b� c]

X � Y = [min(ac; ad; bc; bd);max(ac; ad; bc; bd)]

X � Y = [a; b]� [1=d; 1=c]; 0 =2 Y

� For X � Y when 0 2 Y , an extended interval
arithmetic is available

3



Interval Analysis (continued)

� Computed endpoints are rounded out to
guarantee the enclosure

� Interval elementary functions (e.g., exp(X),
log(X), etc.) are also available

� The interval extension F (X) encloses all values
of f(x) for x 2 X; that is,

F (X) � ff(x) j x 2 Xg

� Interval extensions can be computed using
interval arithmetic (the “natural” interval
extension), or with other techniques (e.g.,
Berz-Taylor polynomial models )

� Context: Nonlinear equation solving and global
optimization using interval Newton/generalized
bisection (IN/GB) approach
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Interval Newton/Generalized Bisection

� Given initial bounds on each variable, IN/GB can:

– Find (enclose) any and all solutions to
a nonlinear equation system to a desired
tolerance

– Determine that there is no solution of a
nonlinear equation system

– Find the global optimum of a nonlinear
objective function

� This methodology:

– Provides a mathematical guarantee of
reliability

– Deals automatically with rounding error, and
so also provide a computational guarantee
of reliability

– Represents a particular type of branch-and-
prune algorithm (or branch-and-bound for
optimization)
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Interval Approach (Cont’d)

Problem: Solve f(x) = 0 for all roots in initial interval
X

(0)

Basic iteration scheme: For a particular subinterval
(box), X(k), arising from some branching (bisection)
scheme, perform root inclusion test :

� Compute the interval extension (range) of each
function in the system

� If there is any range for which 0 is not an element,
delete (prune) the box

� If 0 is an element of every range, then compute
the image, N(k), of the box by solving the interval
Newton equation

F 0(X(k))(N(k) � x
(k)) = �f(x(k))

� x(k) is some point in the interior of X(k)

� F 0
�
X

(k)
�

is an interval extension of the Jacobian
of f(x) over the box X(k)
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Interval Newton Method

� There is no solution in X(k)
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Interval Newton Method

� There is a unique solution in X(k)

� This solution is in N(k)

� Point Newton method will converge to solution
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Interval Newton Method

� Any solutions in X
(k) are in intersection of X(k)

and N(k)

� If intersection is sufficiently small, repeat root
inclusion test

� Otherwise, bisect the intersection and apply root
inclusion test to each resulting subinterval
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Interval Approach (Cont’d)

� For best efficiency, need to compute interval
extensions that tightly bound function ranges

� Some chemical engineering problems solved
using IN/GB

– Fluid phase stability and equilibrium (e.g. Hua
et al., 1998)

– Location of azeotropes (Maier et al., 1998,
1999, 2000)

– Location of mixture critical points (Stradi et al.,
2000)

– Solid-fluid equilibrium (Xu et al., 2000)
– Parameter estimation (Gau and Stadtherr,

1999, 2000)
– Phase behavior in porous materials (Maier et

al., 2000)
– General process modeling problems—up to

163 equations (Schnepper and Stadtherr,
1996)
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Computing Interval Extensions

� The interval extension F (X) encloses all values
of f(x) for x 2 X; that is,

F (X) � ff(x) j x 2 Xg

� Interval extensions can be computed using
interval arithmetic (the “natural” interval
extension)

� However, if a variable occurs more than once in
an expression, the natural interval extension may
not tightly bound the true range; e.g.,

f(x) = x� x

X = [1; 3]

F (X) = [1; 3]� [1; 3] = [�2; 2]
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Interval Extensions (cont’d)

� Another example: f(x) = x=(x� 1) evaluated for
X = [2; 3]

� The natural interval extension is

F ([2; 3]) = [2; 3]=([2; 3]� 1)

= [2; 3]=[1; 2] = [1; 3]

� Rearranged f(x) = x=(x�1) = 1+1=(x�1), the
natural interval extension is

F ([2; 3]) = 1 + 1=([2; 3]� 1)

= 1 + 1=[1; 2]

= 1 + [0:5; 1] = [1:5; 2]

which is the true range.

� This is the “dependency” problem. In the first
case, each occurrence of x was treated as
a independent interval in performing interval
arithmetic.

12



Some Methods for Computing Tighter
Interval Extensions

� Try to rearrange to eliminate dependencies

– Potential to obtain exact bounds
– May not be possible in many cases

� Try to identify monotonicity or convexity

– Potential to obtain exact bounds
– May be difficult due to overestimation in

computing derivative bounds

� Use centered or mean-value forms (e.g.,
Ratschek and Rokne, 1984)

) � Use Taylor polynomial models (e.g. Berz and
colleagues)

� Etc.
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Approach of Berz and Colleagues

� Compute interval extension using Taylor
polynomial model plus remainder bound

� Construct models of complex functions from
models of simpler functions by operating on
Taylor model coefficients and remainder bounds

� Implement using automatic differentiation (AD)
and AD-like techniques

� Can provide efficient control of dependency
problems and tight enclosures of complicated
functions

� Applied successfully to problems in physics
and astrophysics (e.g., beam physics, galaxy
dynamics, orbital stability): Hoffstätter and Berz
(1996, 1998), Makino and Berz (1999)
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Berz-Taylor Model

� The Taylor model Tf(X) is an interval extension of f(x) on X:

Tf(X) � ff(x) j x 2 Xg

Tf = Pf (Taylor polynomial) +Rf (remainder)

=

nX
i=0

1
i!

[(X� x0) � r]
i
f(x0) +

1

(n+ 1)!
[(X� x0) � r]

n+1
f
�
x0 + (X� x
0
)�
�

x0 = (x10; :::; xm0
)T; � 2 [0; 1]

[g � r]
k

=

X
j1+:::+jm=k

0�j1;:::;jm�k

k!

j1!:::jm!
g

j1
1

:::g
jm
m

@k

@x
j1
1

:::x
jm
m
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Berz-Taylor Model

� Basic operations

f � g 2 (Pf +Rf)� (Pg +Rg) = (Pf � Pg) + (Rf �Rg)

f � g 2 (Pf +Rf) � (Pg +Rg) �

Pf � Pg + Pf �Rg + Pg �Rf +Rf �Rg = Pf:g +Rf:g

Pf:g = Pf � Pg (terms of order � n)

Rf:g = Pf �Rg + Pg �Rf +Rf �Rg + Pf � Pg (terms of order > n)

� Division operation and intrinsic functions can also be defined
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Example 1

� f(x) = x� x

� Compute interval extension F (X) for X = [1; 3]

� Using interval arithmetic

F (X) = [1; 3]� [1; 3] = [�2; 2]

� Using Taylor model (first order, x0 = 2)

F (X) = fx0 + (X � x0)g � fx0 + (X � x0)]g

= (2� 2) + (1� 1)(X � x0)

= [0; 0]
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Example 2

� f(x) = x ln x for X = [0:3; 0:4]

� Using interval arithmetic

F (X) = [0:3; 0:4] � [�1:2040;�0:9163] = [�0:482;�0:275]

� Using Taylor model (3rd order, x0 = 0:35)

F (X) = �0:3674� 0:04982 � (X � x0) + 1:4286 � (X � x0)
2

�1:3605 � (X � x0)
3 + [�1:25 � 10�4; 4:86 � 10�5]

= [�0:370;�0:361]

� The exact range is [-0.368,-0.361]

18



Example 3

� f = sin(2x) + sin(3x) + cos(4x) for X = [0:2; 0:5]

� Using interval arithmetic

F (X) = [0:3894; 0:8415] + [0:5481; 1:1006] + [�0:4161; 0:6967]

= [0:5379; 2:5357]

� The exact range is [1.4228,1.7094]
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Example 3 (cont’d)

� Using Taylor model (3rd order, x0 = 0:35)

F (X) =

�
0:6442 + 1:5297(X � x0)� 1:2884(X � x0)
2
� 1:0198(X � x0)
3
�

+
�
0:8674 + 1:4927(X � x0)� 3:9034(X � x0)
2
� 2; 2391(X � x0)
3
�

+
�
0:1700� 3:9418(X � x0)� 1:3597(X � x0)
2
+ 10:5115(X � x0)
3
�

+
�
[0; 2:83 � 10
�4
] + [0; 1:704 � 10
�3
; 0] + [�0:002247;0:003762]

�

= 1:6816� 0:9194(X � x0)� 6:5516(X � x0)
2
+ 7:2526(X � x0)
3

+ [�0:002247;0:005751]
resulting in [1.3696, 1.8497]

� The exact range is [1.4228,1.7094]
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Example 4

� Using IN/GB approach, solve

f = x lnx+ 0:36787 = 0

for all roots in X(0) = [0:2; 0:5]

� Two roots are found

� Using interval arithmetic to get interval
extensions, the required number of root inclusion
tests (NTest) is 41

� Using 3rd order Taylor models to get interval
extensions, the required number of root inclusion
tests (NTest) is 18
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Example 5

� Use IN/GB to solve f(x) = 0 for all roots in X(0) = [0; 20], where

Power Form

f(x) =

481:6282� 533:2807x+ 166:197x2 � 21:1115x3 + 1:1679x4 � 0:023357x5

ex

Nested (Horner) Form

f(x) =

481:6282� x(533:2807 + x(166:197� x(21:1115 + x(1:1679� 0:023357x))))

ex

� Five real roots are found in [0,20]
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Example 5 (cont’d)

Power Form Nested Form

Interval Ntest 748 353
Arithmetic CPU (sec.) 0.24 0.03

3rd-Order Taylor Ntest 186 136
Model CPU (sec.) 0.71 0.38

CPU time on Sun Ultra 30
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Example 6

� Use IN/GB to solve f(x) = 0 for all roots in X(0) = [0; 20], where

Power Form

f(x) = �(7:79082� 10�16)x10 � (2:888� 10�5)x9 + 0:0025992x8� 0:09836x7

+2:0334x
6
� 24:9679x
5
+ 185:3593x
4
� 809:8583x
3
+ 1925:5244x
2

�2101:828x+ 688:0609

� Nine real roots are found in [0,20]
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Example 6 (cont’d)

Power Form Nested Form

Interval Ntest 9956 3174
Arithmetic CPU (sec.) 5.09 1.23

3rd Order Taylor Ntest 145 126
Model CPU (sec.) 1.11 0.36

CPU time on Sun Ultra 30
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Example 7

� Use IN/GB to solve Gritton’s Second Problem (Gritton, 1992;
Kearfott, 1997)

� 19 component flash problem (Shacham and Kehat, 1972)

� Can be reduced to degree-18 polynomial in one variable (Gritton,
1992)

� Find all roots in X(0) = [�20; 20]: 18 real roots found

� Find all roots in X(0) = [0; 1]: one real root found
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Example 7 (cont’d)

Results for [-20,20]

Power Form Nested Form

Interval Ntest 52255 14721
Arithmetic CPU (sec.) 54.43 9.28

3rd OrderTaylor Ntest 529 400
Model CPU (sec.) 11.19 1.97

CPU time on Sun Ultra 30

27



Example 7 (cont’d)

Results for [0,1]

Power Form Nested Form

Interval Ntest 217 89
Arithmetic CPU (sec.) 0.23 0.05

3rd OrderTaylor Ntest 20 16
Model CPU (sec.) 0.54 0.09

CPU time on Sun Ultra 30
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Issues

� Use of Taylor models may not be effective when
applied to large interval domains

� Computational overhead needs to be reduced

� Use of monotonicity or convexity properties may
yield tighter bounds

� Need strategy for deciding when to use Taylor
models and when to use other means for
computing interval extensions
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Concluding Remarks

� Berz-Taylor approach provides a methodology for
reducing overestimation in functions with a high
degree of dependency

� In equation-solving problems using IN/GB,
the Berz-Taylor approach can lead to large
reductions in root inclusion tests (fewer leaves in
binary search tree)

� To better achieve CPU time savings, improved
implementation to reduce overhead is needed
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