Computation of Interval Extensions Using Berz-Taylor Polynomial Models

Hongkun Liang and Mark A. Stadtherr*
Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 USA

AIChE Annual Meeting, Los Angeles, CA, Nov. 12-17, 2000 Session 272 (Numerical Analysis): Paper $272 f$

[^0]
Outline

- Background: Interval Analysis
- Context: Interval Newton/Generalized Bisection Methods
- Berz-Taylor Polynomial Approach for Interval Extensions
- Examples
- Concluding Remarks

Interval Analysis

- A real interval $X=[a, b]=\{x \in \Re \mid a \leq x \leq b\}$ is a segment on the real number line
- An interval vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ is an n dimensional rectangle or "box"
- Basic interval arithmetic for $X=[a, b]$ and $Y=$ $[c, d]$ is X op $Y=\{x$ op $y \mid x \in X, y \in Y\}$

$$
\begin{gathered}
X+Y=[a+c, b+d] \\
X-Y=[a-d, b-c] \\
X \times Y=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)] \\
X \div Y=[a, b] \times[1 / d, 1 / c], \quad 0 \notin Y
\end{gathered}
$$

- For $X \div Y$ when $0 \in Y$, an extended interval arithmetic is available

Interval Analysis (continued)

- Computed endpoints are rounded out to guarantee the enclosure
- Interval elementary functions (e.g., $\exp (X)$, $\log (X)$, etc.) are also available
- The interval extension $F(\mathbf{X})$ encloses all values of $f(\mathbf{x})$ for $\mathbf{x} \in \mathbf{X}$; that is,

$$
F(\mathbf{X}) \supseteq\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}
$$

- Interval extensions can be computed using interval arithmetic (the "natural" interval extension), or with other techniques (e.g., Berz-Taylor polynomial models)
- Context: Nonlinear equation solving and global optimization using interval Newton/generalized bisection (IN/GB) approach

Interval Newton/Generalized Bisection

- Given initial bounds on each variable, IN/GB can:
- Find (enclose) any and all solutions to a nonlinear equation system to a desired tolerance
- Determine that there is no solution of a nonlinear equation system
- Find the global optimum of a nonlinear objective function
- This methodology:
- Provides a mathematical guarantee of reliability
- Deals automatically with rounding error, and so also provide a computational guarantee of reliability
- Represents a particular type of branch-andprune algorithm (or branch-and-bound for optimization)

Interval Approach (Cont’d)

Problem: Solve $\mathbf{f}(\mathbf{x})=\mathbf{0}$ for all roots in initial interval $\mathbf{X}^{(0)}$

Basic iteration scheme: For a particular subinterval (box), $\mathbf{X}^{(k)}$, arising from some branching (bisection) scheme, perform root inclusion test:

- Compute the interval extension (range) of each function in the system
- If there is any range for which 0 is not an element, delete (prune) the box
- If 0 is an element of every range, then compute the image, $\mathbf{N}^{(k)}$, of the box by solving the interval Newton equation

$$
F^{\prime}\left(\mathbf{X}^{(k)}\right)\left(\mathbf{N}^{(k)}-\mathbf{x}^{(k)}\right)=-\mathbf{f}\left(\mathbf{x}^{(k)}\right)
$$

- $\mathbf{x}^{(k)}$ is some point in the interior of $\mathbf{X}^{(k)}$
- $F^{\prime}\left(\mathbf{X}^{(k)}\right)$ is an interval extension of the Jacobian of $\mathbf{f}(\mathbf{x})$ over the box $\mathbf{X}^{(k)}$

Interval Newton Method

- There is no solution in $\mathbf{X}^{(k)}$

Interval Newton Method

- There is a unique solution in $\mathbf{X}^{(k)}$
- This solution is in $\mathbf{N}^{(k)}$
- Point Newton method will converge to solution

Interval Newton Method

- Any solutions in $\mathbf{X}^{(k)}$ are in intersection of $\mathbf{X}^{(k)}$ and $\mathbf{N}^{(k)}$
- If intersection is sufficiently small, repeat root inclusion test
- Otherwise, bisect the intersection and apply root inclusion test to each resulting subinterval

Interval Approach (Cont’d)

- For best efficiency, need to compute interval extensions that tightly bound function ranges
- Some chemical engineering problems solved using IN/GB
- Fluid phase stability and equilibrium (e.g. Hua et al., 1998)
- Location of azeotropes (Maier et al., 1998, 1999, 2000)
- Location of mixture critical points (Stradi et al., 2000)
- Solid-fluid equilibrium (Xu et al., 2000)
- Parameter estimation (Gau and Stadtherr, 1999, 2000)
- Phase behavior in porous materials (Maier et al., 2000)
- General process modeling problems-up to 163 equations (Schnepper and Stadtherr, 1996)

Computing Interval Extensions

- The interval extension $F(\mathbf{X})$ encloses all values of $f(\mathbf{x})$ for $\mathbf{x} \in \mathbf{X}$; that is,

$$
F(\mathbf{X}) \supseteq\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}
$$

- Interval extensions can be computed using interval arithmetic (the "natural" interval extension)
- However, if a variable occurs more than once in an expression, the natural interval extension may not tightly bound the true range; e.g.,

$$
\begin{aligned}
& f(x)=x-x \\
& X=[1,3] \\
& F(X)=[1,3]-[1,3]=[-2,2]
\end{aligned}
$$

Interval Extensions (cont'd)

- Another example: $f(x)=x /(x-1)$ evaluated for $X=[2,3]$
- The natural interval extension is

$$
\begin{aligned}
F([2,3]) & =[2,3] /([2,3]-1) \\
& =[2,3] /[1,2]=[1,3]
\end{aligned}
$$

- Rearranged $f(x)=x /(x-1)=1+1 /(x-1)$, the natural interval extension is

$$
\begin{aligned}
F([2,3]) & =1+1 /([2,3]-1) \\
& =1+1 /[1,2] \\
& =1+[0.5,1]=[1.5,2]
\end{aligned}
$$

which is the true range.

- This is the "dependency" problem. In the first case, each occurrence of x was treated as a independent interval in performing interval arithmetic.

Some Methods for Computing Tighter Interval Extensions

- Try to rearrange to eliminate dependencies
- Potential to obtain exact bounds
- May not be possible in many cases
- Try to identify monotonicity or convexity
- Potential to obtain exact bounds
- May be difficult due to overestimation in computing derivative bounds
- Use centered or mean-value forms (e.g., Ratschek and Rokne, 1984)
\Rightarrow - Use Taylor polynomial models (e.g. Berz and colleagues)
- Etc.

Approach of Berz and Colleagues

- Compute interval extension using Taylor polynomial model plus remainder bound
- Construct models of complex functions from models of simpler functions by operating on Taylor model coefficients and remainder bounds
- Implement using automatic differentiation (AD) and AD-like techniques
- Can provide efficient control of dependency problems and tight enclosures of complicated functions
- Applied successfully to problems in physics and astrophysics (e.g., beam physics, galaxy dynamics, orbital stability): Hoffstätter and Berz (1996, 1998), Makino and Berz (1999)

Berz-Taylor Model

- The Taylor model $T_{f}(\mathbf{X})$ is an interval extension of $f(\mathbf{x})$ on \mathbf{X} : $T_{f}(\mathbf{X}) \supseteq\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}$

$$
\begin{aligned}
T_{f} & =P_{f}(\text { Taylor polynomial })+R_{f} \text { (remainder) } \\
& =\sum_{i=0}^{n} \frac{1}{i!}\left[\left(\mathbf{X}-\mathbf{x}_{0}\right) \cdot \nabla\right]^{i} f\left(\mathbf{x}_{0}\right)+\frac{1}{(n+1)!}\left[\left(\mathbf{X}-\mathbf{x}_{0}\right) \cdot \nabla\right]^{n+1} f\left(\mathbf{x}_{0}+\left(\mathbf{X}-\mathbf{x}_{\mathbf{0}}\right) \mathbf{\Theta}\right) \\
\mathbf{x}_{0} & =\left(x_{1_{0}}, \ldots, x_{m_{0}}\right)^{\mathrm{T}}, \quad \Theta \in[0,1] \\
{[\mathbf{g} \cdot \nabla]^{\mathbf{k}} } & =\sum_{\substack{j_{1}+\ldots+j_{m}=k \\
0 \leq j_{1}, \ldots, j_{m} \leq k}} \frac{k!}{j_{1}!\ldots j_{m}!} g_{1}^{j_{1}} \ldots g_{m}^{j_{m}} \frac{\partial^{k}}{\partial x_{1}^{j_{1}} \ldots x_{m}^{j_{m}}}
\end{aligned}
$$

Berz-Taylor Model

- Basic operations

$$
\begin{gathered}
f \pm g \in\left(P_{f}+R_{f}\right) \pm\left(P_{g}+R_{g}\right)=\left(P_{f} \pm P_{g}\right)+\left(R_{f} \pm R_{g}\right) \\
f * g \in\left(P_{f}+R_{f}\right) *\left(P_{g}+R_{g}\right) \subseteq \\
P_{f} * P_{g}+P_{f} * R_{g}+P_{g} * R_{f}+R_{f} * R_{g}=P_{f . g}+R_{f . g} \\
P_{f . g}=P_{f} * P_{g}(\text { terms of order } \leq n) \\
R_{f . g}=P_{f} * R_{g}+P_{g} * R_{f}+R_{f} * R_{g}+P_{f} * P_{g}(\text { terms of order }>n)
\end{gathered}
$$

- Division operation and intrinsic functions can also be defined

Example 1

- $f(x)=x-x$
- Compute interval extension $F(X)$ for $X=[1,3]$
- Using interval arithmetic

$$
F(X)=[1,3]-[1,3]=[-2,2]
$$

- Using Taylor model (first order, $x_{0}=2$)

$$
\begin{aligned}
F(X) & \left.=\left\{x_{0}+\left(X-x_{0}\right)\right\}-\left\{x_{0}+\left(X-x_{0}\right)\right]\right\} \\
& =(2-2)+(1-1)\left(X-x_{0}\right) \\
& =[0,0]
\end{aligned}
$$

Example 2

- $f(x)=x \ln x$ for $X=[0.3,0.4]$
- Using interval arithmetic

$$
F(X)=[0.3,0.4] *[-1.2040,-0.9163]=[-0.482,-0.275]
$$

- Using Taylor model (3rd order, $\left.x_{0}=0.35\right)$

$$
\begin{aligned}
F(X)= & -0.3674-0.04982 *\left(X-x_{0}\right)+1.4286 *\left(X-x_{0}\right)^{2} \\
& -1.3605 *\left(X-x_{0}\right)^{3}+\left[-1.25 * 10^{-4}, 4.86 * 10^{-5}\right] \\
= & {[-0.370,-0.361] }
\end{aligned}
$$

- The exact range is [-0.368,-0.361]

Example 3

- $f=\sin (2 x)+\sin (3 x)+\cos (4 x)$ for $X=[0.2,0.5]$
- Using interval arithmetic

$$
\begin{aligned}
F(X) & =[0.3894,0.8415]+[0.5481,1.1006]+[-0.4161,0.6967] \\
& =[0.5379,2.5357]
\end{aligned}
$$

- The exact range is [1.4228,1.7094]

Example 3 (cont'd)

- Using Taylor model (3rd order, $\left.x_{0}=0.35\right)$

$$
\begin{aligned}
F(X)= & \left(0.6442+1.5297\left(X-x_{0}\right)-1.2884\left(X-x_{0}\right)^{2}-1.0198\left(X-x_{0}\right)^{3}\right) \\
& +\left(0.8674+1.4927\left(X-x_{0}\right)-3.9034\left(X-x_{0}\right)^{2}-2,2391\left(X-x_{0}\right)^{3}\right) \\
& +\left(0.1700-3.9418\left(X-x_{0}\right)-1.3597\left(X-x_{0}\right)^{2}+10.5115\left(X-x_{0}\right)^{3}\right) \\
& +\left(\left[0,2.83 * 10^{-4}\right]+\left[0,1.704 * 10^{-3}, 0\right]+[-0.002247,0.003762]\right) \\
= & 1.6816-0.9194\left(X-x_{0}\right)-6.5516\left(X-x_{0}\right)^{2}+7.2526\left(X-x_{0}\right)^{3} \\
& +[-0.002247,0.005751]
\end{aligned}
$$

resulting in [1.3696, 1.8497]

- The exact range is [1.4228,1.7094]

Example 4

- Using IN/GB approach, solve

$$
f=x \ln x+0.36787=0
$$

for all roots in $X^{(0)}=[0.2,0.5]$

- Two roots are found
- Using interval arithmetic to get interval extensions, the required number of root inclusion tests (NTest) is 41
- Using 3rd order Taylor models to get interval extensions, the required number of root inclusion tests (NTest) is 18

Example 5

- Use IN/GB to solve $f(x)=0$ for all roots in $X^{(0)}=[0,20]$, where

Power Form

$$
f(x)=\frac{481.6282-533.2807 x+166.197 x^{2}-21.1115 x^{3}+1.1679 x^{4}-0.023357 x^{5}}{e^{x}}
$$

Nested (Horner) Form

$$
f(x)=\frac{481.6282-x(533.2807+x(166.197-x(21.1115+x(1.1679-0.023357 x))))}{e^{x}}
$$

- Five real roots are found in $[0,20]$

Example 5 (cont'd)

		Power Form	Nested Form
Interval Arithmetic	Ntest CPU (sec.)	$\begin{aligned} & 748 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 353 \\ & 0.03 \end{aligned}$
3rd-Order Taylor Model	Ntest CPU (sec.)	$\begin{aligned} & 186 \\ & 0.71 \end{aligned}$	$\begin{aligned} & 136 \\ & 0.38 \end{aligned}$

CPU time on Sun Ultra 30

Example 6

- Use IN/GB to solve $f(x)=0$ for all roots in $X^{(0)}=[0,20]$, where

Power Form

$$
\begin{aligned}
f(x)= & -\left(7.79082 \times 10^{-16}\right) x^{10}-\left(2.888 \times 10^{-5}\right) x^{9}+0.0025992 x^{8}-0.09836 x^{7} \\
& +2.0334 x^{6}-24.9679 x^{5}+185.3593 x^{4}-809.8583 x^{3}+1925.5244 x^{2} \\
& -2101.828 x+688.0609
\end{aligned}
$$

- Nine real roots are found in $[0,20]$

Example 6 (cont'd)

		Power Form
Nested Form		
Interval	Ntest	9956
Arithmetic	CPU (sec.)	5.09
3rd Order Taylor		
Model	Ntest	1.23
	CPU (sec.)	1.11

CPU time on Sun Ultra 30

Example 7

- Use IN/GB to solve Gritton's Second Problem (Gritton, 1992; Kearfott, 1997)
- 19 component flash problem (Shacham and Kehat, 1972)
- Can be reduced to degree-18 polynomial in one variable (Gritton, 1992)
- Find all roots in $X^{(0)}=[-20,20]$: 18 real roots found
- Find all roots in $X^{(0)}=[0,1]$: one real root found

Example 7 (cont'd)

Results for [-20,20]

CPU time on Sun Ultra 30

Example 7 (cont'd)

Results for $[0,1]$

CPU time on Sun Ultra 30

Issues

- Use of Taylor models may not be effective when applied to large interval domains
- Computational overhead needs to be reduced
- Use of monotonicity or convexity properties may yield tighter bounds
- Need strategy for deciding when to use Taylor models and when to use other means for computing interval extensions

Concluding Remarks

- Berz-Taylor approach provides a methodology for reducing overestimation in functions with a high degree of dependency
- In equation-solving problems using IN/GB, the Berz-Taylor approach can lead to large reductions in root inclusion tests (fewer leaves in binary search tree)
- To better achieve CPU time savings, improved implementation to reduce overhead is needed

Acknowledgments

- ACS PRF 30421-AC9 and 35979-AC9
- NSF EEC97-00537-CRCD
- EPA R826-734-01-0

For more information:

- Contact Prof. Stadtherr at markst@nd.edu
- See also
http://www.nd.edu//markst

[^0]: *Fax: (219)631-8366; E-mail: markst@nd.edu

