
Matrix Ordering Strategies for Process Engineering:

Graph Partitioning Algorithms for Parallel Computation

Kyle V. Camarda�

Department of Chemical Engineering
University of Illinois

600 S. Mathews Avenue
Urbana, IL 61801 USA

Mark A. Stadtherry

Department of Chemical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA

(August 1998)
(revised, March 1999)

Keywords: Simulation, Optimization, Design, Sparse Matrices, Parallel Computation,
Graph Partitioning

�Currently at Department of Chemical Engineering, Pennsylvania State University, University Park, PA
16802 U.S.A.

yAuthor to whom all correspondence should be addressed. Phone: (219)631-9318; Fax: (219)631-8366;
E-mail: markst@nd.edu



Abstract

The solution of large-scale chemical process simulation and optimization problems using parallel

computation requires algorithms that can take advantage of multiprocessing when solving the large,

sparse matrices that arise. Parallel algorithms require that the matrices be partitioned in order

to distribute computational work across processors. One way to accomplish this is to reorder

the matrix into a bordered block-diagonal form. Since this structure is not always obtained from

the equation generation routine, an algorithm to reorder the rows and columns of the coeÆcient

matrix is needed. We describe here a simple graph partitioning algorithm that creates a bordered

block-diagonal form that is suitable for use with parallel algorithms for the solution of the highly

asymmetric sparse matrices arising in process engineering applications. The method aims to create

a number of similarly sized diagonal blocks while keeping the size of the interface matrix, which

may represent a bottleneck in the parallel computation, reasonably small. Results on a wide range

of test problems indicate that the reordering algorithm is able to �nd such a structure in most

cases, and requires much less reordering time than previously used graph partitioning methods.



1 Introduction

The simulation and optimization, o�ine or online, of industrial-scale chemical processes is a

computationally intense problem that may involve several hundreds of thousands of equations and

variables. The use of parallel computing technology provides the potential not only to solve such

problems faster, but also to further expand the problem size threshold. As many of the original

algorithms were designed with serial computers in mind, new computational strategies need to be

developed to better exploit advanced computer architectures. An example along these lines is given

by Zitney et al. (1995), who showed that the time required to solve a large dynamic simulation

problem was reduced from 18 hours to 21 minutes of CPU time on a CRAY C90 supercomputer

by the use of a di�erent sparse linear equation solving strategy (Zitney and Stadtherr, 1993) and

other improvements.

In most industrial-scale process engineering problems, the solution of large, sparse systems

of linear equations is the single most computationally intensive step, requiring as much as 90%

of the total simulation time in some cases (Zitney, 1992; Zitney, Camarda and Stadtherr, 1994).

Reducing the time required to solve these systems can thus have a very signi�cant e�ect on the

total computation time. One approach to parallelizing the solution of the linear equation system

is to use a problem decomposition corresponding to a bordered block-diagonal matrix structure,

and to factorize the diagonal blocks in parallel. Two proven solvers that use this approach are

the Harwell routine MA-52, and the Cray Research routine PFAMP (Mallya et al., 1997a), with

the latter designed speci�cally for process engineering problems and the former for �nite element

problems. Both of these solvers are designed for vector multiprocessing machines, and thus use a

frontal solver to factorize the diagonal blocks. However, any factorization scheme can be used on

1



the diagonal blocks and thus the bordered block-diagonal decomposition can be used in connection

with other multiprocessing architectures.

In general, obtaining the desired bordered block-diagonal structure requires a matrix reordering

step. While many algorithms exist to determine such reorderings for symmetric matrices, and these

can generally be extended to structurally unsymmetric matrices if the degree of asymmetry is not

high, few have been developed for matrices with a very high degree of structural asymmetry, such as

process engineering matrices. In this paper we describe a simple new algorithm for determining row

and column permutations to bordered block-diagonal form for highly asymmetric sparse matrices.

The algorithm is based on the graph partitioning concepts developed by Coon and Stadtherr (1995),

and represents a simpli�cation of their min-net-cut (MNC) methods. Results on a wide variety of

problems indicate that the new reordering algorithm creates matrix structures suitable for parallel

computation, and does so much more eÆciently than previous methods.

2 Background

Consider the solution of a linear equation system Ax = b, where A is a large sparse n�n matrix

and x and b are column vectors of length n. While iterative methods can be used to solve such

systems, the reliability of such methods is questionable in the context of process simulation (Cofer

and Stadtherr, 1996), since in this context A does not have desirable properties such as symmetry

(numerical or structural) or positive de�niteness. Thus we concentrate here on direct methods.

Generally such methods can be interpreted as an LU factorization scheme in which A is factored

A = LU , where L is a lower triangular matrix and U is an upper triangular matrix. Thus, Ax

= (LU)x = L(Ux) = b, and the system can be solved by a simple forward substitution to solve

Ly = b for y, followed by a back substitution to �nd the solution vector x from Ux = y.

2



Direct parallel solution methods aim to �nd elements of L and U by factoring multiple partitions

of A simultaneously, with the partitions typically representing diagonal blocks in some type of

bordered block-diagonal form, or perhaps a bordered block-triangular form (e.g., Gallivan et al.,

1996). The reordering algorithm given here is for the case in which a bordered block-diagonal form

is used. For example, consider a matrix in row-bordered block-diagonal form:

A =

2
666666666664

A11

A22

. . .

ANN

S1 S2 � � � SN

3
777777777775

:

Here the diagonal blocks Aii are mi�ni and in general can be rectangular. For process simulation

problems, the equation generator could take advantage of the unit-stream nature of a 
owsheet to

create a matrix in this form, as described by Westerberg and Berna (1978). In this case, each Aii

would represent the model equations for a particular unit, while the border contains connection

equations and design speci�cations. However, not all commercial simulators generate a matrix with

this structure, and even if they did it is not necessarily going to be the most attractive structure for

purposes of parallel computing. Thus there is a need for matrix reordering. One reordering scheme

that exploits the unit-stream structure of the problem is that of Abbott et. al. (1997). While not

designed speci�cally for parallel computation, it is capable of producing useful orderings for this

purpose (Mallya et al., 1997b). Still, in most commercial software, information about the unit-

stream structure is not available to the sparse matrix solver, and thus a more general reordering

approach is needed.

The basic idea of the parallel factorization is to partially factor each of the Aii, with each such

task being performed independently and in parallel. Since the Aii are in general rectangular, some

3



variables in the block may not be eliminated. For reasons of numerical stability, certain equations

may also not be eliminated. These combine with the border equations to form an interface matrix,

which is factored after completion of the parallel factorization of the Aii. After factorization of the

diagonal blocks, we have (Mallya et al., 1997a):

2
66666666666666664

L1U1 U 0
1

L2U2 U 0
2

. . .
...

LNUN U 0
N

L0
1

L0
2

� � � L0
N F

3
77777777777777775

:

Here F is the interface matrix. Note that, in general it will contain contributions from the factor-

ization of each diagonal block. After factorization of F to complete the LU factorization of A, the

triangular solves which must be done in order to compute a solution vector can be completed in

parallel using the same block structure used in computing the L and U factors. Factorization of the

diagonal blocks and of the interface matrix can be done using any technique that accommodates

pivoting, and the same technique need not be used on all blocks. Note that instead of beginning

with a row-bordered form as above, we could also begin with a column-bordered form, as seen

in an example below, or a row-and-column-bordered form. Pivoting within the diagonal blocks

will result in appropriate rows and/or columns being put into the borders (corresponding to the

interface matrix).

The diagonal blocks may be factored on a single processor, or on multiple processors using a

smaller task granularity than in the bordered block-diagonal decomposition. Likewise, depending

on its size and sparsity, the interface matrix may be factored on a single processor or on multiple

processors using a small task granularity. In any case, however, the factorization of the interface

4



matrix represents a synchronization point in the solution algorithm, and so may represent a bot-

tleneck. Thus, it is desirable in seeking a reordering that the size of the interface problem be

kept reasonably small. Of course, it is also desirable that the reordering produce diagonal blocks

of a number and size that lead to good load balancing on the target architecture. The desired

reordering may di�er depending on the target architecture; thus, the reordering algorithm must be

tunable and have some 
exibility. Our experience with the MNC orderings indicated that, while

this approach is tunable to some extent, it did not provide the desired 
exibility. This was one

motivating factor in the development of the reordering method described here.

3 Reordering Methods

For matrices that are structurally symmetric or nearly so, there are various approaches that

can be used to try to get an appropriate matrix reordering (e.g., Fiduccia and Mattheyses, 1982;

Schweikert and Kernighan, 1972; Kernighan and Lin, 1970; Leiserson and Lewis, 1989; O'Neil

and Szyld, 1990; Karypis and Kumar, 1995; Choi and Szyld, 1996). These are generally based on

solving undirected graph partitioning, bisection or min-cut problems, often in the contexts of nested

dissection applied to �nite element problems, block preconditioners for iterative linear solvers, or

various other divide-and-conquer problems. Such methods are applied to a structurally asymmetric

matrix A by applying them to the structure of the symmetric matrix A + AT . This may provide

satisfactory results if the degree of asymmetry is low. However, when the degree of asymmetry

is very high, as in the case of process engineering problems, the approach cannot be expected to

always yield good results (Mallya et al., 1997b), as the number of additional nonzeros in A+ AT ,

indicating dependencies that are nonexistent in the problem, may be large, nearly as large as the

number of nonzeros indicating actual dependencies. In order to represent such highly asymmetric

5



matrix structures, the ordering algorithm developed here is based on the partitioning of a bipartite

graph model of the sparse matrix, as developed in the next section.

3.1 Graph Model

An n� n structurally unsymmetric matrix A can be represented by an ordered directed graph

~G = (X; ~E; a), where X is the vertex set, ~E is the edge set, and a is an ordering of the vertices. The

vertices in this representation correspond to the locations of diagonal elements of A, and the edges

correspond to the locations of nonzero o�-diagonal elements [see Coon and Stadtherr (1995) for a

schematic of such a graph and the corresponding matrix]. This representation requires the existence

of a zero-free diagonal, which can be found using a maximum transversal algorithm such as the

one given by Du� (1981). An important concept is that of a disconnecting set B, which is a set of

edges whose removal from ~G leaves two disjoint subgraphs ~G1 and ~G2. A disconnecting set B of ~G

is minimal if no proper subset of B disconnects ~G. The identi�cation of a minimal disconnecting

subset is equivalent to partitioning the corresponding sparse matrix into two diagonal blocks, with

the o�-diagonal blocks containing a minimal number of nonzeros. This is an NP-complete problem

and so, especially for large problems, it is usually necessary to seek an approximately minimal

disconnecting subset using heuristic or stochastic approaches.

Another useful representation for an unsymmetric sparse matrix is a directed bipartite graph

~G = (R;C; ~E(M)), consisting of a row vertex set R, a column vertex set C, a complete matching

M corresponding to a zero-free diagonal, and an edge set ~E such that a vertex in C is out-adjacent

to a vertex in R if an o�-diagonal nonzero element exists in the corresponding row and column,

and a vertex in R is out-adjacent to a vertex in C for each diagonal element of the matrix [see

Coon and Stadtherr (1995) for a schematic of such a graph and the corresponding matrix]. A

6



key idea is that of a net, which can be viewed as a column vertex together with all the vertices

which are adjacent to it. For a given column, these adjacent vertices correspond to a set of rows,

all of which have a nonzero element in the given column. A net is said to be cut with respect

to a partitioning into subgraphs if any two of its vertices belong to di�erent subgraphs after the

partitioning; this corresponds to a column having nonzero elements on both sides of a matrix row

partition. If a disconnecting set for the graph of the matrix is found such that the number of nets

cut by the partition is minimized, this corresponds to a bordered block-diagonal form with two

diagonal blocks and borders of minimum size (the cut nets correspond to border columns). The

problem of �nding a disconnecting set for a bipartite graph which minimizes the number of nets

cut is known to be NP-complete, so algorithms attempt to select a good approximation to such a

partitioning using heuristics.

3.2 The Min-Net-Cut Approach

This algorithm represented a generalization of previous graph partitioning strategies, and was

developed by Coon and Stadtherr (1995) for dealing with unsymmetric process simulation matrices.

The directed bipartite graph model described above was used. The kernel of the MNC methods is

the identi�cation of a disconnecting set which bisects the bipartite graph ~G into two partitions ~G1

and ~G2, such that the number of nets cut is approximately minimized. This disconnecting set is

determined by repeatedly choosing vertex pairs to move or swap across the partition boundary in

order to reduce the number of nets cut by the partitioning. First, vertices (both column and row)

are ranked according to their gain, that is, the decrease in the number of nets cut when this vertex

is moved to the other partition. Two heuristics are used to choose vertex pairs: the free match

criterion and the free swap criterion. The free match criterion pairs a row vertex with its matching

7



column vertex in the same partition and moves both to the other partition. This criterion can

only �nd symmetric permutations of row and column vertices, since it does not consider alternate

matchings. Searching all alternate matchings is too time consuming, however, and so the free

swap criterion searches a cycle of length four in the directed bipartite graph for a free vertex, and

exchanges it with the vertex with the highest gain from the other partition. The matching can

then be easily reconstructed. This partitioning procedure is applied recursively to the subgraphs

~G1 and ~G2 until a stopping criterion is reached. This yields a bordered block-diagonal form with a

structured border, a form which can also be interpreted as a nested block-tridiagonal form whose

o�-diagonal blocks have few nonzero columns. The complete details of MNC are given by Coon

and Stadtherr (1995), who describe a family of methods based on this approach, di�ering in the

order in which the heuristics are applied and other implementation details.

Since the MNC methods begin with a complete matching (nonzero diagonal) and seek to main-

tain a complete matching during the reordering, the diagonal blocks they produce also have a

complete matching, and thus are structurally nonsingular. This does not guarantee numerical non-

singularity, however, and so in factoring the diagonal blocks some pivoting strategy must be used,

with rows and columns that cannot be used in pivots moved to the borders. Since a pivoting

strategy must be used anyway, starting with structurally nonsingular diagonal blocks is not strictly

necessary. There may be some disadvantages to starting with structurally singular blocks, since

this will likely mean an increase in the number of rows and columns that must be moved out to

the borders during pivoting, thus further increasing the size of the interface problem. However,

removing the complete matching constraint may allow one to �nd a bordered block-diagonal form

that has a smaller border in the �rst place. In the reordering algorithm described here we remove

the complete matching constraint, resulting in an algorithm that is much simpler and faster than

8



the original MNC approach. Furthermore, because the new algorithm is more 
exible than MNC,

since the number of possible row moves is much greater, a larger number of partitions can often be

created. This new MNC-type ordering is referred to as GPA-SUM (Graph-Partitioning Algorithm

for Sparse Unsymmetric Matrices.

3.3 Graph-Partitioning Algorithm for Sparse Unsymmetric Matrices (GPA-
SUM)

This algorithm is essentially a simpli�cation and generalization of the MNC ordering of Coon

and Stadtherr (1995). As with the MNC ordering, the kernel of the algorithm attempts to identify

a disconnecting subset that minimizes the number of nets cut by the bisection. However, since the

GPA-SUM algorithm seeks to create a bordered block-diagonal form with diagonal blocks that are

not necessarily nonsingular, simpli�cations can be made to the original MNC algorithm.

The �rst major di�erence between GPA-SUM and MNC is the removal of the complete matching

constraint. Finding a partitioning without this constraint is equivalent to partitioning an undirected

bipartite graph G(R;C;E) in which each edge signi�es one nonzero element of the unsymmetric

matrix A. Removing this constraint means that no initial zero-free diagonal need be found. For

large matrices, �nding a maximum transversal can be a quite signi�cant computational expense.

With the removal of the matching constraint, the core problem can be treated as one of bisecting the

row vertices only, with columns assigned to partitions after row partitioning has been completed.

We therefore rede�ne a cut net as simply one whose row vertices lie in more than one partition

(without regard to its column vertex). This greatly simpli�es the computation of the gain of a row

vertex, which is one of the most time consuming steps of the MNC approach.

GPA-SUM also has a simpler algorithm for choosing row vertices to move across a partition

9



boundary. The gain of each row vertex, that is the change in the number of nets cut when this

row is moved across the partition boundary, is computed and stored in a linked list structure. This

structure can be searched very eÆciently in order to �nd the vertex with the highest gain, and the

corresponding row is then moved into the other partition. These moves continue until no more rows

exist which can improve the number of cut nets, or until the ratio of the sizes of the two partitions

fails to meet a speci�c tolerance. The ratio of the order of the two newly created partitions is

controlled by the parameter minratio, as in MNC, since keeping the blocks approximately equal in

size can be important for load balancing when solving using parallel methods. The optimal value

of this parameter depends on the relative costs of communication and computation on a speci�c

machine architecture.

Once the rows have been bisected into two partitions, column assignments can be made. A

column is assigned to a partition if all of the nonzero elements in that column are located in that

partition. This corresponds to an uncut net in the bipartite graph. Columns corresponding to cut

nets will become part of the column border. As discussed previously, it is generally important to

try to limit the number of cut columns created by the partitioning, perhaps even at the expense of

creating fewer diagonal blocks, since this has a direct impact on the size of the interface problem.

The parameter cutratio allows the number of cut columns created by GPA-SUM to be limited,

by putting a tolerance on the ratio of cut columns to total columns. Since this parameter is only

checked globally after a full pass through the recursive algorithm, the actual percentage of cut

columns will tend to be somewhat higher than the speci�ed value, and so this parameter should

be set lower than the actual percentage of cut columns desired. In the MNC methods, the cutratio

parameter is used somewhat di�erently, being applied locally to each partition created, rather than

globally. This has e�ect of often making the actual global percentage of cut columns signi�cantly

10



less than the speci�ed cutratio.

Like MNC, GPA-SUM recursively partitions the subgraphs created by each partitioning, using

a breadth-�rst recursion. The procedure used for choosing row vertices to move across the partition

boundary in GPA-SUM can create too many partitions for eÆcient solution on a given architecture

if stopping criteria similar to those used in the MNC algorithm are used. Thus, a parametermaxpart

was introduced to limit the total number of partitions created.

A basic outline of the steps involved in the GPA-SUM ordering is as follows:

Begin k-th level of recursion:

1. Attempt bisection of each (unlocked) partition found on the (k�1)-th level of recursion.

Do for each such partition:

(a) Create linked lists, de�ne the initial partition point and disconnecting edge set, and

compute gains for each row vertex in the partition.

(b) Using the linked lists, �nd the (unlocked) row vertex in each partition that has

the highest positive gain. Exchange this pair of vertices between partitions. If

one partition has no (unlocked) row vertices with positive gain, then in the other

partition, choose the single (unlocked) row vertex with the highest positive gain and

move it across the partition boundary. Temporarily lock any row vertices moved so

that they are not eligible to be moved again while processing the current partition.

If neither partition has any (unlocked) row vertices with positive gain, then go to

(e).

(c) Check minratio; if too many single vertex moves made, go to (e).

11



(d) Update linked lists to account for the moved vertices. Return to (b).

(e) If no row vertices moved during this partitioning step, lock this partition. No at-

tempts will be made on subsequent levels of recursion to bisect this partition.

(f) If bisection successful (row vertices were moved) and column ordering desired, assign

columns to partitions and determine which nets have been cut.

2. Check cutratio andmaxpart. If either parameter is reached or exceeded, or if all partitions

have been locked, then end. Otherwise, unlock row vertices that were temporarily locked

in 1(b), and continue recursive partitioning with k = k + 1.

As a small example to illustrate how the GPA-SUM algorithm works, consider the matrix of

Figure 1. In this �gure, the row vertex gains are listed after each row. A positive row vertex gain

indicates that if this row vertex is moved to the other partition, then the total number of nets cut

will decrease by this value. Conversely, a negative row vertex gain indicates that the number of

nets cut will increase if this row is moved across the partition boundary. For instance, row 1 has

a gain of 1 because moving row vertex 1 across the partition boundary causes net 1 to become

uncut, while net 10 remains cut, for a net change of one less cut net. In this example, the row gains

show that an exchange of rows 4 and 10 can be made which will decrease the number of nets cut

more than any other exchange. After this exchange, the row vertex gains are recomputed for the

a�ected rows (all of the rows in this small example must be recomputed, but in the bipartite graph

corresponding to a large, sparse matrix, very few row vertex gains must actually be updated).

The result of exchanging row vertices 4 and 10 is shown in Figure 2. Here the row vertex gains

for rows 10 and 4 are not computed since these rows are locked, that is, they are not allowed to

12



move again during this bisection step. A second exchange can now be made which will decrease the

number of nets cuts, namely row 5 and row 9. Again, all a�ected row gains must be recomputed

after this exchange, leading to the matrix of Figure 3. Since no more row vertices can be moved

which will decrease the number of nets cut, the algorithm next assigns uncut columns to the

appropriate partitions, and designates cut columns as belonging to the border, as indicated in

Figure 4 by marking the nonzeros in columns 5 and 6 with a B. The algorithm then moves to the

second (k = 2) level of the recursive partitioning.

For each of the partitions created in the previous level of recursion (k = 1), another bisection

is now attempted. Beginning with the �rst (topmost) partition in Figure 3, an initial partition

point is de�ned and row vertex gains computed as shown in Figure 4. It should be emphasized

that, in computing the gains, the nets cut on previous levels of recursion are not considered. Row

vertices 1 and 9 have the highest gains (ties are broken by whichever row vertex appears �rst in

the linked list, which in this case is the row with the lower row index), and so these two rows are

interchanged. After this exchange, the row gains for the �rst partition are recomputed, resulting

in the structure of Figure 5. At this point, it is clear that no exchanges of rows are possible in

the �rst partition. However, row 3 can be moved across the upper partition boundary as a single

row move, with the result shown in Figure 6. After this, no further moves can be made in the �rst

partition and column 10 is still cut so it is designated a border column.

Next the second (bottommost) partition is processed, with the initial partition point and row

vertex gains as shown in Figure 6. Here, an exchange of rows 5 and 12 is found, leading to the

structure in Figure 7. Looking at the recomputed row gains for the second partition, it is clear that

no further row moves are possible, and so the columns are then assigned to partitions.

At this point if cutratio = 0.25 or maxpart = 4, the recursion would stop since these tolerances

13



have been reached. If a next level of recursion was attempted, there would be no possible row moves

in any partition, causing all partitions to be locked and thus end the recursion. The �nal structure

is shown in Figure 8 as a column-bordered block-diagonal form. Columns 5, 6 and 10 will belong to

the interface problem; the rows belonging to the interface problem will be determined by pivoting

within each of the four partitions. This example clearly shows how a block-diagonal structure is

formed by the GPA-SUM algorithm. While 3 of the 12 nets in this case are cut (compared to 10

for the original matrix), larger examples often give orderings with a much smaller percentage of

cut nets and more diagonal blocks.

4 Results and Discussion

A large number of test problems were used in this study to test the capabilities of the GPA-SUM

ordering. Table 1 gives information about each test matrix, including the order n, the number of

nonzeros, the symmetry ratio, the matrix source, and a brief problem description. The symmetry

ratio s is the number of matched o�-diagonal nonzeros (i.e., nonzeros aij; i 6= j, for which aji is also

nonzero) divided by the total number of o�-diagonal nonzeros. Thus s = 1 indicates a completely

symmetric pattern, while s = 0 shows complete asymmetry. It can be seen that, except for the last

two problems, which are not process engineering examples, these matrices have a very high degree of

asymmetry, almost complete asymmetry in many cases. With �ve exceptions, all the matrices arise

from applications in process engineering, using SEQUEL (Zitney and Stadtherr, 1988), SPEEDUP

(Aspen Technology, Inc.) and ASPEN PLUS (Aspen Technology, Inc.), as well as three distillation

problems (west* ) from the Harwell/Boeing collection. The other �ve problems are also from the

Harwell/Boeing collection, and represent a variety of applications outside of process engineering.

Each matrix was reordered using the GPA-SUM and MNC orderings, with selected results

14



summarized in Table 2. The MS variant of MNC, a top performer in the study by Coon and

Stadtherr (1995), was used. The results of interest include:

1. The number of diagonal blocks identi�ed (NB).

2. The percentage of nets cut (%NC). This is the number of columns in the border expressed as

a percentage of total number of columns, and is directly related to the size of the interface

problem. Typically, the order of the interface problem will become somewhat larger during

the numerical solution process, due to pivoting in the diagonal blocks, as described above.

Because the diagonal blocks created by GPA-SUM may be structurally singular, while those

created by MNC are always structurally nonsingular, the increase in the size of the interface

problem due to pivoting may be larger when the GPA-SUM ordering is used.

3. The reordering time (RT). This is given as CPU seconds on a CRAY J-90.

4. The relative size of the diagonal blocks. This is expressed in terms of the maximum block

ratio (MBR), which is the ratio of the order of the largest block to the mean block order

(n/NB).

The relative importance of the structural results depends on the target machine architecture as

well as on the details of the parallel solver. For example, if the parallel solver is designed to solve

the interface problem on a single processor, then the percentage of nets cut will likely be a critical

concern. On the other hand, if the interface problem can be solved e�ectively in parallel, then its

size will be of less concern. GPA-SUM is designed to be tunable, so that structures suitable for

di�erent machine architectures and parallel solvers can be created. Thus, we do not attempt to

evaluate the reorderings in the context of any particular solver or architecture.

15



Both GPA-SUM and MNC have the tuning parameters cutratio (CR), which adjusts the al-

lowable number of cut nets and thus controls the size of the interface matrix, and minratio (MR),

which controls the relative sizes of the vertex sets after partitioning. The GPA-SUM results are

shown for two sets of parameter settings: the �rst is designed to keep the interface matrix small,

while the second is designed to generate a larger number of partitions. As noted by Coon and

Stadtherr (1995), the performance of MNC is not very sensitive to values of the tuning parame-

ters. Since, as explained above, the cutratio parameter is used di�erently in GPA-SUM and MNC,

the values used are not directly comparable. In MNC, the actual fraction of nets cut is generally

signi�cantly less than cutratio, while in GPA-SUM it is often signi�cantly higher than cutratio.

Thus, the cutratio values of 0.20 in MNC and 0.07 in one set of GPA-SUM runs can be regarded

as roughly comparable, and do tend to yield roughly similar results in terms of percent nets cut.

The results in Table 2 show the trade-o� between the number of diagonal blocks created by the

algorithm and the number of nets cut by the partitioning, and demonstrate how by varying cutratio

and minratio this trade-o� can be tuned for a particular target architecture or parallel solver. For

nearly every matrix in the test set, matrix structures with more or fewer diagonal blocks could be

created by GPA-SUM from just these two sets of tuning parameters. For example, in the extr1b *

series of matrices, either 8 or 16 diagonal blocks could be obtained using these parameter values.

By further increasing the cutratio parameter, even more partitions (and a larger interface problem)

can be created, and by reducing cutratio even fewer partitions (and a smaller interface matrix) can

be achieved. This is signi�cantly di�erent from the MNC algorithm, which is insensitive to the

values of the tuning parameters, and which is only able to create structures with a small number

of partitions on these problems. By relaxing the matching constraint in MNC, the GPA-SUM

approach is able to identify a much wider range of structures of interest for parallel computation.

16



As expected, eliminating the need to initialize and maintain a complete matching provides a

signi�cant running time advantage for GPA-SUM. The results in Table 2 show that GPA-SUM

runs 20-80 times faster than MNC, and that this di�erence increases as the order of the matrix

increases. While some of the reordering time di�erences are due to the creation of a di�erent number

of partitions, it is clear that the GPA-SUM algorithm is many times faster on a per-partition basis.

Results on the series of matrices lhr*, which have similar structures but vary in order, show the

increase in reordering time for the two algorithms as the order of the matrix increases. For an

increase in size of about a factor of four, the GPA-SUM reordering time increases (roughly linearly)

by only about six, while the MNC reordering time increases by a factor of 16.5. The GPA-SUM

reordering is also creating more than twice as many partitions for these matrices.

The relative size of the diagonal blocks is important when load-balancing considerations are

taken into account. A maximum block ratio (MBR) much greater than one indicates that one

diagonal block is signi�cantly larger than the mean block size and thus could create a bottleneck in a

parallel solution scheme. The results show that for most cases, the blocks created by the GPA-SUM

ordering are more nearly equal in size than those created by MNC. An MNC ordering which creates

more diagonal blocks is also more likely to have a block size imbalance, since each partitioning could

fail for some subpartitions, leaving much larger blocks in the matrix. This is overcome in the GPA-

SUM algorithm by removing the matching constraints on row vertex exchanges. This allows more

of the row vertex moves to be exchanges between partitions, rather than moves of a single vertex.

Since it is the latter type of move that changes the size of the partitions, block size balance can be

better maintained by GPA-SUM.

17



5 Concluding Remarks

The experiments conducted in this work have shown the e�ectiveness of the GPA-SUM method

for creating bordered block-diagonal forms for sparse matrices resulting from process engineering

problems. This graph-partitioning algorithm creates orderings comparable to those determined

with previously used methods, but does so in a much shorter time. Furthermore, the GPA-SUM

algorithm is tunable to create matrix structures with more diagonal blocks, or to reduce the size

of the interface matrix while still determining a useful partitioning. This capability allows the

algorithm to be useful when orderings are needed for parallel solvers on a variety of parallel archi-

tectures. The nearly two order of magnitude savings in reordering time seen on the large problems

will be of particularly signi�cance in dealing with even larger industrial-scale problems, especially

if real-time capabilities are desired.

Acknowledgments { This work has been supported by the National Science Foundation under

Grants DMI-9322682 and DMI-9696110. We would like to thank Cray Research for providing com-

puter time, and the Albert-Einstein Institute in Potsdam, Germany for the use of its computer

resources. We also acknowledge the support of the National Center for Supercomputing Applica-

tions at the University of Illinois and Aspen Technology, Inc.

18



References

Abbott, K. A., B. A. Allan, and A. W. Westerberg, Global preordering for Newton equations using

model hierarchy. AIChE J., 43, 3193{3204 (1997).

Choi, H. and D. B. Szyld, Threshold ordering for preconditioning nonsymmetric problems with

highly varying coeÆcients. Technical Report 96-51, Dept. of Mathematics, Temple University,

Philadelphia, PA (1996).

Cofer, H. N. and M. A. Stadtherr, Reliability of iterative linear solvers in chemical process simula-

tion. Comput. Chem. Engng, 20, 1123{1132 (1996).

Coon, A. B. and M. A. Stadtherr, Generalized block-tridiagonal matrix orderings for parallel com-

putation in process 
owsheeting. Comput. Chem. Engng, 19, 787-805 (1995).

Du�, I.S., On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw., 7,

315-330 (1981).

Fiduccia, C. M. and R. M. Mattheyses, A linear-time heuristic for improving network partitions.

In Proc. 19th ACM-IEEE Design Automation Conf., Las Vegas, ACM (1982).

Gallivan, K. A., B. A. Marsolf, and H. A. G. Wijsho�, Solving large nonsymmetric sparse linear

systems using MCSPARSE. Parallel Comput., 22, 1291{1333 (1996).

Karpis, G. and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs. Technical

Report 95-064, Dept. of Computer Science, Univ. of Minnesota, Minneapolis, MN (1995).

Kernighan, B. W. and S. Lin, An eÆcient heuristic procedure for partitioning graphs. Bell System

Tech. J. 49, 291-307 (1970).

19



Leiserson, C. E. and J. G. Lewis, Orderings for parallel sparse symmetric factorization. In Rodrigue,

G., editor, Parallel Processing for Scienti�c Computing, pages 27{31. SIAM, Philadelphia, PA

(1989).

Mallya, J. U., S. E. Zitney, S. Choudhary, and M. A. Stadtherr, A parallel frontal solver for large

scale process simulation and optimization. AIChE J., 43, 1032{1040 (1997a).

Mallya, J. U., S. E. Zitney, S. Choudhary, and M. A. Stadtherr, A parallel block frontal solver

for large scale process simulation: Reordering e�ects. Comput. Chem. Engng, 21, S439{S444

(1997b).

O'Neil, J. and D. B. Szyld, A block ordering method for sparse matrices. SIAM J. Sci. Stat.

Comput., 11, 811{823 (1990).

Schweikert, D. G. and B. W. Kernighan, A proper model for the partitioning of electrical circuits.

In Proc. 9th ACM-IEEE Design Automation Workshop, ACM, Dallas, (1972).

Westerberg, A. W. and T. J. Berna, Decomposition of very large scale Newton-Raphson based


owsheeting problems. Comput. Chem. Engng. 2, 61 (1978).

Zitney, S. E., Sparse matrix methods for chemical process separation calculations on supercomput-

ers. In Proc. Supercomputing '92, pages 414{423. IEEE Press, Los Alamitos, CA (1992).

Zitney, S. E., L. Br�ull, L. Lang, and R. Zeller, Plantwide dynamic simulation on supercomputers:

Modeling a Bayer distillation process. AIChE Symp. Ser., 91(304), 313{316 (1995).

Zitney, S. E., K. V. Camarda and M. A. Stadtherr, Impact of supercomputing in simulation and

optimization of process operations. In Proc. Second International Conference on Foundations

20



of Computer-Aided Process Operations (eds. D. W. T. Rippen, J. C. Hale, and J. F. Davis),

CACHE, Austin, TX, 463-468 (1994).

Zitney, S. E. and M. A. Stadtherr, Computational experiments in equation-based chemical process


owsheeting. Comput. Chem. Engng, 12, 1171{1186 (1988).

Zitney, S. E. and M. A. Stadtherr, Frontal algorithms for equation-based chemical process 
ow-

sheeting on vector and parallel computers. Comput. Chem. Engng, 17, 319{338 (1993).

21



Table 1: Statistics for example matrices. See text for de�nition of symmetry ratio and further
discussion.

Symmetry

Name Order Nonzeros Ratio Source Description

ngc 1235 16868 .0336 SEQUEL natural gas plant

lhr 1477 18592 .00732 SEQUEL light hydrocarbon recovery

mult1 612 4459 .0103 SEQUEL multiunit 
owsheet

mult2 714 5001 .0196 SEQUEL multiunit 
owsheet

mult3 526 5363 .0329 SEQUEL multiunit 
owsheet

cyclo1 517 2420 .0158 SEQUEL cyclohexane plant

beef 1197 12070 .00680 SEQUEL multiunit 
owsheet

lhr4 4101 82682 .0152 SEQUEL light hydrocarbon recovery

lhr7 7338 156508 .0174 SEQUEL light hydrocarbon recovery

lhr10 10672 232633 .00879 SEQUEL light hydrocarbon recovery

lhr11 10964 233741 .00820 SEQUEL light hydrocarbon recovery

lhr14 14270 307858 .00662 SEQUEL light hydrocarbon recovery

lhr17 17576 381975 .00151 SEQUEL light hydrocarbon recovery

segm3 m1 1045 4963 .00524 SPEEDUP multistage reactor

segm3 m2 1045 5131 .00546 SPEEDUP multistage reactor

extr1b m1 2836 11404 .00386 SPEEDUP extractive distillation

extr1b m2 2836 11579 .00380 SPEEDUP extractive distillation

extr1b m3 2836 9227 .00780 SPEEDUP extractive distillation

hydr1c m1 5308 23752 .00413 SPEEDUP two-column separation

hydr1c m2 5308 23956 .00409 SPEEDUP two-column separation

hydr1c m3 5308 19892 .00332 SPEEDUP two-column separation

22



Table 1: (continued)

Symmetry

Name Order Nonzeros Ratio Source Description

traycalc 1145 20296 .117 ASPEN PLUS reactive distillation

userupp 1269 22508 .106 ASPEN PLUS reactive distillation

v3 1078 16937 .0918 ASPEN PLUS distillation process

v10 1148 15729 .0602 ASPEN PLUS distillation process

v13 834 9713 .0541 ASPEN PLUS distillation process

mpex2 848 11413 .0402 ASPEN PLUS distillation process

mpex3 2473 46503 .0617 ASPEN PLUS distillation process

mpex4 2478 44075 .0537 ASPEN PLUS distillation process

sumb 523 4998 .0513 ASPEN PLUS distillation process

uosb 523 4998 .0513 ASPEN PLUS distillation process

gre1107 1107 5664 0 H/B computer system

west0989 989 3537 .0181 H/B distillation process

west1505 1505 5445 .00110 H/B distillation process

west2021 2021 7353 .00327 H/B distillation process

mpmult1 2023 31894 .0486 ASPEN PLUS distillation process

bp 1000 822 4661 .00944 H/B LP basis

mahindas 1258 7862 .0166 H/B economic model

lns3937 3937 25407 .850 H/B 
uid 
ow model

sherman5 3312 20793 .739 H/B reservoir simulation

23



Table 2: Statistics for example problems after reordering. Columns are the number of diagonal
blocks (NB), the percentage of cut nets (%NC), the reordering time (RT) in seconds on a CRAY
J-90, and the ratio (MBR) of the order of the largest block to the mean block order. Parameters
are cutratio (CR) and minratio (MR). See the text for further discussion.

GPA-SUM MNC

CR=0.07 MR=0.45 CR=0.15 MR=0.25 CR=0.20 MR=0.45

Name NB %NC RT MBR NB %NC RT MBR NB %NC RT MBR

ngc 2 9.15 0.0928 1.023 4 18.2 0.167 1.049 4 18.5 4.9 1.147

lhr 2 10.8 0.111 1.036 4 17.0 0.200 1.067 4 19.0 5.7 1.113

mult1 2 15.0 0.0368 1.085 2 15.0 0.0367 1.085 2 12.6 1.2 1.020

mult2 2 20.9 0.0326 1.053 4 23.9 0.0655 1.092 4 21.4 1.5 1.182

mult3 2 28.7 0.0402 1.106 2 28.1 0.0417 1.118 1 - - -

cyclo1 2 8.12 0.0161 1.075 4 15.5 0.0318 1.161 3 11.4 0.80 1.648

beef 2 10.0 0.0640 1.026 4 15.9 0.122 1.056 3 10.6 2.9 1.649

lhr4 4 7.85 0.734 1.034 8 15.9 1.32 1.102 3 6.91 35.0 1.496

lhr7 8 11.7 1.66 1.070 16 18.1 3.22 1.110 4 6.90 100.2 1.093

lhr10 8 9.59 2.33 1.060 16 15.8 4.71 1.079 10 9.65 207.7 2.516

lhr11 8 9.87 2.66 1.069 16 16.3 4.78 1.118 10 9.64 242.9 2.488

lhr14 8 9.01 3.49 1.060 16 13.4 6.28 1.106 6 5.40 393.8 1.588

lhr17 8 7.44 4.20 1.063 16 11.8 7.74 1.082 6 3.48 581.3 1.468

segm3 m1 4 12.0 0.0521 1.087 8 17.0 0.0949 1.10 3 11.6 2.20 1.418

segm3 m2 4 12.7 0.0510 1.072 8 18.3 0.0973 1.110 3 11.2 2.30 1.418

extr1b m1 8 8.36 0.152 1.038 16 13.6 0.276 1.100 4 5.47 13.1 1.066

extr1b m2 8 8.53 0.138 1.041 16 13.4 0.278 1.100 4 5.61 12.0 1.078

extr1b m3 8 6.77 0.136 1.029 16 11.0 0.248 1.117 4 4.80 12.1 1.066

hydr1c m1 8 9.19 0.318 1.099 16 12.9 0.554 1.185 4 3.43 41.0 1.088

hydr1c m2 8 9.23 0.309 1.099 16 12.8 0.557 1.182 4 2.60 42.4 1.057

hydr1c m3 8 7.42 0.281 1.153 16 10.5 0.506 1.248 6 4.97 43.9 1.422

24



Table 2: (continued)

GPA-SUM MNC

CR=0.07 MR=0.45 CR=0.15 MR=0.25 CR=0.20 MR=0.45

Name NB %NC RT MBR NB %NC RT MBR NB %NC RT MBR

traycalc 4 13.4 0.175 1.153 8 30.7 0.315 1.244 7 15.7 5.0 1.706

userupp 4 9.77 0.181 1.151 8 21.6 0.342 1.179 7 15.2 5.8 1.539

v3 4 12.4 0.146 1.180 8 26.9 0.266 1.210 8 20.0 3.5 2.019

v10 4 8.8 0.133 1.192 8 20.3 0.247 1.289 8 20.1 3.8 2.404

v13 4 12.9 0.0890 1.213 8 25.5 0.160 1.429 4 12.7 1.8 1.204

mpex2 4 11.0 0.112 1.212 8 21.8 0.188 1.453 3 7.43 1.9 1.649

mpex3 8 12.5 0.522 1.174 16 28.7 0.924 1.255 13 16.1 18.0 1.561

mpex4 8 13.5 0.489 1.204 16 28.0 0.883 1.214 16 18.7 17.7 1.801

sumb 4 13.0 0.0447 1.208 8 30.2 0.0894 1.576 3 8.6 0.90 1.646

uosb 4 13.0 0.0446 1.208 8 30.2 0.0892 1.576 3 8.6 0.90 1.646

gre1107 2 34.8 0.0350 1.006 2 34.8 0.0350 1.006 2 11.8 1.5 1.059

CR=0.07 MR=0.45 CR=0.25 MR=0.25 CR=0.20 MR=0.45

west0989 2 15.5 0.0224 1.011 15 23.4 0.0931 1.926 3 10.4 2.7 1.596

west1505 2 15.1 0.0344 1.010 16 22.7 0.142 1.095 3 9.17 4.6 1.627

west2021 2 15.0 0.0457 1.153 16 21.9 0.186 1.244 3 9.25 7.7 1.706

mpmult1 8 15.3 0.482 1.269 16 20.7 0.854 1.297 12 16.5 11.6 1.602

bp 1000 2 20.2 0.0366 1.063 4 35.6 0.0806 1.348 2 14.1 3.0 1.190

mahindas 2 25.0 0.142 1.083 4 35.8 0.237 1.298 2 12.8 4.1 1.046

lns3937 2 21.7 0.345 1.100 4 55.2 0.560 1.102 6 18.0 13.3 1.722

sherman5 2 18.8 0.175 1.101 4 41.8 0.328 1.167 4 22.7 4.1 2.054

25



Figure Captions

Figure 1. Original occurrence matrix for example used in text.

Figure 2. Partially reordered occurrence matrix for example used in text.

Figure 3. Partially reordered occurrence matrix for example used in text.

Figure 4. Partially reordered occurrence matrix for example used in text. Nonzeros marked with a
B indicate a column to be assigned to the border.

Figure 5. Partially reordered occurrence matrix for example used in text. Nonzeros marked with a
B indicate a column to be assigned to the border.

Figure 6. Partially reordered occurrence matrix for example used in text. Nonzeros marked with a
B indicate a column to be assigned to the border.

Figure 7. Partially reordered occurrence matrix for example used in text. Nonzeros marked with a
B indicate a column to be assigned to the border.

Figure 8. Final reordered occurrence matrix for example used in text, showing a column-bordered
block-diagonal form.

26



1 2 3 4 5 6 7 8 9 10 11 12 Gain

1 X X 1

2 X X 1

3 X X 1

4 X X 2

5 X X 1

6 X X 2

7 X X X 0

8 X X X 0

9 X X X 1

10 X X X X X 4

11 X X -1

12 X X X 0

Figure 1: Original occurrence matrix for example used in text.

27



1 2 3 4 5 6 7 8 9 10 11 12 Gain

1 X X -2

2 X X 0

3 X X -1

5 X X 1

6 X X -2

10 X X X X X L

4 X X L

7 X X X -2

8 X X X -1

9 X X X 2

11 X X -1

12 X X X -2

Figure 2: Partially reordered occurrence matrix for example used in text.

28



1 2 3 4 5 6 7 8 9 10 11 12 Gain

1 X X -2

2 X X -2

3 X X -1

6 X X -2

10 X X X X X L

9 X X X L

5 X X L

4 X X L

7 X X X -1

8 X X X -2

11 X X -2

12 X X X -1

Figure 3: Partially reordered occurrence matrix for example used in text.

29



1 2 4 7 9 10 5 6 3 8 11 12 Gain

1 X X 1

2 X X 1

3 X B 1

6 X X -2

10 X X X X B 0

9 X X B 2

5 B X

4 X X

7 B B X

8 B X X

11 X X

12 B B X

Figure 4: Partially reordered occurrence matrix for example used in text. Nonzeros marked with a
B indicate a column to be assigned to the border.

30



1 2 4 7 9 10 5 6 3 8 11 12 Gain

2 X X -1

3 X B 1

9 X X B L

1 X X L

6 X X -2

10 X X X X B -2

5 B X

4 X X

7 B B X

8 B X X

11 X X

12 B B X

Figure 5: Partially reordered occurrence matrix for example used in text. Nonzeros marked with a
B indicate a column to be assigned to the border.

31



1 2 4 7 9 10 5 6 3 8 11 12 Gain

2 X B -1

9 X B B L

3 X B L

1 X B L

6 X X -2

10 X X X X B -4

5 B X 1

4 X X 0

7 B B X -1

8 B X X -1

11 X X -1

12 B B X 1

Figure 6: Partially reordered occurrence matrix for example used in text. Nonzeros marked with a
B indicate a column to be assigned to the border.

32



1 2 4 7 9 10 5 6 3 8 11 12 Gain

2 X B

9 X B B

3 X B

1 X B

6 X X

10 X X X X B

4 X X -2

7 B B X -1

12 B B X L

5 B X L

8 B X X -2

11 X X -2

Figure 7: Partially reordered occurrence matrix for example used in text. Nonzeros marked with a
B indicate a column to be assigned to the border.

33



7 1 2 4 9 8 12 3 11 10 5 6

2 X B

9 X B B

3 X B

1 X B

6 X X

10 X X X X B

4 X X

7 X B B

12 X B B

5 X B

8 X X B

11 X X

Figure 8: Final reordered occurrence matrix for example used in text, showing a column-bordered
block-diagonal form.

34


