
Frontal Solvers for Process Engineering:

Local Row Ordering Strategies

Kyle V. Camarda
Department of Chemical Engineering

University of Illinois
600 S. Mathews Avenue
Urbana, IL 61801 USA

Mark A. Stadtherr1

Department of Chemical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA

(revised, May 1997)

1Author to whom all correspondence should be addressed

Abstract

The solution of chemical process simulation and optimization problems on today's high

performance supercomputers requires algorithms that can take advantage of vector and par-

allel processing when solving the large, sparse matrices that arise. The frontal method can

be highly e�cient in this context due to its ability to make use of vectorizable dense ma-

trix kernels on a relatively small frontal matrix in the innermost loop of the computation.

However, the ordering of the rows in the coe�cient matrix strongly a�ects size of the frontal

matrix and thus the solution time. If a poor row ordering is used it may make the frontal

method uncompetitive with other methods. We describe here a graph theoretical framework

for identifying suitable row orderings that speci�cally addresses the issue of frontal matrix

size. This leads to local, heuristic methods which aim to limit frontal matrix growth in

the row and/or column dimensions. Results on a wide range of test problems indicate that

improvements in frontal solver performance can often be obtained by the use of a restricted

minimum column degree heuristic, which can be viewed as a variation of the minimum degree

heuristic used in other contexts. Results also indicate that the natural unit-block structure

of process simulation problems provides a quite reasonable ordering.

1 Introduction

The solution of realistic, industrial-scale simulation and optimization problems is compu-

tationally very intense, and may require the use of high performance computing technology

to be done in a timely manner. For example, Zitney et al. (1995) described a dynamic simu-

lation problem at Bayer AG requiring 18 hours of CPU time on a CRAY C90 supercomputer

when solved with the standard implementation of SPEEDUP (Aspen Technology, Inc.). To

better use this leading edge technology in process simulation and optimization requires the

use of techniques that e�ciently exploit vector and parallel processing. Since most current

techniques were developed for use on conventional serial machines, it is often necessary to

rethink problem solving strategies in order to take full advantage of supercomputing power.

For example, by using a di�erent linear equation solving algorithm and addressing other im-

plementation issues, Zitney et al. (1995) reduced the time needed to solve the Bayer problem

from 18 hours to 21 minutes.

In the Bayer problem, as in most other industrial-scale problems, the solution of large,

sparse systems of linear equations is the single most computationally intensive step, requiring

over 80% of the total simulation time in some cases. Thus, any reduction in the linear

system solution time will result in a signi�cant reduction in the total simulation time. The

matrices that arise, however, do not have any of the desirable properties, such as numerical

or structural symmetry, positive de�niteness, and bandedness often associated with sparse

matrices, and usually exploited in developing e�cient parallel/vector algorithms. Recently,

an implementation of the frontal method (Zitney, 1992; Zitney and Stadtherr, 1993; Zitney et

1

al., 1995), developed at the University of Illinois and later extended at Cray Research, Inc.,

has been described that is designed speci�cally for use in the context of process simulation.

This solver (FAMP) has been incorporated in CRAY implementations of popular commercial

codes, such as ASPEN PLUS, SPEEDUP (Aspen Technology, Inc.), and NOVA (Dynamic

Optimization Technology Products, Inc.). A parallel version (PFAMP) has now also been

developed (Mallya et al., 1997) that better exploits multiprocessing.

FAMP is e�ective on parallel/vector machines since most of the computations involved

can be performed using e�ciently vectorized dense matrix kernels on relatively small frontal

matrices. However, the performance of the frontal method is strongly dependent on the

ordering of the rows in the matrix, since this ordering determines the size of the frontal matrix

at each step of frontal elimination. For symmetric or banded matrices, ordering algorithms

that attempt to minimize the matrix bandwidth or pro�le are e�ective in connection with the

frontal method (e.g., Du� et al., 1989), but for the highly asymmetric matrices that arise in

process simulation, these techniques are inappropriate. Fortunately, the natural unit-block

structure of process engineering problems can often provide a reasonable ordering, which

has led to the many successful applications to date of the frontal method on such problems.

On many problems, however, this natural ordering can clearly be improved. Thus, there

is a need to consider reordering strategies that speci�cally address the needs of the frontal

method in this context. In this paper we develop, in a graph theoretical framework, a

general methodology for identifying suitable row orderings for frontal elimination applied to

highly asymmetric matrices. Local heuristic techniques that aim to reduce frontal matrix

2

size are identi�ed. Results on a wide variety of problems indicate that improvements in the

performance of the frontal method can often be obtained through the use of such techniques.

2 Background

Consider the solution of a linear equation system Ax = b, where A is a large sparse

n � n matrix and x and b are column vectors of length n. While iterative methods can be

used to solve such systems, the reliability of such methods is questionable in the context

of process simulation (Cofer and Stadtherr, 1996). Thus we concentrate here on direct

methods. Generally such methods can be interpreted as an LU factorization scheme in

which A is factored A = LU , where L is a lower triangular matrix and U is an upper

triangular matrix. Thus, Ax = (LU)x = L(Ux) = b, and the system can be solved by a

simple forward substitution to solve Ly = b for y, followed by a back substitution to �nd the

solution vector x from Ux = y.

The frontal elimination scheme used here is an LU factorization technique that was origi-

nally developed to solve the banded matrices arising in �nite element problems (Irons, 1970;

Hood, 1976). The original motivation was, by limiting computational work to a relatively

small frontal matrix, to be able to solve problems on machines with small core memories.

Today it is widely used for �nite element problems on parallel/vector supercomputers be-

cause, since the frontal matrix can be treated as dense, most of the computations involved

can be performed by using very e�cient vectorized dense matrix kernels.

Process simulation matrices are not banded, but due to the unit-stream structure of

3

the problem, they may be nearly block-banded. Recycle and feedforward streams cause

o�-band blocks to occur, as can design speci�cations. Thus, Stadtherr and Vegeais (1985)

extended the idea of frontal elimination to the solution of process simulation problems on

supercomputers, and later (Vegeais and Stadtherr, 1990) demonstrated its potential. As

noted above, an implementation of the frontal method developed speci�cally for use in the

process simulation context has been described by Zitney (1992), Zitney and Stadtherr (1993),

and Zitney et al. (1995), and is now incorporated in supercomputer versions of popular

process simulation and optimization codes.

The frontal elimination scheme can be outlined brie
y as follows:

1. Assemble a row into the frontal matrix.

2. Determine if any columns are fully summed in the frontal matrix. A column is fully

summed if it has all of its nonzero elements in the frontal matrix.

3. If there are fully summed columns, then perform partial pivoting in those columns,

eliminating the pivot rows and columns and doing an outer-product update on the

remaining part of the frontal matrix.

This procedure begins with the assembly of row 1 into the initially empty frontal matrix,

and proceeds sequentially row by row until all are eliminated, thus completing the LU fac-

torization. To be more precise, it is the LU factors of the permuted matrix PAQ that have

been found, where P is a row permutation matrix determined by the partial pivoting, and

Q is a column permutation matrix determined by the order in which the columns become

4

fully summed. Thus the solution to Ax = b is found as the solution to the equivalent system

PAQQTx = LUQTx = Pb, which is solved by forward substitution to solve Ly = Pb for y,

back substitution to solve Uw = y for w, and �nally the permutation x = Qw. To simplify

notation, the permutation matrices will henceforth not be shown explicitly.

To see this in mathematical terms, consider the submatrix A(k) remaining to be factored

after the (k � 1)-th pivot:

A(k) =

2
6664
F (k) 0

A(k)
ps A(k)

ns

3
7775 : (1)

Here F (k) is the frontal matrix. The subscript ps in A(k)
ps indicates that it contains columns

that are partially summed (some but not all nonzeros in the frontal matrix) and the sub-

script ns in A(k)
ns indicates that it contains columns that are not summed (no nonzeros in the

frontal matrix). If a stage in the elimination process has been reached at which all remaining

columns have nonzeros in the frontal matrix, then A(k)
ns and the corresponding zero subma-

trix will not appear in Eq. (1). Assembly of rows into the frontal matrix then proceeds until

gk � 1 columns become fully summed:

A(k) =

2
666666664

�F
(k)
11

�F
(k)
12 0

�F
(k)
21

�F
(k)
22 0

0 �A(k)
ps

�A(k)
ns

3
777777775
: (2)

�F (k) is now the frontal matrix and its submatrices �F
(k)
11 and �F

(k)
21 comprise the columns that

5

have become fully summed, which are now eliminated using rows chosen during partial piv-

oting and which are shown as belonging to �F
(k)
11 here. This amounts to the factorization

�F
(k)
11 = L

(k)
11 U

(k)
11 of the order-gk block �F

(k)
11 , resulting in:

A(k) =

2
666666664

L
(k)
11 U

(k)
11 U

(k)
12 0

L
(k)
21 F (k+gk) 0

0 A(k+gk)
ps A(k+gk)

ns

3
777777775

(3)

where the new frontal matrix F (k+gk) is the Schur complement F (k+gk) = �F (k)
22 � L

(k)
21 U

(k)
12 ,

which is computed using an e�cient full-matrix outer-product update kernel, A(k+gk)
ps = �A(k)

ps

and A(k+gk)
ns = �A(k)

ns . Note that operations are done within the frontal matrix only. At this

point L
(k)
11 and L

(k)
21 contain columns k through k+gk�1 of L and U

(k)
11 and U

(k)
12 contain rows

k through k + gk � 1 of U . The computed columns of L and rows of U are saved and the

procedure continues with the assembly of the next row into the new frontal matrix F (k+gk).

Note that the order in which the variables are eliminated, and thus the column ordering in

the L and U factors, is determined by the order in which the columns become fully summed,

which in turn is determined by the row ordering. For example, for the matrix in Figure 1(a),

column 4 is the �rst to become fully summed as rows are assembled into the frontal matrix

and is thus the �rst to be eliminated and the �rst column in the L and U factors. Columns

2 and 5 would follow next, and then columns 1, 3 and 6. For a di�erent row order, say one

in which rows 4 and 5 are switched, the column elimination order will be di�erent, with in

this case columns 2 and 5 now coming �rst, followed by column 4 and then columns 1, 3 and

6

6. Thus, the row ordering determines the ultimate column ordering and the two cannot be

stipulated independently.

Note also the e�ect of the row ordering on the frontal matrix size, and thus on the number

of operations needed to perform the outer-product update. Again referring to Figure 1(a),

the �rst frontal matrix to be operated on occurs after column 4 becomes fully summed and

thus will be 4� 6. On the other hand, if say rows 2 and 5 were ordered �rst, then column 2

would become fully summed after just these two rows entered the frontal matrix, and so the

�rst frontal matrix to be operated on would be 2� 3.

For banded matrices, the frontal matrix will be relatively small and dense, with a max-

imum size of b(2b � 1), where b is the semibandwidth of the matrix. However, for process

simulation matrices, the frontal matrix may become relatively large and sparse. In this case,

wasted operations are performed on zeros since dense matrix operations are used in the

outer-product update, and thus a trade-o� occurs between increased operation count and

increased operation rate due to vectorization. Thus arises the need for a good row ordering

to keep the size of the frontal matrix small. The natural unit-block structure of process

simulation matrices can provide a reasonable ordering for this purpose. This structure will

occur provided that the application code generating the matrix groups together the equations

from each unit model, and that some e�ort is made to number adjacent units consecutively.

Nevertheless, this natural ordering can clearly be improved in many cases. We consider here

the extent to which it can be improved through the use of some simple heuristic techniques.

7

3 Reordering Methods

Due to its origin and continued wide use as a band or pro�le solver for �nite element

problems, most reordering methods that have been applied in connection with the frontal

method are bandwidth or pro�le reduction techniques (e.g., Cuthill and McKee, 1969; Gibbs

et al., 1976; Everstine, 1979; Sloan, 1986; Du� et al., 1989). Such techniques are designed for

structurally symmetric matrices; however, if the structure of A is only slightly asymmetric,

useful results may be obtained by applying the reordering technique to the structure of

A + AT . For highly asymmetric matrices, such as occur in process simulation, using the

structure of A + AT cannot be expected to yield good results, as the number of additional

nonzeros in A + AT , indicating dependencies that are in fact nonexistent in the actual

problem, will be very large, nearly as large as the number of nonzeros indicating actual

dependencies in many cases.

For highly asymmetric problems, one approach that has been used (Zitney and Stadtherr,

1993) is to use techniques that aim to produce a nearly triangular form, with relatively few

nonzero columns (spikes) protruding from the triangular part. Such techniques include the

well-known P4 algorithm (Hellerman and Rarick, 1972) and the techniques of Stadtherr and

Wood (1984). These methods are designed to produce a nearly lower triangular form, while

for the frontal method a nearly upper triangular form is desired. This can be obtained by

simply reversing the row order (the column order is immaterial since it is determined from

the row order, as discussed above). In using an ordering such as reverse-P4 (r-P4) only the

spike columns will remain in the frontal matrix for more than one elimination step, and the

8

closer the nonzeros in the spike columns are to the diagonal the shorter their stay in the

frontal matrix will be. In our experience, which is re
ected in the results below, this sort

of approach can produce a very good row ordering for the frontal method in some cases,

but very a bad ordering in other cases. This is not surprising inasmuch as these reordering

techniques were not developed with the frontal method in mind, but for �ll reduction, and

thus do not directly address the issue of frontal matrix size.

We now proceed to develop a graph theoretical framework that will allow us to directly

address the issue of frontal matrix size in obtaining a row ordering. A bipartite graph

representation of the matrix is used since this form allows an unsymmetric matrix without

a full transversal to be represented. The bipartite graph G = (R; C; E) consists of a row

vertex set R, a column vertex set C, and an edge set E = f(ri; cj) j ri 2 R; cj 2 C; aij 6= 0g

corresponding to the non-zero elements in the matrix. A net is de�ned as a column vertex

and its adjacent row vertices and the set of all nets is N . The net nc 2 N corresponding

to column c 2 C is then nc = Net(c) = fc [Adj(c)g, where Adj(c) = fr 2 R j (r; c) 2 Eg.

Thus, for example in the graph of Figure 1(b), corresponding to the matrix of Figure 1(a),

n1 = Net(c1) = fc1; r1; r6g, n2 = Net(c2) = fc2; r2; r5g, etc. In these terms, one can construct

a (symmetric) net-column occurrence matrix and a corresponding net-column graph GN =

(N ; EN) in which edges and corresponding occurrence matrix entries represent the columns

adjacent to each net in the row-column graph. That is, EN = f(ni; nj); i 6= j jni 2 N ; nj 2

N ; ci 2 Adj(nj)g, where Adj(nj) = fc 2 C j (r; c) 2 E for any r 2 njg. This is shown

in Figure 2, which corresponds to the matrix and bipartite graph in Figure 1. Here, for

9

instance, since columns c3, c4, c5 and c6 are adjacent to net n1, there are edges (3,1), (4,1),

(5,1) and (6,1) in GN and corresponding edges in the net-column occurrence matrix.

As discussed above, by specifying an initial row assembly ordering, one indirectly �xes

the column elimination order. Conversely, if one speci�es an initial column elimination order,

that can be viewed as indirectly �xing the row assembly ordering, at least if one stipulates

that only those additional rows necessary for the elimination of the next column in the

column elimination order are in fact assembled into the frontal matrix. Since these are the

rows belonging to the net associated with that column, we can thus view the row ordering

problem indirectly as a net ordering problem. Thus, for instance in Figure 1(a), if column c1

is eliminated �rst, rows r1 and r6 are the only rows that need be in the frontal matrix and

so those rows (members of net n1) are ordered �rst. Similarly, if c2 is eliminated �rst then

rows r2 and r5 (members of net n2) would be ordered �rst. To then choose the net order,

we consider the size of the frontal matrix needed to eliminate the corresponding column. If

net n1 is ordered �rst, then c1 will be eliminated �rst and the �rst frontal matrix will be

2� 5 (rows r1 and r6; columns c1, c3, c4, c5 and c6), but if net n2 is ordered �rst, then c2 is

eliminated �rst and the �rst frontal matrix will be 2� 3 (rows r2 and r5; columns c2, c3 and

c5). Thus, at least in a local sense, ordering n2 �rst is preferable. Note that for a chosen

initial net nj the rows in the frontal matrix constitute the set RF;j = fr 2 R j r 2 njg and

the columns in the frontal matrix constitute the set CF;j = fc 2 C j c 2 cj [Adj(nj)g. So, in

this scheme, for an initial net nj, the row dimension of the initial frontal matrix corresponds

to dG(cj), the degree (number of adjacent vertices) of cj in G (i.e., the number of nonzeros

10

in column cj), and the column dimension corresponds to one plus dGN (nj), the degree of nj

in GN (dGN (nj) corresponds to the number of entries in row nj of the net-column occurrence

matrix). After the �rst elimination is performed, the �rst net can be removed from G and

GN and the column and net degrees updated, after which dG(cj) will represent the increase

in the row dimension and dGN (nj) the potential increase in the column dimension (since

some columns in CF;k may already be in the frontal matrix and this is not re
ected in the

net degree) as each subsequent net nk is ordered and corresponding column eliminated. By

using information about the column and net degree to choose the net ordering, and thus the

order in which the variables are eliminated, it is hoped that the size of the frontal matrix

can be kept small throughout the elimination process.

3.1 RMCD ordering

To implement a net ordering scheme within this framework, an appropriate merit function

based on column and net degrees must be chosen. The simplest choice would be to just use

the column degree; thus the next net nj in the ordering would be chosen so that dG(cj) =

mink dG(ck). This would locally minimize the growth in the row dimension of the frontal

matrix. Thus arises the ubiquitous minimum degree ordering (e.g., Tinney and Walker,

1967; Rose, 1973; Du� and Reid, 1974; George and Liu, 1989; Davis et al., 1996), which is

widely used as a �ll reducing ordering, especially for symmetric problems. This does not

address at all growth in the column dimension of the frontal matrix. One simple way of

doing this, to at least a small extent, within the context of minimum column degree is to

11

restrict the choice of the next net nj to those whose column vertices are already in the frontal

matrix (i.e., any column vertex whose degree has been updated). In this way there must

be at least some overlap between the columns already in the frontal matrix and the set of

columns CF;j brought into the frontal matrix by net nj. We refer to this as the restricted

minimum column degree ordering (RMCD).

For example, consider the matrix in Figure 1(a). Here the initial column degrees are:

dG(c1) = 2, dG(c2) = 2, dG(c3) = 4, dG(c4) = 3, dG(c5) = 3 and dG(c6) = 3. The �rst net

chosen is n1 since dG(c1) = mink dG(ck) = 2 (tiebreakers are discussed below; here we choose

the net with lowest index). Thus we order rows RF;1 = fr 2 R j r 2 n1g = fr1; r6g �rst,

and these rows together with columns CF;1 = fc 2 C j c 2 c1 [Adj(n1)g = fc1; c3; c4; c5; c6g

form the �rst frontal matrix, which is 2 � 5. The net and rows ordered are now removed

from GN and G, respectively, and the column degrees in G updated, resulting in: dG(c2) = 2,

dG(c3) = 3, dG(c4) = 2, dG(c5) = 2 and dG(c6) = 2. The next net chosen is n4 since c4 is

the �rst updated column with minimum degree (n2 is not chosen since dG(c2) has not yet

been updated). Thus, rows RF;4 = fr 2 R j r 2 n4g = fr3; r4g are ordered next. Potential

new columns in the frontal matrix are CF;4 = fc 2 C j c 2 c4 [Adj(n4)g = fc3; c4; c5; c6g.

However, all of these are already in the frontal matrix so there is no growth in its column

dimension, resulting in a frontal matrix that is 3�5. This procedure continues until all rows

are ordered, resulting in the reordered matrix shown in Figure 3.

In implementing this, the matrix is �rst forward and backward triangularized (e.g.,

Stadtherr and Wood, 1984) as much as possible by removing and ordering any 1 � 1 ir-

12

reducible blocks that can be placed at the beginning or end of the new ordering. These

rows do not need to be processed in the frontal matrix and thus need not be considered in

applying RMCD or the other orderings discussed below. For the implementations described

here, a full partitioning into block upper triangular form is not attempted.

3.2 MNA ordering

The RMCD ordering does not directly address the growth of the frontal matrix in the col-

umn dimension. To do this the net degree dGN (nj) should be also included in the merit func-

tion since dGN (nj)+1 re
ects the potential growth of the column dimension of the frontal ma-

trix. One simple merit function that could be used is the product �(nj) = dG(cj)[dGN (nj)+1],

which we refer to as the net \area". The minimum net area (MNA) ordering chooses the

next net nj so that �(nj) = mink �(nk). As a tiebreaker, the net whose degree was last

updated is chosen, for reasons discussed above.

For example, consider again the matrix in Figure 1(a). The initial column degrees are

as given above and the initial net degrees are: dGN (n1) = 4, dGN (n2) = 2, dGN (n3) = 5,

dGN (n4) = 4, dGN (n5) = 4 and dGN (n6) = 3. Thus the initial net areas are: �(n1) = (2)(5) =

10, �(n2) = (2)(3) = 6, �(n3) = (4)(6) = 24, �(n4) = (3)(5) = 15, �(n5) = (3)(5) = 15

and �(n6) = (3)(4) = 12. The net with the minimum area is net n2 so it is chosen �rst.

Thus we order rows RF;2 = fr 2 R j r 2 n2g = fr2; r5g �rst, and these rows together

with columns CF;2 = fc 2 C j c 2 c2 [Adj(n2)g = fc2; c3; c5g form the �rst frontal matrix,

which is 2 � 3. The net and rows ordered are now removed from GN and G, respectively,

13

and the column and net degrees updated, resulting in: dG(c1) = 2, dG(c3) = 2, dG(c4) =

3, dG(c5) = 1 and dG(c6) = 3 for the column degrees, and dGN (n1) = 4, dGN (n3) = 4,

dGN (n4) = 4, dGN (n5) = 3 and dGN (n6) = 3 for the net degrees. So the new net areas are

�(n1) = (2)(5) = 10, �(n3) = (2)(5) = 10, �(n4) = (3)(5) = 15, �(n5) = (1)(4) = 4 and

�(n6) = (3)(4) = 12. Net n5 has the minimum net area so it is chosen next. Thus, rows

RF;5 = fr 2 R j r 2 n5g = fr1g are ordered next. Potential new columns in the frontal

matrix are CF;5 = fc 2 C j c 2 c5 [Adj(n5)g = fc1; c3; c4; c5g, of which only c1 and c4 are

actually new. The frontal matrix size is now 2� 4. This procedure continues until all rows

are ordered, resulting in the reordered matrix shown in Figure 4. As in the case of RMCD,

backward and forward triangularization is done on the matrix before application of the MNA

ordering.

4 Results and Discussion

A large number of test problems were used in this study to test the usefulness of di�erent

reordering strategies. Table 1 gives information about each test matrix, including the order,

the number of nonzeros, the symmetry ratio, and the matrix source. The symmetry ratio

s is the number of matched o�-diagonal nonzeros (i.e., nonzeros aij; i 6= j, for which aji is

also nonzero) divided by the total number of o�-diagonal non-zeroes. Thus s = 1 indicates

a completely symmetric pattern, while s = 0 shows complete asymmetry. Except for the

last six problems listed, all the matrices arise from applications in process simulation, using

SEQUEL (Zitney and Stadtherr, 1988), SPEEDUP (Aspen Technology, Inc.) and ASPEN

14

PLUS (Aspen Technology, Inc.), as well as three distillation problems (west*) from the

Harwell/Boeing collection. The last six matrices are also from the Harwell/Boeing collection,

and represent a variety of applications outside of process simulation.

Each of the test matrices was reordered using r-P4, RMCD, and MNA. The reordered

matrices were then solved using the frontal solver FAMP on one processor of a CRAY C90.

Table 1 shows the time in seconds required to solve each linear system when the original,

natural row order is used. Then for each reordering, the ratio (�100) of the time required to

solve the reordered problem to the time required with the natural ordering is given. Thus, for

instance, the �gure of 72.1% in the RMCD column for problem ngc indicates a solution time

of (0.721)(0.0540) = 0.0389 s when the RMCD ordering was used. The best performance on

each problem is highlighted by putting it in bold face. A summary of the results is given

schematically in Figure 5. This indicates, for each ordering, the average normalized solution

time, which is computed as follows. For each problem and method the solution time is

normalized by dividing by the solution time of the best method on that problem. This is

then averaged over all problems to determine the average normalized solution time for each

method. Thus, a �gure of one for a method would indicate that the method was the best

method on all problems. The last six problems in Table 1 (i.e., those that are not process

simulation problems) were not included in the average.

Clearly the most attractive ordering overall was that provided by RMCD. On a large

majority of the problems, it provided a signi�cant, though usually not dramatic, improve-

ment in solution time, and on those problems where it did not provide any improvement,

15

it did not result in a substantial increase in solution time. The r-P4 ordering performed

very well in many cases and very poorly in others, re
ecting our previous experience with

this technique in this context. The performance of MNA was disappointing; it provided

competitive reorderings in many cases but performed poorly in many cases as well. The

di�culty appears to be that the net degree dGN (nj) often provides a poor measure of the

actual growth in the column dimension of the frontal matrix caused by selecting net nj,

because of signi�cant overlap between the columns of CF;j and those columns already in the

frontal matrix. An important observation is that, as suggested above, for process simulation

problems the natural ordering arising from the unit-block structure of the problem is in fact

quite a good ordering.

4.1 Tiebreakers

In implementing the RMCD ordering there is frequently a need to break ties between

two or more nets whose column vertices all have the same degree in G. In the version of

RMCD discussed above this was done by simply choosing the net with the lowest index.

We have investigated various tiebreaking schemes with the usual result being that these

variants have little e�ect on the overall e�ectiveness of the reordering methods. In some

cases, however, it can make a substantial and unpredictable di�erence. For example, in the

version RMCD1, ties are broken by taking the net whose column degree was most recently

updated. In the large majority of the problems there is little di�erence in the performance

of RMCD1 and RMCD. However, when applied to the lns3937 problem, the solution time

16

using the RMCD1 ordering was 2.95 s, compared to 0.23 s when the RMCD ordering was

used. In other cases, the situation is reversed and the RMCD1 ordering performs signi�cantly

better than RMCD. Similar results, namely little e�ect on most problems, but signi�cant

and unpredictable e�ects on others, were also observed when other tiebreakers were used,

including the use of net degree, and the use of a one-step look ahead. This situation suggests

that putting signi�cant e�ort into tiebreaking strategies is not particularly useful. This

is not surprising inasmuch as the reordering heuristics used here are strictly local and do

not directly seek the best global ordering, but try to build a good ordering incrementally

through a series of local decisions. A locally good decision made early in the reordering

process may ultimately force a choice among poor alternatives later, thus leading to a poor

global ordering.

4.2 Reordering Time

It is easy to spend a substantial amount of computation time in addressing the reordering

problem described here, since globally it is a combinatorial optimization problem. Even

applying simple heuristics such as RMCD is not inexpensive. The computationally intensive

part of the RMCD strategy is the updating of the column degrees, just as in the minimum

degree algorithms used in the context of �ll reduction. In the �ll reduction context, there

has been considerable e�ort (e.g., Du� and Reid, 1983; Eisenstat et al., 1981; George and

Liu, 1980a,b; Liu, 1985) spent on reducing the work required to keep track of the degrees,

and recently work (e.g., Gilbert et al., 1992; Davis and Du�, 1997; Davis et al., 1996) has

17

concentrated on using approximations of (generally upper bounds on) the degrees, in order

to further reduce computational requirements. Our implementations do not employ these

useful approximations and should not be considered as the best that could be achieved with

respect to reordering time.

The reordering time needs to be assessed relative to the improvement in solution time

it provides. Thus, we consider here the ratio of reordering time to improvement in solution

time. Frequently in process simulation, as discussed further below, matrices with the same

structure must be solved repeatedly. Thus, generally reordering time can be amortized over

a number of solves (refactorizations). From this standpoint the ratio of reordering time

to improvement in solution time can be interpreted as the number of solves over which

the reordering must be amortized in order to break even. Thus we refer to this ratio as

the breakeven number NBE; if the number of solves needed is more than NBE, then the

reordering has been worthwhile in terms of total computing time; if less than NBE, then

computing time could have been saved by not doing a reordering and using the natural

order. For RMCD, on those cases in which a signi�cant savings (say 25%) in solution time

was obtained, the NBE values are typically around two. For example, NBE = 2:3 for problem

ngc and 2.1 for lhr . As savings in solution time becomes less signi�cant, the value of NBE

quickly increases, for example to 23.2 for mult2 and 32.3 for mpex2 , until �nally when there

is no improvement in solution time, this measure becomes meaningless.

18

5 Concluding Remarks

The results presented above demonstrate that the simple RMCD heuristic for row order-

ing can often provide a signi�cant reduction in the time needed to solve process simulation

matrices using the frontal method, and can do so relatively inexpensively. The cost of a

good ordering must be weighed against the number of times the given simulation or opti-

mization problem is going to be solved. Typically, if the e�ort is made to develop a large

scale simulation or optimization model, then it is likely to be used a very large number of

times, especially if it is used in an on-line, operations environment, as is today becoming

increasingly common. Even if the need for matrix refactorizations can be made relatively

infrequent, as in some dynamic simulations, the number of refactorizations done over the

lifetime of a process model will still be very large. Thus, especially for on-line applications,

the investment made to �nd a good ordering might have substantial long term paybacks,

which might in fact justify the use of more expensive reorderings that address the issue from

a global, rather than local, standpoint.

Acknowledgments { This work has been supported by the National Science Foundation

under Grants DMI-9322682 and DMI-9696110. We also acknowledge the support of the

National Center for Supercomputing Applications at the University of Illinois, Cray Research,

Inc. and Aspen Technology, Inc.

19

References

Cofer, H. N. and M. A. Stadtherr, Reliability of iterative linear solvers in chemical process

simulation. Comput. Chem. Engng, 20, 1123{1132 (1996).

Cuthill, E. and J. McKee, Reducing the bandwidth of sparse symmetric matrices. In Proc.

ACM National Conference, pages 157{172. Association for Computing Machinery, New

York (1969).

Davis, T. A., P. Amestoy, and I. S. Du�, An approximate minimum degree ordering algo-

rithm. SIAM J. Matrix Anal. Appl., 17, 886{905 (1996).

Davis, T. A. and I. S. Du�, An unsymmetric-pattern multifrontal method for sparse LU

factorization. SIAM J. Matrix Anal. Appl., 18, 140{158 (1997).

Du�, I. S. and J. K. Reid, A comparison of sparsity orderings for obtaining a pivotal sequence

in Gaussian elimination. Int. Inst. Math. Applic., 14, 281{291 (1974).

Du�, I. S. and J. K. Reid, The multifrontal solution of inde�nite sparse symmetric linear

equations. ACM Trans. Math. Softw., 9, 302{325 (1983).

Du�, I. S., J. K. Reid, and J. A. Scott, The use of pro�le reduction algorithms with a frontal

code. Int. J. Num. Meth. Eng., 28, 2555{2568 (1989).

Eisenstat, S. C., M. H. Schultz, and A. H. Sherman, Algorithms and data structures for

sparse symmetric Gaussian elimination. SIAM J. Sci. Stat. Comput., 2, 225{237 (1981).

20

Everstine, G. C., A comparison of three resquencing algorithms for the reduction of matrix

pro�le and wavefront. Int. J. Num. Meth. Eng., 14, 837{853 (1979).

George, A. and J. W. H. Liu, A fast implementation of the minimum degree algorithm using

quotient graphs. ACM Trans. Math. Softw., 6, 337{358 (1980a).

George, A. and J. W. H. Liu, A minimal storage implementation of the minimum degree

algorithm. SIAM J. Numer. Anal., 17, 282{299 (1980b).

George, A. and J. W. H. Liu, The evolution of the minimum degree ordering algorithm.

SIAM Review, 31, 1{19 (1989).

Gibbs, N. E., W. G. Poole, and P. K. Stockmeyer, An algorithm for reducing the bandwidth

and pro�le of a sparse matrix. SIAM J. Numer. Anal., 13, 236{250 (1976).

Gilbert, J. R., C. Moler, and R. Schreiber, Sparse matrices in MATLAB: Design and imple-

mentation. SIAM J. Matrix Anal. Appl., 13, 333{356 (1992).

Hellerman, E. and D. Rarick, The partitioned preassigned pivot procedure (P4). In Rose,

D. J. and R. A. Willoughby, editors, Sparse Matrices and Their Applications. Plenum

Press, New York (1972).

Hood, P., Frontal solution program for unsymmetric matrices. Int. J. Numer. Meth. Engng,

10, 379 (1976).

Irons, B. M., A frontal solution program for �nite element analysis. Int. J. Numer. Meth.

Engng, 2, 5 (1970).

21

Liu, J. W. H., Modi�cation of the minimum degree algorithm by multiple elimination. ACM

Trans. Math. Softw., 11, 141{153 (1985).

Mallya, J. U., S. E. Zitney, S. Choudhary, and M. A. Stadtherr, A parallel frontal solver for

large scale process simulation and optimization. AIChE J., 43, 1032{1040 (1997).

Rose, D. J., A graph-theoretic study of the numerical solution of sparse positive de�nite

systems of linear equations. In Read, R. C., editor, Graph Theory and Computing, pages

183{217. Academic Press, New York (1973).

Sloan, S. W., An algorithm for pro�le and wavefront reduction of sparse matrices. Int. J.

Num. Meth. Eng., 23, 239{251 (1986).

Stadtherr, M. A. and J. A. Vegeais, Process
owsheeting on supercomputers. IChemE Symp.

Ser., 92, 67{77 (1985).

Stadtherr, M. A. and E. S. Wood, Sparse matrix methods for equation-based chemical process

owsheeting: I. Reordering phase. Comput. Chem. Engng, 8, 19{23 (1984).

Tinney, W. F. and J. W. Walker, Direct solutions of sparse network equations by optimally

ordered triangular factorization. Proc. of the IEEE, 55, 1801{1809 (1967).

Vegeais, J. A. and M. A. Stadtherr, Vector processing strategies for chemical process
ow-

sheeting. AIChE J., 36, 1687{1696 (1990).

22

Zitney, S. E., Sparse matrix methods for chemical process separation calculations on super-

computers. In Proc. Supercomputing '92, pages 414{423. IEEE Press, Los Alamitos, CA

(1992).

Zitney, S. E., L. Br�ull, L. Lang, and R. Zeller, Plantwide dynamic simulation on super-

computers: Modeling a Bayer distillation process. AIChE Symp. Ser., 91(304), 313{316

(1995).

Zitney, S. E. and M. A. Stadtherr, Computational experiments in equation-based chemical

process
owsheeting. Comput. Chem. Engng, 12, 1171{1186 (1988).

Zitney, S. E. and M. A. Stadtherr, Frontal algorithms for equation-based chemical process

owsheeting on vector and parallel computers. Comput. Chem. Engng, 17, 319{338 (1993).

23

Figure Captions

Figure 1. (a) An occurrence matrix used as an example in the text and (b) the corresponding

bipartite graph G.

Figure 2. Net-column occurrence matrix and graph GN corresponding to the occurrence

matrix in Figure 1(a).

Figure 3. Result of applying the RMCD ordering strategy to the occurrence matrix in Figure

1(a), with columns shown in elimination order.

Figure 4. Result of applying the MNA ordering strategy to the occurrence matrix in Figure

1(a), with columns shown in elimination order.

Figure 5. Relative performance of the row orderings based on all test matrices in Table 1

except the last six (which are not process simulation problems). Solution times have been

normalized with repect to the best method on a given problem; thus an average normalized

solution time of one would represent the best attainable value. See text for further discussion.

24

Table 1: Matrix statistics and comparison of solution times for di�erent row orderings. See
text for de�nition of symmetry ratio and further discussion.

Symmetry Natural r-P4 RMCD MNA

Name Order Nonzeros Ratio Source (s) % % %

ngc 1235 16868 .0336 SEQUEL 0.0540 245 72.1 72.0

lhr 1477 18592 .00732 SEQUEL 0.718 71.1 68.1 74.1

mult1 612 4459 .0103 SEQUEL 0.0233 61.0 75.5 72.6

mult2 714 5001 .0196 SEQUEL 0.0228 71.9 95.9 94.9

mult3 526 5363 .0329 SEQUEL 0.282 53.1 56.9 60.3

cyclo1 517 2420 .0158 SEQUEL 0.0123 77.3 80.0 83.5

beef 1197 12070 .00680 SEQUEL 0.0350 90.2 102 118

lhr2 2594 37206 .00732 SEQUEL 0.156 85.9 75.6 96.1

lhr4 4101 82682 .0152 SEQUEL 0.323 61.0 60.6 74.9

lhr7 7338 156508 .0174 SEQUEL 0.542 244 72.6 95.3

lhr10 10672 232633 .00879 SEQUEL 0.800 201 91.5 106

lhr11 10964 233741 .00820 SEQUEL 0.973 545 80.0 {

lhr14 14270 307858 .00662 SEQUEL 1.21 539 90.2 {

lhr17 17576 381975 .00151 SEQUEL 1.52 452 100.0 {

segm3 m1 1045 4963 .00524 SPEEDUP 0.0237 70.3 52.5 55.7

segm3 m2 1045 5131 .00546 SPEEDUP 0.270 72.4 84.7 176

extr1b m1 2836 11404 .00386 SPEEDUP 0.0667 88.7 109 648

extr1b m2 2836 11579 .00380 SPEEDUP 0.0687 92.8 118 160

extr1b m3 2836 9227 .00780 SPEEDUP 0.593 81.8 65.3 113

hydr1c m1 5308 23752 .00413 SPEEDUP 0.166 74.4 98.2 2450

hydr1c m2 5308 23956 .00409 SPEEDUP 0.171 73.9 119 2450

hydr1c m3 5308 19892 .00332 SPEEDUP 0.146 69.5 62.9 153

25

Table 1 (continued)

Symmetry Natural r-P4 RMCD MNA

Name Order Nonzeros Ratio Source (s) % % %

west0989 989 3537 .0181 H/B 0.0215 114 78.7 94.8

west1505 1505 5445 .00110 H/B 0.0365 133 75.7 96.5

west2021 2021 7353 .00327 H/B 0.0546 155 68.2 101

traycalc 1145 20296 .117 ASPEN PLUS 0.0507 658 78.6 77.0

userupp 1269 22508 .106 ASPEN PLUS 0.0566 875 78.4 78.4

v3 1078 16937 .0918 ASPEN PLUS 0.0466 716 84.3 83.0

v10 1148 15729 .0602 ASPEN PLUS 0.0478 567 74.3 75.2

v13 834 9713 .0541 ASPEN PLUS 0.0275 345 86.0 88.0

mpex2 848 11413 .0402 ASPEN PLUS 0.0265 92.9 95.1 95.6

mpex3 2473 46503 .0617 ASPEN PLUS 0.141 489 69.4 70.8

mpex4 2478 44075 .0537 ASPEN PLUS 0.123 2830 78.9 80.1

mpmult1 2023 31894 .0486 ASPEN PLUS 0.102 642 69.7 71.1

sumb 523 4998 .0513 ASPEN PLUS 0.0144 168 91.1 92.8

uosb 523 4998 .0513 ASPEN PLUS 0.0146 163 89.8 89.5

bp 1000 822 4661 .00944 H/B 0.0239 54.2 67.8 68.4

gre1107 1107 5664 0 H/B 0.0868 78.5 101.2 56.1

mahindas 1258 7862 .0166 H/B 0.0559 42.9 38.1 41.4

lns3937 3937 25407 .850 H/B 2.92 87.7 7.92 43.1

sherman5 3312 20793 .739 H/B 0.958 111 13.8 15.7

gemat11 4929 33185 .00133 H/B 0.333 95.5 67.9 153

26

1

2

3

4

5

6

1

2

3

4

5

6

R C

6

1 2 3 4 5

1

2

3

4

5

6

6

(a) (b)

Figure 1: (a) An occurrence matrix used as an example in the text and (b) the corresponding bipartite graph G.

27

1 2 3 4 5

1

2

3

4

5

6

6

N
et

Column

1 2

3 4

5 6

(a) (b)

Figure 2: Net-column occurrence matrix and graph GN corresponding to the occurrence matrix in Figure 1(a).

28

1 4 6 3 2

1

6

3

4

2

5

5

Figure 3: Result of applying the RMCD ordering strategy to the occurrence matrix in Figure
1(a), with columns shown in elimination order.

29

2 5 1 3 4

2

5

1

6

4

3

6

Figure 4: Result of applying the MNA ordering strategy to the occurrence matrix in Figure
1(a), with columns shown in elimination order.

30

Relative Performance of Row Orderings

Natural r-P4 RMCD MNA
0

1

2

3

4

5

Row Ordering

A
ve

ra
ge

 N
or

m
al

iz
ed

 S
ol

ut
io

n
T

im
e

Figure 5: Relative performance of the row orderings based on all test matrices in Table 1
except the last six (which are not process simulation problems). Solution times have been
normalized with repect to the best method on a given problem; thus an average normalized
solution time of one would represent the best attainable value. See text for further discussion.

31

