
A Parallel Block Frontal Solver For Large Scale
Process Simulation: Reordering Effects

J. U. Mallya1, S. E. Zitney1y, S. Choudhary1, and M. A. Stadtherr2z

(1) Cray Research, Inc., 655-E Lone Oak Drive, Eagan, MN 55121, USA.
(2) Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract - For the simulation and optimization of large-scale chemical processes, the overall computing time is of-
ten dominated by the time needed to solve a large sparse system of linear equations. We describe here a parallel
frontal solver which can significantly reduce the wallclock time required to solve these linear equation systems us-
ing parallel/vector supercomputers. The algorithm exploits both multiprocessing and vector processing by using a
multifrontal-type approach in which frontal elimination is used for the partial factorization of each front. The algo-
rithm is based on a bordered block-diagonal matrix form and thus its performance depends on the extent to which this
form can be obtained. Results on several large scale process simulation and optimization problems are presented, with
emphasis on the effect of different matrix reorderings to achieve bordered block-diagonal form.

INTRODUCTION

The solution of realistic, industrial-scale process model-
ing problems for dynamic simulation and optimization
is computationally very intense, and may require the use
of high performance computing (HPC) technology to be
done in a timely manner, especially if real-time perfor-
mance is required. For example, Zitneyet al. (1995) de-
scribed a dynamic simulation problem at Bayer AG re-
quiring 18 hours of CPU time on a CRAY C90 super-
computer when solved with the standard implementation
of SPEEDUP (Aspen Technology, Inc.). To better use
HPC technology in process simulation requires the use
of techniques that effectively take advantage of parallel
and/or vector processing. For example, by using a linear
equation solving algorithm that exploits vector processing
and by addressing other implementation issues, Zitneyet
al. (1995) reduced the time needed to solve the Bayer
problem from 18 hours to 21 minutes. In this problem,
as in most other industrial-scale problems, the solution
of large, sparse systems of linear equations is the single
most computationally intensive step, requiring over 80%
of the total simulation time in some cases. Thus, any re-
duction in the linear system solution time will result in a
significant reduction in the total simulation time. We de-
scribe here a parallel block frontal solver which can sig-
nificantly reduce the wallclock time required to solve the
linear equation systems arising in large scale process sim-
ulation problems, and concentrate on the matrix reorder-
ing issues that arise.

Recently, an implementation (FAMP) of the frontal
method, developed at Cray Research, Inc. and the Uni-
versity of Illinois specifically for use in the context of pro-
cess simulation, has been described (Zitney and Stadtherr,

yCurrent address: AspenTech UK Ltd., Castle Park,
Cambridge CB3 0AX, England

zAuthor to whom all correspondence should be
addressed

1993; Zitneyet al., 1995). This solver has been incorpo-
rated in CRAY implementations of popular commercial
codes, such as ASPEN PLUS, SPEEDUP (Aspen Tech-
nology, Inc.), and NOVA (Dynamic Optimization Tech-
nology Products, Inc.). FAMP is effective on vector ma-
chines since most of the computations involved can be
performed using efficiently vectorized dense matrix ker-
nels. However, this solver does not well exploit the multi-
processing architecture of parallel/vector supercomputers.
The new parallel block frontal solver exploits both multi-
processingand vector processing in the solution of pro-
cess simulation problems by using a multilevel approach
incorporating as many as three levels of task granularity.

FINE-GRAINED PARALLELISM

Consider the solution of a linear equation systemAx = b,
whereA is a large sparsen�nmatrix andx andb are col-
umn vectors of lengthn. While iterative methods can be
used to solve such systems, the reliability of such methods
is questionable in the context of process simulation (Cofer
and Stadtherr, 1996). Thus we concentrate here on direct
methods. Generally such methods can be interpreted as an
LU factorization scheme in whichA is factoredA = LU ,
whereL is a lower triangular matrix andU is an upper
triangular matrix. Thus,Ax = (LU)x = L(Ux) = b, and
the system can be solved by a simple forward substitution
to solveLy = b for y, followed by a back substitution to
find the solution vectorx fromUx = y.

On the fine-grained parallelism level we use frontal
elimination. This is an LU factorization technique widely
used today for finite element problems on vector super-
computers because, since the frontal matrix can be treated
as dense, most of the computations involved can be per-
formed by using very efficient vectorized dense matrix
kernels. Essentially this takes advantage of a fine-grained,
machine-level parallelism, in this case (CRAY C90) the
overlapping, assembly-line style parallelism of a highly
pipelined vector processor. Stadtherr and Vegeais (1985)



suggested the use of frontal elimination for process sim-
ulation problems on supercomputers, and later (Vegeais
and Stadtherr, 1990) demonstrated its potential. As noted
above, an implementation (FAMP) of the frontal method
developed specifically for use in the process simulation
context has been described by Zitney and Stadtherr (1993)
and Zitneyet al. (1995), and is now incorporated in su-
percomputer versions of popular process simulation and
optimization codes.

SMALL-GRAINED PARALLELISM

In frontal elimination, the most expensive stage computa-
tionally involves outer-product updates of the frontal ma-
trix. When executed on a single vector processor, FAMP
performs efficiently because the outer-product update is
readily vectorized, which as noted above is essentially
a fine-grained, machine-level parallelism. An additional
level of parallelism might be exploited bymicrotasking
the innermost loops that perform the outer-product up-
date. Microtasking refers to the multiprocessing of tasks
with small granularity. Typically, these independent tasks
can be identified quickly and exploited using compiler di-
rectives without significant code changes. Our experience
(Mallya, 1996) has shown that the potential for exploit-
ing small-grained parallelism by microtasking the outer-
product updates in FAMP is limited. The reason is that the
parallel tasks are simply not large enough to overcome the
synchronization cost and the overhead associated with in-
voking multiple processors on the C90. This indicates the
need for exploiting a higher, coarse-grained level of par-
allelism to make multiprocessing worthwhile for the so-
lution of sparse linear systems in process simulation and
optimization.

COARSE-GRAINED PARALLELISM

The main deficiency with the frontal code FAMP is that
there is little opportunity for parallelism beyond that
which can be achieved by microtasking the inner loops
or by using higher level BLAS in performing the outer
product update (Mallya, 1996). We overcome this prob-
lem by using a coarse-grained parallel approach in which
frontal elimination is performed simultaneously in mul-
tiple independent or loosely connected blocks. This can
be interpreted as applying frontal elimination to the di-
agonal blocks in a bordered block-diagonal matrix form
as described below. It can also be interpreted as a coarse-
grained multifrontal approach (e.g., Davis and Duff, 1996;
Zitney et al., 1996) with large independent pivot blocks
factored by frontal elimination. Duff and Scott (1994)
have applied this type of approach in solving finite ele-
ment problems and referred to it as a “multiple fronts” (as
opposed to multifrontal) approach.

Consider a matrix in singly-bordered block-diagonal
form:

A =

2
6666666664

A11

A22

...

ANN

S1 S2 : : : SN

3
7777777775

(1)

where the diagonal blocksAii aremi � ni and in gen-
eral are rectangular withni � mi. Because of the unit-
stream nature of the problem, process simulation matrices
may occur naturally in this form, as described in detail
by Westerberg and Berna (1978). Each diagonal block
Aii comprises the model equations for a particular unit,
and equations describing the connections between units,
together with design specifications, constitute the border
(theSi). Of course, not all process simulation codes may
use this type of problem formulation, or order the ma-
trix directly into this form. Thus some matrix reordering
scheme may need to be applied, as discussed further be-
low.

The basic idea in the parallel frontal algorithm
(PFAMP) is to use frontal elimination to partially factor
each of theAii, with each such task assigned to a sepa-
rate processor. Since theAii are rectangular in general, it
usually will not be possible to eliminate all the variables
in the block, nor perhaps, for numerical reasons, all the
equations in the block. The equations and variables that
remain, together with the border equations, form a “re-
duced” or “interface” matrix that must then be factored.

PFAMP Algorithm
The basic PFAMP algorithm is outlined below, fol-

lowed by a more detailed explanation of the key steps.

Algorithm PFAMP:

Begin parallel computation on P processors

For i = 1 : N , with each taski assigned to the next
available processor:

1. Do symbolic analysis on the diagonal blockAii and
the corresponding portion of the border(Si) to ob-
tain memory requirements and last occurrence in-
formation (for determining when a column is fully
summed) in preparation for frontal elimination.

2. Assemble the nonzero rows ofSi into the frontal
matrix.

3. Perform frontal elimination onAii, beginning with
the assembly of the first row ofAii into the frontal
matrix. The maximum number of variables that can
be eliminated ismi, but the actual number of piv-
ots done ispi � mi. The pivoting scheme used is
described in detail below.

4. Store the computed columns ofL and rows ofU .
Store the rows and columns remaining in the frontal
matrix for assembly into the interface matrix.

End parallel computation

5. Assemble the interface matrix from the contribu-
tions of Step 4 and factor.

Note that for each block the result of Step 3 is

Ci C 0

i

Ri

R0

i

2
4 LiUi U 0

i

L0

i Fi

3
5

whereRi andCi are index sets comprising thepi pivot
rows andpi pivot columns, respectively.Ri is a subset of
the row index set ofAii. R0

i contains row indices from
Si (the nonzero rows) as well as from any rows ofAii



that could not be eliminated for numerical reasons. As
they are computed during Step 3, the computed columns
of L and rows ofU are saved in arrays local to each pro-
cessor. Once the partial factorization ofAii is complete,
the computed block-column ofL and block-row ofU are
written into global arrays in Step 4 before that processor
is made available to start the factorization of another di-
agonal block. The remaining frontal matrixFi is a contri-
bution block that is stored in central memory for eventual
assembly into the interface matrix in Step 5.

The overall situation at the end of the parallel compu-
tation section is:

C1 C2 : : : CN C 0

R1

R2

...

RN

R0

2
6666666664

L1U1 U 0

1

L2U2 U 0

2

...
...

LNUN U 0

N

L0

1
L0

2
: : : L0

N F

3
7777777775

whereR0 =
NS
i=1

R0

i andC 0 =
NS
i=1

C 0

i . F is the interface

matrix that can be assembled by the summation of ele-
ments from the contribution blocksFi. Note that, since a
row index inR0 may appear in more than one of theR0

i

and a column index inC 0 may appear in more than one of
theC 0

i , some elements ofF may get contributions from
more than one of theFi.

Once factorization of all diagonal blocks is complete,
the interface matrix is factored. This is carried out using
the FAMP solver, with microtasking to exploit loop-level
parallelism for the outer-product update of the frontal ma-
trix. However, as noted above, this tends to provide little
speedup, so the factorization of the interface problem can
in most cases be regarded as essentially serial. This con-
stitutes a computational bottleneck. Thus, it is critical to
keep the size of the interface problem small to achieve
good speedups for the overall solution process. It should
also be noted that depending on the size and sparsity of
the interface matrix, some solver other than FAMP may
in fact be more attractive for performing the factorization.

As the doubly-bordered block-diagonal form makes
clear, once values of the variables in the interface prob-
lem have been solved for, the remaining triangular solves
needed to complete the solution can be done in parallel us-
ing the same decomposition used to do the parallel frontal
elimination. During this process the solution to the inter-
face problem is made globally available to each processor.

Numerical Pivoting
It is necessary to perform numerical pivoting to main-

tain stability during the elimination process. The frontal
code FAMP uses partial pivoting to provide numerical
stability. However, with the parallel frontal scheme of
PFAMP, we need to ensure that the pivot row belongs to
the diagonal blockAii. We cannot pick a pivot row from
the borderSi because border rows are shared by more
than one diagonal block. Thus for use here we propose
a partial-threshold pivoting strategy. Partial pivoting is
carried out to find the largest element in the pivot column

while limiting the search to the rows that belong to the
diagonal blockAii. This element is chosen as the pivot
element if it satisfies a threshold pivot tolerance criterion
with respect to the largest element in the entire pivot col-
umn (including the rows that belong to the diagonal block
Aii and the borderSi). If a pivot search does not find an
element that satisfies this partial-threshold criteria, then
the elimination of that variable is delayed and the pivot
column becomes part of the interface problem. If there are
more thanni �mi such delayed pivots thenpi < mi and
a row or rows of the diagonal block will also be made part
of the interface problem. This has the effect of increasing
the size of the interface problem; however, our computa-
tional experiments indicate that the increase in size is very
small compared ton, the overall problem size.

Matrix Reordering
For the solution method described above to be most

effective, the size of the interface problem must be kept
small. Furthermore, for load balancing reasons, it is desir-
able that the diagonal blocks be nearly equal in size (and
preferably that the number of them be a multiple of the
number of processors to be used). For a large scale sim-
ulation or optimization problem, the natural unit-stream
structure, as expressed in Eq. (1), may well provide an in-
terface problem of reasonable size. This structure is used
in two of the test problems, both occurring in optimiza-
tion problems solved using NOVA. When the unit-stream
structure is used, load balancing is likely to be a problem,
as the number of equations in different unit models may
vary widely. This might be handled in anad hocfash-
ion, by combining small units into larger diagonal blocks
(with the advantage of reducing the size of the border)
or by breaking larger units into smaller diagonal blocks
(with the disadvantage of increasing the size of the bor-
der). Doing the latter also facilitates an equal distribu-
tion of the workload across the processors by reducing
the granularity of the tasks. It should be noted in this
context that in PFAMP task scheduling is done dynami-
cally, with tasks assigned to processors as the processors
become available. This helps reduce load imbalance prob-
lems for problems with a large number of diagonal blocks.

To address the issues of load balancing and of the
size of the interface problem in a more systematic fash-
ion, and to handle the situation in which the application
code does not provide a bordered block-diagonal form di-
rectly in the first place, there is a need for matrix reorder-
ing algorithms. For matrices that are structurallysymmet-
ric or nearly so, there are various approaches that can be
used to try to get an appropriate matrix reordering (e.g.,
Kernighan and Lin, 1970; Leiserson and Lewis, 1989;
O’Neil and Szyld, 1990; Karypis and Kumar, 1995; Choi
and Szyld, 1996). These are generally based on solv-
ing (undirected) graph partitioning, bisection or min-cut
problems, often in the context of nested dissection ap-
plied to finite element problems or in the context of block
preconditioners for iterative linear solvers. Such meth-
ods are applied to a structurallyasymmetricmatrixA by
applying them to the structure of the symmetric matrix
A + AT . This may provide satisfactory results if the de-
gree of asymmetry is low. However, when the degree of
asymmetry is very high, as in the case of process sim-



ulation and optimization problems, the approach cannot
be expected to always yield good results, as the number
of additional nonzeros inA + AT , indicating dependen-
cies that are nonexistent in the problem, may be large,
nearly as large as the number of nonzeros indicating ac-
tual dependencies. To test one reordering method in this
category, we used the TPABLO code of Choi and Szyld
(1996) on three of the test problems. Columns containing
nonzeros outside the diagonal blocks become part of the
interface problem. Rows and other columns that cannot
be eliminated for numerical reasons are assigned to the
interface problem as a result of the pivoting strategy used
in the frontal elimination of the diagonal blocks.

To deal with structurally asymmetric problems, one
technique that can be used is the min-net-cut (MNC) ap-
proach of Coon and Stadtherr (1995). This technique is
designed specifically to address the issues of load balanc-
ing and interface problem size. It is based on recursive
bisection of a bipartite graph model of the asymmetric
matrix. Since a bipartite graph model is used, the al-
gorithm can consider unsymmetric permutations of rows
and columns while still providing a structurally stable re-
ordering. The matrix form produced is a block-tridiagonal
structure in which the off-diagonal blocks have relatively
few nonzero columns; this is equivalent to a special case
of the bordered block-diagonal form. The columns with
nonzeros in the off-diagonal blocks are treated as belong-
ing to the interface problem. Rows and other columns that
cannot be eliminated for numerical reasons are assigned
to the interface problem as a result of the pivoting strat-
egy used in the frontal elimination of the diagonal blocks.
This reordering was used on all the test problems.

Another reordering technique that produces a poten-
tially attractive structure is the teardrop (tear, drag, re-
order, partition) algorithm given by Abbott (1996). This
makes use of the block structure of the underlying process
simulation problem and also makes use of graph bisection
concepts. In this case a doubly-bordered block-diagonal
form results. Rows and columns in the borders are imme-
diately assigned to the interface problem, along with any
rows and columns not eliminated for numerical reasons
during factorization of the diagonal blocks. This reorder-
ing is used on two of the test problems.

In the computational results presented below, we use
seven test problems, each a matrix arising in a large-scale
simulation or optimization problem. For each matrix, two
different orderings are considered. The results are used to
demonstrate the potential of the parallel frontal solver, and
to consider the effects of reordering. This is not intended
to be a systematic comparison of reordering algorithms.

RESULTS AND DISCUSSION

In this section, we present results for the performance of
the PFAMP solver on seven process optimization or simu-
lation problems. More information about each problem is
given below. We compare the performance of PFAMP on
multiple processors with its performance on one proces-
sor and with the performance of the frontal solver FAMP
on one processor. We also consider the effect of matrix
reordering. The numerical experiments were performed
on a CRAY C90 parallel/vector supercomputer at Cray
Research, Inc., in Eagan, Minnesota. The timing results

presented represent the total time to obtain a solution vec-
tor from one right-hand-side vector, including analysis,
factorization, and triangular solves. The time required
for reordering is not included. A threshold tolerance of
t = 0:1 was used in PFAMP to maintain numerical stabil-
ity, which was monitored using the 2-norm of the residual
b�Ax. FAMP uses partial pivoting.

In Table 1, each matrix is identified by name and or-
der (n). In addition, statistics are given for the number of
nonzeros (NZ), and for a measure of structural asymme-
try (as). The asymmetry,as, is the number off-diagonal
nonzerosaij (j 6= i) for which aji = 0 divided by the
total number of off-diagonal nonzeros (as = 0 is a sym-
metric pattern,as = 1 is completely asymmetric). Also
given, for each ordering used, is information about the
resulting bordered block-diagonal form, namely the num-
ber of diagonal blocks (N ), the order of the interface ma-
trix (NI), and the number of equations in the largest and
smallest diagonal blocks,mmax

i andmmin
i , respectively.

The first two problems (Ethylene1 and Ethylene2)
involve the optimization of an ethylene plant using
NOVA. Each problem involves a flowsheet that consists
of 43 units, including five distillation columns. The prob-
lems differ in the number of stages in the distillation
columns. The linear systems arising during optimiza-
tion with NOVA are naturally in bordered block-diagonal
form, allowing the direct use of PFAMP for the solution
of these systems. To see the effect of a different ordering,
the MNC reordering was also used.

We note first, that the single processor performance of
PFAMP is better than that of FAMP. This is due to the
difference in the size of the largest frontal matrix associ-
ated with the frontal elimination for each method. For so-
lution with FAMP, the variables which have occurrences
in the border equations remain in the frontal matrix until
the end. The size of the largest frontal matrix increases
for this reason, as does the number of wasted operations
on zeros, thereby reducing the overall performance. This
problem does not arise for solution with PFAMP because
when the factorization of a diagonal block is complete, the
remaining variables and equations in the front are imme-
diately written out as part of the interface problem and a
new front is begun for the next diagonal block. Thus, for
these problems and most other problems tested, PFAMP
is a more efficient serial solver than FAMP. This reflects
the advantages of the multifrontal-type approach used by
PFAMP, namely smaller and less sparse frontal matrices.

In the natural ordering for each problem, there are
43 diagonal blocks, of which five are large, correspond-
ing to the distillation units, with one of these blocks
much larger (mi = 3337 on Ethylene1) than the oth-
ers (1185 � mi � 1804 on Ethylene1). In the com-
putation, with five processors being used, one processor
ends up working on the largest block, while the remain-
ing four processors finish the other large blocks and the
several much smaller ones. The load is unbalanced with
the factorization of the largest block being the bottleneck.
This, together with the solution of the interface problem,
results in a speedup (relative to PFAMP on one processor)
of two or less on five processors. Use of the MNC reorder-
ing provides a somewhat better load balance and a smaller
interface problem. This provides for improved proces-



Table 1: Description test matrices and summary of results. See text for definition of column headings.

FAMP PFAMP PFAMP
Name 1 proc. 1 proc. NP proc.

(Ordering) n NZ as N mmax
i mmin

i NI sec. sec. sec. (NP )

Ethylene1 10673 80904 0.99
(Natural) 43 3337 1 708 0.697 0.550 0.267 (5)
(MNC) 4 3560 1637 181 0.682 0.360 (4)

Ethylene2 10353 78004 0.99
(Natural) 43 3017 1 698 0.667 0.510 0.290 (5)
(MNC) 4 2930 2388 264 0.570 0.256 (4)

Hydr1c 5308 23752 0.99
(TPABLO) 90 500 2 3288
(MNC) 4 1449 1282 180 0.258 0.243 0.139 (4)

Icomp 69174 301465 0.99
(TPABLO) 199 8000 2 37335
(MNC) 4 17393 17168 1054 3.78 4.33 1.72 (4)

lhr 71 70304 1528092 0.99
(TPABLO) 733 8000 2 35510
(MNC) 10 9215 4063 1495 14.8 7.67 3.04 (4)

4cols.smms 11770 43668 0.99
(Teardrop) 24 1183 33 2210 1.14 1.13 0.680 (4)
(MNC) 4 4456 883 365 0.874 0.443 (4)

10cols.smms 29496 109588 0.99
(Teardrop) 66 1216 2 5143 11.3 3.69 1.81 (4)
(MNC) 4 10334 3810 293 1.53 0.905 (4)

sor utilization (e.g., speedup of 2.2 on four processors vs.
speedup of 1.8 on 5 processors on theEthylene2 prob-
lem), though this is still not particularly efficient proces-
sor utilization. Given the irregular and highly asymmetric
nature of these problems this is not surprising, however.

The next three problems have been reordered into
a bordered block-diagonal form using both MNC and
TPABLO. Two of these problems (Hydr1c and Icomp)
occur in dynamic simulation problems solved using
SPEEDUP (Aspen Technology, Inc.). TheHydr1cprob-
lem involves a 7-component hydrocarbon process with a
de-propanizer and a de-butanizer. TheIcomp problem
comes from a plantwide dynamic simulation of a plant
that includes several interlinked distillation columns. The
lhr 71 problem is derived from the prototype simulator
SEQUEL (Zitney and Stadtherr, 1988), and is based on a
light hydrocarbon recovery plant. Neither of the applica-
tion codes produces directly a matrix in bordered block-
diagonal form, so a reordering such as provided by MNC
or TPABLO is required

When the TPABLO reordering is used, the size of the
interface problem is extremely large, over half the size
of the original problem. Since the interface problem is a
bottleneck in PFAMP, its performance would be clearly
be very inefficient when this ordering is used, and ac-
tual numerical runs were thus not attempted. It should be
noted that TPABLO has a user adjustable parameter for
the maximum block size allowed. For each of the three
matrices, the largest block found matched the maximum
allowable block size. When this parameter was adjusted,
different block partitions were found, but in general the
size of the interface problem remained extremely large.
The poor performance of this type of reordering method is
not surprising since it is based on symmetric permutations

of very highly asymmetric systems. This is apparently not
an appropriate application for TPABLO, which performs
quite well in other contexts.

On two of the three problems, the PFAMP algorithm
again outperforms FAMP even on a single processor, for
the reasons discussed above. This enhancement of per-
formance can be quite significant, around a factor of two
in the case oflhr 71. MNC achieves the best reordering
on the Icomp problem, for which it finds four diagonal
blocks of roughly the same size (17168 � mi � 17393)
and the size of the interface problem is relatively small in
comparison ton. The speedup observed for PFAMP on
this problem was about 2.5 on four processors. While this
represents a substantial savings in wallclock time, it still
does not represent efficient processor utilization. In this
context, it should be remembered that even a relatively
small serial component in a computation can greatly re-
duce the efficiency of processor utilization.

The final two problems arise from simulation prob-
lems solved using ASCEND (Piela et al. 1991), and or-
dered using the teardrop approach (Abbott, 1996) and
also using MNC. Problems4cols.smmsand10cols.smms
involve nine components with four and ten interlinked
distillation columns, respectively. With the teardrop re-
ordering, the resulting moderate task granularity helps
spread the load over the four processors used, but the size
of the interface problem tends to be relatively large, 17-
19% ofn, as opposed to 1-3% when MNC is used. How-
ever, for MNC the load balancing characteristics are less
desirable, as in each case two of the four blocks are sig-
nificantly smaller than the other the two. Thus, though
both approaches provide significant reductions in wall-
clock time, neither achieved particularly good parallel ef-
ficiency. MNC does have user adjustable parameters that



could possibly be modified to provide a better balance be-
tween the number of blocks and the size of the interface
problem. It should be noted that reasonably good perfor-
mance was obtained with the teardrop reordering despite
the relatively large size of the interface problem because,
for these systems, the use of small-grained parallelism
within FAMP for solving the interface problem provided
a significant speedup (about 1.7 on 10cols.smms). Over-
all on 10cols.smmsthe use of PFAMP resulted in the re-
duction of the wallclock time by an order of magnitude;
however only a factor of about two of this was due to mul-
tiprocessing.

CONCLUDING REMARKS
The results presented above demonstrate that PFAMP can
be an effective solver for use in process simulation and op-
timization on parallel/vector supercomputers with a rela-
tively small number of processors. In addition to mak-
ing better use of multiprocessing than the standard solver
FAMP, on most problems the single processor perfor-
mance of PFAMP was better than that of FAMP. The com-
bination of these two effects led to five- to ten-fold perfor-
mance improvements on some large problems. Two keys
to obtaining better parallel performance are improving the
load balancing in factoring the diagonal blocks and better
parallelizing the solution of the interface problem.

Clearly the performance of PFAMP with regard to
multiprocessing depends strongly on the quality of the
reordering into bordered block-diagonal form. In most
cases considered above it is likely that the reorderings
used were far from optimal, and no systematic attempt
was made to find better reorderings. The graph parti-
tioning problems underlying the reordering algorithms are
NP-complete. Thus, one can easily spend a substantial
amount of computation time attempting to find improved
orderings. The cost of a good ordering must be weighed
against the number of times a given simulation or opti-
mization problem is going to be solved. Typically, if the
effort is made to develop a large scale simulation or op-
timization model, then it is likely to be used a very large
number of times, especially if it is used in an operations
environment. In this case, the investment made to find a
good reordering for PFAMP to exploit might have sub-
stantial long term paybacks.

Acknowledgments– This work has been supported by
the National Science Foundation under Grants DMI-
9322682 and DMI-9696110. We also acknowledge the
support of the National Center for Supercomputing Appli-
cations at the University of Illinois, Cray Research, Inc.
and Aspen Technology, Inc. We thank Dr. Kirk Abbott
for providing the ASCEND matrices and the teardrop re-
orderings.

REFERENCES
Abbott, K. A., Very Large Scale Modeling. PhD thesis,
Dept. of Chemical Engineering, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania (1996).
Choi, H. and D. B. Szyld, Threshold ordering for pre-
conditioning nonsymmetric problems with highly varying
coefficients. Technical Report 96-51, Dept. of Math-
ematics, Temple Univ., Philadelphia, PA (available at
http://www.math.temple.edu/˜szyld) (1996).

Cofer, H. N. and M. A. Stadtherr, Reliability of iterative
linear solvers in chemical process simulation.Comput.
Chem. Engng, 20, 1123–1132 (1996).
Coon, A. B. and M. A. Stadtherr, Generalized block-
tridiagonal matrix orderings for parallel computation in
process flowsheeting.Comput. Chem. Engng, 19, 787–
805 (1995).
Davis, T. A. and I. S. Duff, An unsymmetric-pattern mul-
tifrontal method for sparse LU factorization.SIAM J. Ma-
trix Anal. Appl. (available as Technical Report TR-94-
038; see http://www.cise.ufl.edu/research/tech-reports)
(in press, 1996).
Duff, I. S. and J. A. Scott, The use of multiple fronts
in Gaussian elimination. Technical Report RAL 94-040,
Rutherford Appleton Laboratory, Oxon, UK (1994).
Karpis, G. and V. Kumar, Multilevelk-way partitioning
scheme for irregular graphs. Technical Report 95-064,
Dept. of Computer Science, Univ. of Minnesota, Min-
neapolis, MN (1995).
Kernighan, B. W. and S. Lin, An efficient heuristic pro-
cedure for partitioning graphs.Bell System Tech. J., 49,
291–307 (1970).
Leiserson, C. E. and J. G. Lewis, Orderings for parallel
sparse symmetric factorization. In Rodrigue, G., editor,
Parallel Processing for Scientific Computing, pages 27–
31. SIAM, Philadelphia, PA (1989).
Mallya, J. U.,Vector and Parallel Algorithms for Chem-
ical Process Simulation on Supercomputers. PhD thesis,
Dept. of Chemical Engineering, University of Illinois, Ur-
bana, IL (1996).
O’Neil, J. and D. B. Szyld, A block ordering method for
sparse matrices.SIAM J. Sci. Stat. Comput., 11, 811–823
(1990).
Piela, P. C., T. G. Epperly, K. M. Westerberg, and A. W.
Westerberg, ASCEND: An object-oriented computer en-
vironment for modeling and analysis: The modeling lan-
guage.Comput. Chem. Engng, 15, 53–72 (1991).
Stadtherr, M. A. and J. A. Vegeais, Process flowsheet-
ing on supercomputers.IChemE Symp. Ser., 92, 67–77
(1985).
Vegeais, J. A. and M. A. Stadtherr, Vector processing
strategies for chemical process flowsheeting.AIChE J.,
36, 1687–1696 (1990).
Westerberg, A. W. and T. J. Berna, Decomposition of very
large-scale Newton-Raphson based flowsheeting prob-
lems.Comput. Chem. Engng, 2, 61 (1978).
Zitney, S. E., L. Brüll, L. Lang, and R. Zeller, Plantwide
dynamic simulation on supercomputers: Modeling a
Bayer distillation process.AIChE Symp. Ser., 91(304),
313–316 (1995).
Zitney, S. E., J. U. Mallya, T. A. Davis, and M. A.
Stadtherr, Multifrontal vs frontal techniques for chemical
process simulation on supercomputers.Comput. Chem.
Engng, 20, 641–646 (1996).
Zitney, S. E. and M. A. Stadtherr, Computational exper-
iments in equation-based chemical process flowsheeting.
Comput. Chem. Engng, 12, 1171–1186 (1988).
Zitney, S. E. and M. A. Stadtherr, Frontal algorithms for
equation-based chemical process flowsheeting on vector
and parallel computers.Comput. Chem. Engng, 17, 319–
338 (1993).


