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Abstract

For the simulation of complex equilibrium-stage operations, the overall computing time is often

dominated by the solution of large, sparse systems of linear equations. If the modeling equations

for such separation systems are grouped by equilibrium stage, the linear systems take on an almost

banded form with relatively few off-band elements. We present here a simple multifrontal approach

for solving such linear systems on supercomputers. Like the frontal approach, these solvers exploit

supercomputing technology by treating parts of the sparse matrix as full, thereby allowing arith-

metic operations to be performed with highly vectorized and optimized BLAS dense matrix kernels.

In addition, these solvers exploit the almost banded structure of the distillation matrices by using

a modified threshold pivot search strategy that attempts to maintain the desirable structure of

the matrix during the solution process. Results indicate that this multifrontal approach provides

substantial savings in solution time compared to other techniques often used.



1 Introduction

Steady-state or dynamic simulation tools are widely used in the design, optimization, and oper-

ation of equilibrium-stage processes. Increasingly these tools are being used industrially to model

very large-scale processes (Zitney et al., 1995). This trend has been made possible in part by

impressive gains in computer performance and advances in numerical methods. Today, supercom-

puting technology, offering parallel and/or vector processing architectures, is increasingly seen at

price levels that make it available to process systems engineers. Thus, the use of supercomputers

in process simulation is more practicable than ever before, and provides opportunities to solve

larger-scale and more realistic plant models than ever before. However, since most current meth-

ods for solving process simulation problems were developed for use on conventional serial machines,

they typically do not effectively take advantage of the vector and parallel processing architecture

of supercomputers. Thus, exploiting this technology in process simulation requires a rethinking of

the solution strategies used. In this paper, we consider the sparse linear equation solving strategies

used in this context.

In simulating complex chemical processes, the overall simulation time is often dominated by

the repeated solution of large, sparse systems of linear equations. In general, the linear system

or systems that arise, may not have any of the desirable structural and numerical properties,

such as numerical or structural symmetry, positive definiteness and diagonal dominance, that are

often exploited in solving large, sparse linear systems. Nevertheless, these systems do have some

structural properties that can be exploited. One such structural property is that, due to the

unit-stream nature of the problem, simulation matrices tend to be block-banded, usually with

several off-band blocks representing recycle and/or feedforward streams. This assumes that one has
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grouped the equations and variables by unit and stream, respectively, and that some reasonable

attempt has been made to order adjacent units in the process consecutively in the matrix. For

simulation problems that primarily involve distillation or other equilibrium-stage operations, the

block-band is in fact typically a block-tridiagonal, assuming the modeling equations are grouped

by equilibrium stage. Off-band elements may occur for various reasons, including interlinking

streams in multicolumn problems, pumparounds in single column problems, and the way in which

design specifications are handled. Special-purpose solvers for block-tridiagonal and almost-block-

tridiagonal systems have often been employed in this context in order to take advantage of this

structure. For the solution of equilibrium-stage operation on supercomputers, Zitney and Stadtherr

(1993b), Zitney (1990), and Zitney et al.(1995) have demonstrated the effectiveness of the frontal

method for solving the sparse linear systems. In principle, a multifrontal approach may have

advantages over the frontal method, as discussed in more detail below. However, when applied to

equilibrium-stage separation problems, available multifrontal solvers do not take good advantage

of the structure of the problem, and may in fact spend considerable effort in finding a suitable

pivot sequence that may not be desirable. It is important to exploit all information which comes

from knowing the structure of the underlying problems. Thus, in this article, we present a simple

multifrontal approach designed specifically to take advantage of the structure of such matrices. We

compare the performance of this approach with an implementation of the frontal algorithm (FAMP),

with a general-purpose multifrontal solver (MA38), and with MA28, a well-known conventional

solver.
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2 Background

The frontal method is a technique that was originally developed to solve the banded matrices

arising in finite element problems (Irons, 1970; Hood, 1976). The original motivation was, by

limiting computational work to a relatively small frontal matrix, to be able to solve problems on

machines with small core memories. Today it is widely used for finite element problems on vector

supercomputers because, since the frontal matrix can be treated as dense, most of the computations

involved can be performed by using very efficient vectorized dense matrix kernels. Stadtherr and

Vegeais (1985) extended this idea to the solution of process simulation problems on supercomputers,

and later (Vegeais and Stadtherr, 1990) demonstrated its potential. Implementations of the frontal

method developed specifically for use in the process simulation context have been described by

Zitney (1992) and Zitney and Stadtherr (1993a,b). One of these codes, FAMP, developed at

University of Illinois and later extended at Cray Research, Inc., has now been incorporated in CRAY

versions of popular commercial simulation codes, such as ASPEN PLUS, SPEEDUP, RATEFRAC,

and BATCHFRAC (Aspen Technology, Inc.).

Because process simulation matrices are not truly banded, the frontal matrix can become rela-

tively large and sparse when solving such problems. Thus, recently (Zitney et al., 1996) we have

considered the multifrontal approach as an alternative to the frontal method. Like the frontal

method, it also exploits vectorization through the use of dense matrix kernels on frontal matrices.

However, the frontal matrices are generally smaller and denser than in the frontal method. The

classical multifrontal approach (Duff and Reid, 1984) has met with only limited success when the

pattern of nonzeros is highly unsymmetric. However, recently a new unsymmetric-pattern multi-

frontal algorithm has been described by Davis and Duff (1993,1996) and implemented in the code
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UMFPACK (Version 1.1). Our experiments (Zitney et al., 1996) have shown that the multifrontal

algorithm used by UMFPACK V1.1 does not perform as well as the frontal algorithm (FAMP) on

many equilibrium-stage separation problems, primarily because it is not able to take advantage of

the problem structure. Thus we have developed simple new multifrontal algorithms (Mallya and

Stadtherr, 1995) designed to take advantage of the good initial problem structure typically found

in simulating processes that primarily involve equilibrium-stage operations. In the next section,

we first describe the basic ideas involved in the multifrontal approach, and then detail the new

algorithms that have been developed.

3 Multifrontal Approach

Consider the solution of a linear equation system Ax = b, where A is a large sparse n×n matrix

and x and b are column vectors of length n. While iterative methods can be used to solve such

systems, the reliability of such methods is questionable in the context of process simulation (Cofer

and Stadtherr, 1996). Thus we concentrate here on direct methods. Generally such methods can

be interpreted as an LU factorization scheme in which A is factored A = LU , where L is a lower

triangular matrix and U is an upper triangular matrix. Thus, Ax = (LU)x = L(Ux) = b, and the

system can be solved by a simple forward substitution to solve Ly = b for y, followed by a back

substitution to find the solution vector x from Ux = y.

In an unsymmetric-pattern multifrontal method (Davis and Duff, 1993,1996), a frontal matrix,

consisting of pivot row(s) and column(s), their entries from the original matrix A, and contributions

to them from previous frontal matrices, is assembled at each stage of the factorization process. The

frontal matrix Ek for steps k through k + gk − 1 of the LU factorization, where gk is the number
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of pivots performed in Ek can be represented as
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k , representing the non-pivotal rows and columns. The blocks Fk, Bk,

and Tk are all fully assembled with contributions from both the original matrix and from previous

frontal matrices; however contributions to Dk may be only partially assembled or not assembled at
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L′
k and L′′

k can be written into an array for L factors. Similarly, U ′
k and U ′′

k can be written into an

array for U factors. The contribution block D′
k is saved since some of its elements may need to be

assembled into future frontal matrices. This interwoven assembly-elimination process confines the

arithmetic operations to the frontal matrix, and so permits the use of efficient dense matrix vector

operations during the factorization of Fk and the update of Dk.

In the general-purpose approach of Davis and Duff (1993,1996), a pivot element is chosen using

a Markowitz-style strategy to preserve sparsity. Additional pivots may then be chosen to form a

5



pivot block if they do not cause growth of the assembled frontal matrix beyond a preset limit. In

the context of equilibrium-stage processes, the disadvantage of this approach is that it does not take

advantage of the good initial structure of the matrix, and may in fact destroy it. The algorithms

presented below are designed to avoid this difficulty.

4 The MFA1P Algorithm

In this and the subsequent section, we discuss the new multifrontal solvers, MFAXP (MultiFrontal

Algorithm, X Pivots), designed to take advantage of good initial structure in equilibrium-stage

process simulation matrices. These solvers use a modified threshold pivot search strategy that

attempts to maintain the structure during the factorization process. The pivot block Fk is of size

1 × 1 for MFA1P and 2 × 2 for MFA2P. The basic MFA1P algorithm is outlined below, followed

by a more detailed discussion of its steps and a simple illustrative example.

Algorithm MFA1P:

For (k = 1; k ≤ n; k = k + 1)

1. Start the k-th frontal matrix by assembling all contributions to the k-th column (including

entries from the original matrix and contributions from previous frontal matrices). This is

the pivot column. Store as a column of L.

2. Choose as a pivot the element in the pivot column closest to (preferably on) the diagonal that

satisfies a threshold pivot tolerance. This determines the pivot row.

3. Assemble all contributions to the pivot row and normalize it. Store as a row of U .

4. Perform an outer product update of Dk using the pivot column and normalized pivot row to
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compute the contribution block D′
k for this frontal matrix. Store this contribution block for

later use.

Most of the computational work in this algorithm is the outer product update in Step 4. For

purposes of this computation the contribution block D′
k is treated as dense (though this may not

necessarily be true). Treating the contribution block as dense is attractive from the standpoint

of vectorization because it means that we can use full-matrix code without indirect addressing to

perform the update. Conventional sparse linear equation solvers use an inner product formula-

tion that requires indirect addressing; such codes typically do not vectorize efficiently on vector

supercomputers. MFA1P uses the Cray Assembly Language (CAL) coded BLAS2 routine RNK1S

for performing the outer product update. The RNK1S routine is highly optimized and vectorized

for Cray Research supercomputers and outperforms the more general BLAS2 routine SGER for

performing RANK-1 updates.

The key feature of the algorithm is the simple pivot selection scheme used in Step 2. The pivot

row j is chosen to minimize |j−k| subject to the threshold tolerance criterion |ajk| ≥ t×maxs|ask|,

where t is a preset fraction in the range 0 < t ≤ 1.0. This is in contrast to the frontal method,

in which partial pivoting is used and the largest element in the column is chosen as the pivot (t

= 1). It is also in contrast to the general-purpose unsymmetric-pattern frontal method, in which

a global Markowitz-style pivot search with threshold is used. MFA1P tries to maintain the initial

matrix structure by choosing as pivot the element closest to and preferable on the diagonal, while

maintaining numerical stability by using the threshold tolerance. In our experiments a threshold

tolerance of t = 0.1 was adequate to maintain numerical stability.

In Steps 1 and 3, portions of the L and U factors are determined and must be stored, and in

Step 4 a contribution block is computed and must be stored. The method of storage to be used will
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depend on the amount of central (core) memory available and the disk capabilities of the computer,

as well as on the size of the problem. Though the frontal and multifrontal approaches were originally

developed as strategies for performing out-of-core factorizations, today it is preferable and often

possible, due to the large central memories (rapid access) available on supercomputers, to use core

memory for the necessary storage, as opposed to auxiliary storage (slower access). A linear solver

that functions entirely in central memory requires considerably less solution time than a code that

uses auxiliary storage. However, when working with very large process simulation problems, it may

still be necessary to use auxiliary storage even on supercomputer systems with very large central

memories. The test problems used here are not particularly large by current standards, though

they are comparable in size to test problems used by others. Thus, in our experiments the use of

auxiliary storage was unnecessary.

To illustrate the basic ideas of the algorithm we use the matrix shown in Figure 1. For k = 1, in

Step 1 we assemble column 1 into the first frontal matrix. In Step 2 we first consider the diagonal

element (1,1) as a possible pivot. Say that in this case it does not meet the threshold tolerance

criterion; thus we would next consider element (2,1) as a possible pivot. Say that this element

does meet the threshold tolerance. Thus, in Step 3, row 2 is assembled into the first frontal matrix

and the nonzero elements in the first frontal matrix are as shown in Figure 2. In step 4, a dense

matrix kernel is used to perform an outer product update to compute the contribution block for

the first frontal matrix. At the end of the first pass (k = 1) through the algorithm, the situation

is as indicated in Figure 3. This shows that we have computed a row of U and a column of L, as

well as a contribution block that is saved for use with future frontal matrices. Now, for k = 2, in

Step 1, we assemble column 2 into a new frontal matrix. This requires assembling contributions

from the original matrix in positions (1,2) and (4,2), as well as contributions in positions (1,2) and
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(3,2) from the contribution block of the first frontal matrix. In Step 2, we first consider element

(1,2) as a possible pivot since it is closest to the diagonal. Say that this element does meet the

threshold tolerance and thus is chosen as the pivot element. Thus, in Step 3, row 1 is assembled

into the frontal matrix, including the contribution in position (1,4) from the first frontal matrix.

The initial nonzero elements in the second frontal matrix are as shown in Figure 4, and Figure 5

shows the result of the second pass through the algorithm. New frontal matrices now continue to

be assembled and outer product updates performed in them until the LU factorization is complete.

5 The MFA2P Algorithm

In this algorithm, the k-th and (k + 1)-th column are assembled into the same frontal matrix

and a 2 × 2 pivot block is used. The innermost loop consists of a rank-2 outer product update

which is done using BLAS3 kernels as opposed to BLAS2 in MFA1P. The hope is that by using

BLAS3 rather than BLAS2 in the innermost loop that the overall efficiency is improved. The basic

algorithm is outlined below.

Algorithm MFA2P:

For (k = 1; k ≤ n; k = k + 2)

1. Start a new frontal matrix by assembling all contributions to the k-th and (k +1)-th columns

(including entries from the original matrix and contributions from the previous frontal ma-

trices). Store column k as a column of L.

2. In the k-th column, choose as pivot the element closest to (preferably on) the diagonal that

satisfies the threshold tolerance criterion. This determines the first pivot row.

3. Assemble all contributions to the first pivot row and normalize it. Store as a row of U .
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4. Perform a rank-one outer product update of the (k+1)-th column using the k-th column and

the normalized first pivot row. Store as a column of L.

5. In the (k + 1)-th column, choose as pivot the element closest to (preferably on) the diagonal

that satisfies the threshold tolerance criterion. This determines the second pivot row.

6. Assemble all contributions to the second pivot row and normalize it. Store as a row of U .

7. Perform a rank-2 outer product update of Dk using the pivot columns and normalized pivot

rows to compute the contribution block D′
k for this frontal matrix. Store this contribution

block for later use.

Note that the second pivot is not chosen until its column has been updated using the first pivot.

6 Results and Discussion

In this section, we present the results for the performance of the MFA1P and MFA2P solvers on

four sets of process simulation problems. More information about each problem set is given below.

Most of the test matrices used are available from the authors. We compare the performance of

MFA1P and MFA2P with that of:

1. The frontal solver FAMP.

2. Version 2.0 of UMFPACK. This version (Davis and Duff, 1995) incorporates features of the

frontal method into the general-purpose, unsymmetric-pattern multifrontal solver in order to

improve overall efficiency. This code is now incorporated into the Harwell Subroutine Library

as MA38.
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3. The conventional solver MA28. This code was used to provide a familiar and widely available

benchmark. The proprietary code MA48, which has now superceded MA28 in the Harwell

Subroutine Library, should perform better than MA28 on these problems, at least for a

complete analyze, plus factorize, plus solve execution path. However, the experiments of

Davis and Duff (1995) on a CRAY C90 suggest that in the context of vector processing,

MA38 will be the most competitive Harwell code on these problems. The results of some of

these experiments are included in the discussion below.

The default parameter settings were used for each code. Numerical experiments were carried out on

a CRAY C90 parallel/vector supercomputer at Cray Research, Inc. in Eagan, Minnesota (USA).

In the tables of results presented below, each matrix is identified by name and order (N). In

addition, statistics are given for the number of nonzeros (NZ), and for a measure of structural

asymmetry (as). The asymmetry, as, is the number off-diagonal nonzeros aij (j 6= i) for which

aji = 0 divided by the total number of off-diagonal nonzeros (as = 0 is a symmetric pattern,

as = 1 is completely asymmetric). For each solver, run times (in cpu seconds) are obtained for

three execution paths, namely:

1. Analyze + Factor + Solve (A+F+S): This represents the total time to perform analysis to

determine a pivot sequence, to compute the L and U factors of A, and to perform the forward

and backward substitution to solve Ax = b. This execution path is typically used at each

iteration in a steady-state simulation.

2. Factor only (F): This gives the time for computing the L and U factors of A given a previously

determined and saved pivot sequence for a matrix of the same structure. This execution path

might be used in some iterations of a simulation, though care is needed to prevent loss of
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numerical stability due to changes in the relative magnitudes of the pivot elements.

3. Solve only (S): This represents the time to solve Ax = b by performing forward and backward

substitution using previously computed L and U factors of A. This execution path is typically

suitable for several sequential time steps in a dynamic simulation, with an A+F+S or F only

execution path used as needed.

Timing results are listed for MFA1P, MFA2P, FAMP, MA38, and MA28. In the tables of results,

the fastest run time for each problem is shown in bold. A threshold tolerance of t = 0.1 was used

in all codes except FAMP (which uses partial pivoting) in order to maintain numerical stability,

which was monitored using the 2-norm of the residual b − Ax.

For each problem set a figure is shown summarizing the relative performance of the methods for

each execution path. This summary is based on average normalized run time (ANRT). For each

problem and method the run time is normalized by dividing by the run time of the best method

on that problem. This is then averaged over the entire problem set to determine the ANRT for

each method. Thus, an ANRT of one for a method would indicate that the method was the best

method on all problems in the problem set.

No a priori reordering was done on any of the test matrices. The performance of the MFAXP

algorithms depends on both the row and column orderings. These algorithms are designed to

take advantage of the already good row and column orderings present in typical equilibrium-stage

process simulation problems. The performance of the frontal algorithm (FAMP) depends on the

row ordering. The natural structure of an equilibrium-stage process simulation problem generally

provides a good row ordering in this regard. MA28 and MA38 both use Markowitz-type pivot

strategies to maintain sparsity, in effect determining a row and column ordering.
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6.1 Problem Set 1

These 14 problems involve the steady-state simulation of equilibrium-stage processes using AS-

PEN PLUS (Aspen Technology, Inc.). These problems use the RADFRAC module of ASPEN

PLUS. This module does rigorous calculations for all types of fractionation, including absorption,

reboiled absorption, stripped, reboiled stripping, and extractive, azeotropic, and three phase dis-

tillation, in addition to ordinary distillation. Matrix statistics for these problems are shown in

Table 1. Though highly asymmetric structurally, these matrices are nearly banded, but with some

off-band elements. This is due to the grouping of equations by equilibrium stage. Tables 1, 2, and

3 summarize the run time results for the A+F+S, F only and S only execution paths, respectively.

Figure 6 shows the relative performance of the methods for each execution path based on their

ANRT, as defined above. The A+F+S execution path is used in each iteration in this application

code, so the results for this path are the most significant.

The new MFAXP solvers are the best on all problems for the A+F+S execution path, and

on the average are nearly twice as fast as the frontal solver FAMP. Neither MA38 nor MA28 are

able to take good advantage of the structure of these problems and, in fact, spend considerable

effort finding a different pivot sequence. Some savings can be achieved in these codes by turning

off the default permutation to block upper triangular form, which in general is not useful on these

problems. It should also be noted, as discussed above, that MA48, the successor to MA28 in the

Harwell Subroutine Library, should perform better than MA28 on these problems, at least on the

A+F+S execution path. However, on the rdist1 problem, Davis and Duff (1995) found that, on

a CRAY C90, MA38 was about six times faster than MA48 on the A+F+S execution path, and

nearly four times as fast on the F only path. The use of BLAS3 in the innermost loop of MFA2P, as

opposed to BLAS2 in the innermost loop of MFA1P, does not appear to offer any advantage, and
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on many problems it is slower than MFA1P. We attribute this to the fact that MFA1P uses a highly

optimized assembly language BLAS2 routine, while no comparably optimized BLAS3 routine was

available.

6.2 Problem Set 2

These six problems involve the steady-state simulation of equilibrium-stage processes using

SEPARATE, a simulation package developed at University of Illinois for steady-state simulation of

single and interlinked distillation columns (O’Neill et al., 1994). Matrix statistics for these problems

are shown in Table 4. This package uses a Naphtali-Sandholm (1971) formulation in which the

equations are grouped by equilibrium stage. The linear equation system that must be solved has

a block-tridiagonal or almost-block-tridiagonal form, with off-tridiagonal blocks corresponding to

interlinking streams between columns or pumparounds within a single column. Tables 4, 5, and 6

summarize the run time results for the A+F+S, F only and S only execution paths, respectively.

Figure 7 shows the relative performance of the methods for each execution path based on their

ANRT. The A+F+S execution path is used in each iteration in this application code, so the results

for this path are the most significant.

The new MFA1P solver is the best on all these problems for the A+F+S execution path, about

twice as fast as the frontal solver FAMP on the larger problems. Again, neither MA38 nor MA28

are able to take good advantage of the structure of these problems. It should be noted that the

performance of the frontal solver might be significantly improved here, and in Problem Set 1, if

some attempt had been made to improve the row ordering, for instance by using the heuristic

approach of Camarda and Stadtherr (1995). However, applying such reordering techniques can be

relatively expensive computationally.
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6.3 Problem Set 3

These six problems involve the dynamic simulation of equilibrium-stage processes using DYN-

DIST. Matrix statistics for these problems are shown in Table 7. DYNDIST is a prototype code

from Aspen Technology, Inc. for dynamic simulation of multicomponent distillation columns. This

dynamic simulator uses a global time step and solves an entire DAE system simultaneously. Tables

7, 8, and 9 summarize the run time results for the A+F+S, F only and S only execution paths,

respectively. Figure 8 shows the relative performance of the methods for each execution path based

on their ANRT.

For all these problems, on all execution paths, the frontal solver FAMP is the best, with the

new multifrontal solver MFA1P close behind. Given a very good row ordering, as in this case, the

frontal solver can be extremely efficient. Because it employs only a single frontal matrix, it does not

have the overhead expense required to keep track of the many frontal matrices in the multifrontal

approach.

6.4 Problem Set 4

Finally, we consider a problem set not derived from equilibrium-stage process simulation, but

from more general process simulation problems. This will demonstrate the performance of the

MFAXP codes in the absence of the good initial row and column ordering present in equilibrium-

stage simulation problems. These seven problems involve steady-state simulation problems solved

using SEQUEL-II, an equation-based simulation program developed as a prototype at the University

of Illinois (Stadtherr and Hilton, 1982; Zitney and Stadtherr, 1988). Matrix statistics for these

problems are shown in Table 10. Tables 10, 11, and 12 summarize the run time results for the

A+F+S, F only and S only execution paths, respectively. Figure 9 shows the relative performance

15



of the methods for each execution path based on their ANRT. It is also interesting to note that, for

the lhr 4k problem, Davis and Duff (1995) have found that, on a CRAY C90, MA38 is over twice

as fast as MA48 on both the A+F+S and F only execution paths.

As expected, on these problems, especially the larger ones, the MFAXP codes do not perform

well, and on the largest problem they are not even competitive due to extremely large computational

requirements. The MFAXP solvers require both a good row and column ordering, and while this is

a feature of equilibrium-stage process simulation problems, it is not a feature of process simulation

problems in general.

7 Concluding Remarks

We have demonstrated here how a simple multifrontal approach can be used to efficiently solve,

in a supercomputing environment, the sparse linear equation systems that arise in the simulation

of equilibrium-stage processes. The solution of such systems is typically the dominant item in the

overall simulation time. By taking advantage of the problem’s structure, the new approach provides

significant improvements over the general-purpose multifrontal approach as implemented in MA38.

On most problems, including those derived from ASPEN PLUS simulations, the new multifrontal

approach also provides significant improvements over the frontal method.
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Figure Captions

Figure 1. Example occurrence matrix. See text for discussion.

Figure 2. First frontal matrix in example problem.

Figure 3. First frontal matrix after elimination of variable 1. A u indicates an element of the U

factor and an ` an element of the L factor.

Figure 4. Second frontal matrix in example problem.

Figure 5. Second frontal matrix after elimination of variable 2. A u indicates an element of the U

factor and an ` an element of the L factor.

Figure 6. Average normalized run times for ASPEN PLUS matrices (Problem Set 1).

Figure 7. Average normalized run times for SEPARATE matrices (Problem Set 2)

Figure 8. Average normalized run times for DYNDIST matrices (Problem Set 3).

Figure 9. Average normalized run times for SEQUEL-II matrices (Problem Set 4). EX indicates

an excessive computational requirement, and NS when an execution path is not solved as a

result.
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1 2 3 4 5 6

1 × ×

2 × × ×

3 × ×

4 × × ×

5 × × ×

6 × ×

Figure 1: Example occurrence matrix. See text for discussion.
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1 2 4

2 × × ×

1 ×

3 ×

Figure 2: First frontal matrix in example problem.
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1 2 4

2 u u u

1 × ×

3 × ×

Figure 3: First frontal matrix after elimination of variable 1. A u indicates an element of the U
factor and an ` an element of the L factor.
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2 4

1 × ×

3 × ×

4 × ×

Figure 4: Second frontal matrix in example problem.
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2 4

1 u u

3 ×

4 ×

Figure 5: Second frontal matrix after elimination of variable 2. A u indicates an element of the U
factor and an ` an element of the L factor.
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Figure 6: Average normalized run times for ASPEN PLUS matrices (Problem Set 1).
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SEPARATE Matrices
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Figure 7: Average normalized run times for SEPARATE matrices (Problem Set 2).
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DYNDIST Matrices
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Figure 8: Average normalized run times for DYNDIST matrices (Problem Set 3).
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SEQUEL-II Matrices

A + F + S F Only S Only
0

2

4

6

39.9

3.36

1

EX EX

4.48

1.43
1.03

NS NS

1.19
1.49 1.41

NS NS

A
ve

ra
ge

 N
or

m
al

iz
ed

 R
un

 T
im

e
MA28

MA38

FAMP

MFA1P

MFA2P

Figure 9: Average normalized run times for SEQUEL-II matrices (Problem Set 4). EX indicates an excessive computational
requirement, and NS when an execution path is not solved as a result.
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Table 1: A+F+S Run times for ASPEN PLUS test problems.

Name N NZ as FAMP MA38 MA28 MFA1P MFA2P

v3 1078 16937 0.91 0.114 0.243 2.159 6.01x10−2 5.72x10−2

v10 1148 15729 0.94 0.109 0.227 1.862 6.10x10−2 5.79x10−2

v13 834 9713 0.95 6.35x10−2 0.140 0.983 4.20x10−2 4.01x10−2

mpex2 848 11413 0.96 6.60x10−2 0.176 0.299 4.27x10−2 4.21x10−2

mpex3 2473 46503 0.94 0.359 0.567 10.598 0.173 0.166

mpex4 2478 44075 0.95 0.317 0.559 9.19 0.172 0.164

mpmult1 2023 31894 0.95 0.234 0.472 6.131 0.13 0.117

rdist1 4134 94408 0.94 0.730 1.854 30.21 0.32 0.378

rdist2 3198 56934 0.95 0.392 0.696 16.11 0.22 0.26

rdist3 2398 61896 0.85 0.478 1.172 32.87 0.20 0.228

sumb 523 4998 0.95 3.22x10−2 8.30x10−2 0.314 2.18x10−2 2.26x10−2

traycalc 1145 20296 0.88 0.14 0.244 2.649 6.81x10−2 7.1x10−2

uosb 523 4998 0.95 3.22x10−2 8.29x10−2 0.315 2.19x10−2 2.20x10−2

userupp 1269 22508 0.89 0.154 0.289 3.310 7.39x10−2 7.9x10−2
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Table 2: Factor only timings for ASPEN PLUS test problems.

Name N FAMP MA38 MA28 MFA1P MFA2P

v3 1078 4.85x10−2 9.52x10−2 0.123 5.9x10−2 5.4x10−2

v10 1148 4.40x10−2 9.03x10−2 0.110 5.98x10−2 5.50x10−2

v13 834 3.04x10−2 5.74x10−2 6.42x10−2 4.10x10−2 3.89x10−2

mpex2 848 3.23x10−2 6.55x10−2 5.43x10−2 4.18x10−2 4.01x10−2

mpex3 2473 0.124 0.247 0.382 0.169 0.141

mpex4 2478 0.114 0.244 0.343 0.170 0.140

mpmult1 2023 8.5x10−2 0.182 0.24 0.128 0.10

rdist1 4134 0.248 0.595 0.903 0.28 0.327

rdist2 3198 0.15 0.311 0.548 0.189 0.224

rdist3 2398 0.156 0.394 1.17 0.175 0.190

sumb 523 1.71x10−2 3.18x10−2 2.9x10−2 2.13x10−2 2.04x10−2

traycalc 1145 5.29x10−2 0.105 0.144 6.66x10−2 6.1x10−2

uosb 523 1.71x10−2 3.19x10−2 2.91x10−2 2.13x10−2 2.0x10−2

userupp 1269 5.83x10−2 0.116 0.171 7.27x10−2 6.9x10−2
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Table 3: Solve only timings for ASPEN PLUS problems.

Name N FAMP MA38 MA28 MFA1P MFA2P

v3 1078 5.05x10−3 4.38x10−3 3.45x10−3 2.76x10−3 2.28x10−3

v10 1148 5.35x10−3 4.93x10−3 3.58x10−3 2.86x10−3 2.39x10−3

v13 834 3.08x10−3 3.83x10−3 2.54x10−3 2.02x10−3 1.71x10−3

mpex2 848 3.61x10−3 3.60x10−3 2.53x10−3 2.03x10−3 1.74x10−3

mpex3 2473 1.34x10−2 8.68x10−3 8.3x10−3 7.01x10−3 6.29x10−3

mpex4 2478 1.21x10−2 8.99x10−3 8.27x10−3 6.68x10−3 6.25x10−3

mpmult1 2023 1.04x10−2 8.31x10−3 6.57x10−3 5.21x 10−3 5.1x10−3

rdist1 4134 1.46x10−2 1.982x10−2 1.46x10−2 1.27x10−2 1.16x10−2

rdist2 3198 1.60x10−2 1.24x10−2 1.10x10−2 9.05x10−3 8.05x10−3

rdist3 2398 9.3x10−3 1.17x10−2 9.94x10−3 7.86x10−3 6.1x10−3

sumb 523 2.20x10−3 2.61x10−3 1.52x10−3 1.20x10−3 1.23x10−3

traycalc 1145 5.62x10−3 4.01x10−3 3.79x10−3 3.15x10−3 3.52x10−3

uosb 523 2.20x10−3 2.60x10−3 1.53x10−3 1.20x10−3 1.33x10−3

userupp 1269 6.20x10−3 4.39x10−3 4.16x10−3 3.35x10−3 3.75x10−3
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Table 4: A+F+S timings for SEPARATE problems.

Name N NZ as FAMP MA38 MA28 MFA1P MFA2P

sep56 4 504 4006 0.52 2.42x10−2 8.29x10−2 0.40 2.11x10−2 2.73x10−2

sep56 10 1176 16669 0.52 9.23x10−2 0.34 4.35 5.44x10−2 6.94x10−2

sep56 15 1736 33665 0.52 0.203 0.63 14.63 9.18x10−2 0.117

sep100 4 900 7203 0.53 4.18x10−2 0.17 1.22 3.53x10−2 4.62x10−2

sep100 10 2100 29902 0.53 0.163 0.61 13.04 9.40x10−2 0.123

sep100 15 3100 60333 0.53 0.35 1.14 36.11 0.161 0.21
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Table 5: Factor only timings for SEPARATE problems.

Name. N FAMP MA38 MA28 MFA1P MFA2P

sep56 4 504 1.46x10−2 2.67x10−2 2.63x10−2 1.80x10−2 2.12x10−2

sep56 10 1176 4.65x10−2 0.102 0.16 4.60x10−2 5.06x10−2

sep56 15 1736 8.54x10−2 0.19 0.534 7.70x10−2 8.07x10−2

sep100 4 900 2.63x10−2 5.02x10−2 5.04x10−2 2.84x10−2 3.54x10−2

sep100 10 2100 8.23x10−2 0.183 0.336 8.00x10−2 8.75x10−2

sep100 15 3100 0.153 0.346 0.99 0.13 0.16
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Table 6: Solve only timings for SEPARATE problems.

Name N FAMP MA38 MA28 MFA1P MFA2P

sep56 4 504 1.25x10−3 3.42x10−3 1.49x10−3 1.41x10−3 1.44x10−3

sep56 10 1176 3.08x10−3 6.86x10−3 3.9x10−3 3.02x10−3 3.11x10−3

sep56 15 1736 4.85x10−3 8.15x10−3 6.46x10−3 4.60x10−3 4.74x10−3

sep100 4 900 2.17x10−3 6.29x10−3 2.69x10−3 2.28x10−3 2.33x10−3

sep100 10 2100 5.48x10−3 1.27x10−2 7.16x10−3 5.20x10−3 5.28x10−3

sep100 15 3100 8.70x10−3 1.50x10−2 1.17x10−2 8.0x10−3 8.26x10−3
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Table 7: A+F+S timings for DYNDIST problems.

Name N NZ as FAMP MA38 MA28 MFA1P MFA2P

dyndist20 10 1465 8527 0.976 5.86x10−2 0.454 1.26 6.61x10−2 8.39x10−2

dyndist30 10 2125 12457 0.977 8.48x10−2 0.752 2.37 9.55x10−2 0.113

dyndist40 10 2785 16387 0.978 0.112 1.11 4.16 0.114 0.151

dyndist20 5 925 4987 0.977 3.50x10−2 0.180 0.412 3.80x10−2 4.89x10−2

dyndist40 5 1745 9547 0.979 6.45x10−2 0.346 1.209 6.90x10−2 8.96x10−2

dyndist50 5 2155 11827 0.980 7.85x10−2 0.428 1.776 8.50x10−2 0.103
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Table 8: Factor only timings for DYNDIST problems.

Name. N FAMP MA38 MA28 MFA1P MFA2P

dyndist20 10 1465 3.86x10−2 8.71x10−2 6.18x10−2 5.85x10−2 6.74x10−2

dyndist30 10 2125 5.62x10−2 0.128 9.14x10−2 8.10x10−2 9.73x10−2

dyndist40 10 2785 7.44x10−2 0.168 0.132 0.09 0.125

dyndist20 5 925 2.34x10−2 4.79x10−2 2.93x10−2 3.23x10−2 4.01x10−2

dyndist40 5 1745 4.40x10−2 9.09x10−2 5.63x10−2 6.01x10−2 7.09x10−2

dyndist50 5 2155 5.43x10−2 0.112 6.99x10−2 7.24x10−2 8.79x10−2
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Table 9: Solve only timings for DYNDIST problems.

Name N FAMP MA38 MA28 MFA1P MFA2P

dyndist20 10 1465 3.49x10−3 8.55x10−3 4.10x10−3 4.10x10−3 3.96x10−3

dyndist30 10 2125 5.03x10−3 1.21x10−2 5.98x10−3 5.75x10−3 5.74x10−3

dyndist40 10 2785 6.66x10−3 1.57x10−2 7.89x10−3 7.64x10−3 7.55x10−3

dyndist20 5 925 2.16x10−3 5.90x10−3 2.52x10−3 2.41x10−3 2.39x10−3

dyndist40 5 1745 4.04x10−3 1.09x10−2 4.77x10−3 4.32x10−3 4.28x10−3

dyndist50 5 2155 5.0x10−3 1.34x10−2 5.88x10−3 5.34x10−3 5.06x10−3
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Table 10: A+F+S run times for SEQUEL-II problems. EX indicates an excessive computational
requirement.

Name N NZ as FAMP MA38 MA28 MFA1P MFA2P

ngc 1235 16868 0.97 0.135 0.616 2.457 0.184 0.21

lhr 1477 18592 0.99 0.164 0.463 2.769 0.21 0.30

cyclo1 517 2420 0.98 2.17x10−2 6.55x10−2 0.169 3.31x10−2 5.24x10−2

beef 1197 12070 0.99 8.36x10−2 0.298 2.24 0.144 0.24

lhr 2k 2954 37206 0.99 0.316 0.927 4.267 0.471 0.63

lhr 4k 4101 82682 0.98 0.818 3.35 52.81 5.45 5.84

lhr 17k 17576 381975 1.0 3.96 10.176 522.01 EX EX
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Table 11: Factor only timings for SEQUEL-II problems. NS indicates not solved due to excessive
computational requirement in the A+F+S execution path.

Name N FAMP MA38 MA28 MFA1P MFA2P

ngc 1235 0.132 0.120 0.138 0.178 0.19

lhr 1477 0.143 0.126 0.146 0.20 0.27

cyclo1 517 1.83x10−2 2.11x10−2 1.94x10−2 3.21x10−2 5.12x10−2

beef 1197 5.14x10−2 9.29x10−2 0.103 0.131 0.21

lhr 2k 2954 0.169 0.251 0.41 0.391 0.58

lhr 4k 4101 0.347 0.62 2.31 5.36 5.68

lhr 17k 17576 1.63 2.89 27.67 NS NS
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Table 12: Solve only timings for SEQUEL-II problems. NS indicates not solved due to excessive
computational requirement in the A+F+S execution path.

Name N FAMP MA38 MA28 MFA1P MFA2P

ngc 1235 5.57x10−3 5.83x10−3 3.52x10−3 3.19x10−3 4.4x10−3

lhr 1477 7.0x10−3 7.37x10−3 4.18x10−3 3.60x10−3 5.67x10−3

cyclo1 517 1.91x10−3 2.17x10−3 1.29x10−3 1.34x10−3 1.23x10−3

beef 1197 4.61x10−3 4.62x10−3 3.4x10−3 2.79x10−3 4.38x10−3

lhr 2k 2954 1.39x10−2 1.472x10−2 1.6x10−2 5.2x 10−2 5.55x10−2

lhr 4k 4101 2.21x10−2 2.26x10−2 2.63x10−2 7.1x 10−2 8.1x10−2

lhr 17k 17576 9.13x10−2 0.10 0.135 NS NS
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