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/ Motivation \

® In process modeling, chemical engineers frequently need to solve nonlinear

equation systems in which the variables are constrained physically within

upper and lower bounds; that is, to solve:

e These problems may:
— Have multiple solutions
— Have no solution

— Be difficult to converge to any solution
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/ Motivation (Cont'd) \

e There is also frequent interest in globally minimizing a nonlinear function

subject to nonlinear equality and/or inequality constraints; that is, to solve

(globally):
min ¢(x)
subject to
h(x)=0
g(x) =0
xl < x < xV

e These problems may:

— Have multiple local minima (in some cases, it may be desirable to find

them all)

— Have no solution (infeasible NLP)

\ — Be difficult to converge to any local minima /
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/ Motivation (Cont'd) \

® One approach for dealing with these issues is interval analysis.

e Interval analysis can

— Provide the engineer with tools needed to solve modeling and optimization

problems with complete certainty.

— Provide problem-solving reliability not available when using standard local

methods.
— Deal automatically with rounding error, thus providing both mathematical

and computational guarantees.

e However, the primary drawback to this approach is that computational time
requirements may become quite high, so that its performance may be

unacceptable on some problems.
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/ Interval Methodology \

e Interval Newton/Generalized Bisection (IN/GB)

— Given a system of equations to solve, an initial interval (bounds on all

variables), and a solution tolerance:

— IN/GB can find (enclose) with mathematical and computational certainty

either all solutions or determine that no solutions exist.

— IN/GB can also be extended and employed as a deterministic approach for

global optimization problems.

e A general purpose approach; in general requires no simplifying assumptions
or problem reformulations.

e No strong assumptions about functions need to be made.
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/ Interval Methodology (Cont'd) \

Problem: Solve f(x) = 0 for all roots in interval X (%),

Basic iteration scheme: For a particular subinterval (box), X(k), perform root

inclusion test:

e (Range Test) Compute an interval extension (bounds on range) for each

function in the system.

— If 0 is not an element of any interval extension, delete the box. Otherwise,

e (Interval Newton Test) Compute the image, N(k), of the box by solving the

linear interval equation system
F’(X(’”)(N(’f) _ i(’f)) _ _f(g((k)>

— %) is some point in X(¥).

— F/ (X)) is an interval extension of the Jacobian of f(x) over the box
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/ Interval Methodology (Cont'd) \

e There is no solution in X (%)
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/ Interval Methodology (Cont'd) \

e There is a unique solution in X (k)
e This solution is in N (%)

e Additional interval-Newton steps will tightly enclose the solution with quadratic

convergence. (Point Newton method will also converge to solution from any

\ point in N (%) ) /
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/ Interval Methodology (Cont'd) \

k
"{J

X4

e Any solutions in X %) are in intersection of X (%) and N (¥)
e If intersection is sufficiently small, repeat root inclusion test

e Otherwise, bisect the intersection and apply root inclusion test to each

resulting subinterval
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Interval Methodology (Cont'd)
Can be extended to global optimization problems.
For unconstrained problems, solve for stationary points.
For constrained problems, solve for KKT or Fritz-John points.

Add an additional pruning condition (objective range test):

— Compute interval extension of objective function.

— If its lower bound is greater than a known upper bound on the global
minimum, prune this subinterval.

This combines IN/GB with a branch-and-bound scheme.

Key step, for either optimization or equation solving, is solution of linear
interval system

F/(X)(N — %) = —£(%)

Seek tightest possible bounds on solution (N — %), and thus on IN.
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/ Solution Set of Linear Interval System \
e Consider linear interval system Az = B.
e Solution setis defined: S = {z | Az=b,A € A,b € B}.
e Interval solution: An interval Z containing S.

e Computing the interval hull (tightest interval containing S) is NP-hard (Rohn
and Kreinovich, 1995).

e Several methods are available to compute an interval solution Z that contains
S, but that may not give tight bounds.

e Methods used in the context of interval-Newton:
— Preconditioned (inverse-midpoint) interval Gauss-Seidel

— Hybrid (pivoting/inverse-midpoint) preconditioner and real point selection
(HP/RP) (Gau and Stadtherr, 2002)

\ — LP strategy /
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LP Strategy for Linear Interval System

e Oettli & Prager(1964) theorem : Solution set S is defined by the constraints

‘AZ—B‘gAA\z\—i—AB

A

A — component-wise midpoint matrix of A
AA — component-wise half width matrix of A

B - component-wise midpoint vector of B

AB — component-wise half width vector of B

constant sign —— consider each orthant separately.

~

e To eliminate absolute value operation on z, the components of Z must keep a
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/ LP Strategy for Linear Interval System (Cont'd) \
e In each orthant, define ), a diagonal matrix whose entries are Q;:
1 Zj Z 0 )
o = 17=12,...,n
—1 z; < 0

N

Nov. 2002

e To determine bounds on S in each orthant, solve 2n linear programming

problems:
maximize (and minimize) z;, 7 =1,2,...,n
A —AAD, BY
s.t. N 7 <
—A —AAD,, B~

OéijZO, j:1,2,...,n

e To get optimal solution overall (interval hull), calculate extrema in all orthants

(2™ in worst scenario — exponential complexity)

/

University of Notre Dame

14



Department of Chemical Engineering

-

N

LP Strategy for Linear Interval System (Cont'd) \

Application to IN/GB methods:

e Solve linear interval system

e Only the part of N that intersects X needs to be found.

e If X is selected to be a corner of X, then the part of N — X that lies in X

is entirely in one orthant.

e Solution of interval-Newton equation can be sought using LP in only one
orthant. Tightest possible solution obtained, while avoiding exponential

time complexity.
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Numerical Experiments

LISS_LP(Linear Interval System Solver by Linear Programming) has been

developed.

Two error-in-variables parameter estimation problems (formulated as
unconstrained global optimization) were selected to illustrate the

improvements that can be achieved using LISS_LP.

We compare performance results of LISS_LP to HP/RP (Gau and Stadtherr,
2002) on a SUN Blade 1000 model 1600 workstation.

Performance results include

— Number of interval Newton tests performed (I-N tests)

— CPU time in seconds

~
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Results and Discussion \

e Problem 1. Parameter estimation in VLE model (van Laar equation)

e Formulated as unconstrained global optimization with 2 parameter variables

and 10 state variables.

e LP solver uses dense linear algebra.

HP/RP LISS_LP

I-N tests 303,589 156,182
CPU time (s) 664.4 496.7

Nov. 2002
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Results and Discussion (Cont'd)

e LP solver uses sparse linear algebra.

I-N tests/CPU time (s)

~

e Problem 2: Parameter estimation in heat exchanger network model.

e Five unconstrained global optimization problems with 4 parameter variables
and 13m (m = 4, 8, 12, 16, 20) state variables.

m  Variables HP/RP LISS_LP
56 1/0.12 2/0.27

8 108 375/211.8 44/38.1

12 160 363/498.6 299/346.0

16 212 188/645.8 83/316.8

20 264 220/1357.3 81/504.9
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/ Results and Discussion (Cont'd)

Nov. 2002

e Trefethen Challenge Problem #4 — Find the Global Minimum

f(z,y) = exp(sin(50x)) + sin(60 exp(y)) + sin(70sin(x)) + sin(sin(80y)) —
sin(10(z + y)) + (2® +y*) /4, =z €[-1,1]; ye€[-1,1]

\
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/ Results and Discussion (Cont'd) \

e Solution

x € [—0.02440307969437517, —0.02440307969437516]
y € [0.2106124271553557,0.2106124271553558]
f € [—3.306868647475245, —3.306868647475232]

e Global minimum is easily found using interval approach

HP LISS_LP

I-N tests 1814 1179
CPU time (s) 0.15 0.16

e On relatively easy problems, LP-based strategy is not needed, but still can be

used without significant loss of efficiency due to LP overhead.
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/ Concluding Remarks \

e An LP-based method can be used to solve the linear interval system arising in
the context of the interval-Newton approach for nonlinear equation solving

and global optimization.

e The method can obtain tighter bounds on the solution set than standard
methods, and thus lead to a large reduction in the number of subintervals that

must be tested during the interval-Newton procedure.

e The overhead required to solve the LP subproblems may lead to relatively

smaller improvements in overall computation time.

e The interval methodology is a powerful approach for deterministic global

optimization.
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