

Motivation

 In process modeling, chemical engineers frequently need to solve nonlinear equation systems in which the variables are constrained physically within upper and lower bounds; that is, to solve:

 $\begin{aligned} \mathbf{f}(\mathbf{x}) &= \mathbf{0} \\ \mathbf{x}^L \leq \mathbf{x} \leq \mathbf{x}^U \end{aligned}$

- These problems may:
 - Have multiple solutions
 - Have no solution
 - Be difficult to converge to any solution

Motivation (Cont'd)

 There is also frequent interest in globally minimizing a nonlinear function subject to nonlinear equality and/or inequality constraints; that is, to solve (globally):

```
\min_{\mathbf{x}} \phi(\mathbf{x})
```

subject to

 $egin{aligned} \mathbf{h}(\mathbf{x}) &= \mathbf{0} \ \mathbf{g}(\mathbf{x}) &\geq \mathbf{0} \ \mathbf{x}^L &\leq \mathbf{x} \leq \mathbf{x}^U \end{aligned}$

- These problems may:
 - Have multiple local minima (in some cases, it may be desirable to find them all)
 - Have no solution (infeasible NLP)
 - Be difficult to converge to any local minima

Motivation (Cont'd)

- One approach for dealing with these issues is *interval analysis*.
- Interval analysis can
 - Provide the engineer with tools needed to solve modeling and optimization problems with complete certainty.
 - Provide problem-solving reliability not available when using standard local methods.
 - Deal automatically with rounding error, thus providing both mathematical and computational guarantees.
- However, the primary drawback to this approach is that computational time requirements may become quite high, so that its performance may be unacceptable on some problems.

Interval Methodology

- Interval Newton/Generalized Bisection (IN/GB)
 - Given a system of equations to solve, an initial interval (bounds on all variables), and a solution tolerance:
 - IN/GB can find (enclose) with mathematical and computational certainty either all solutions or determine that no solutions exist.
 - IN/GB can also be extended and employed as a deterministic approach for global optimization problems.
- A general purpose approach; in general requires no simplifying assumptions or problem reformulations.
- No strong assumptions about functions need to be made.

Interval Methodology (Cont'd)

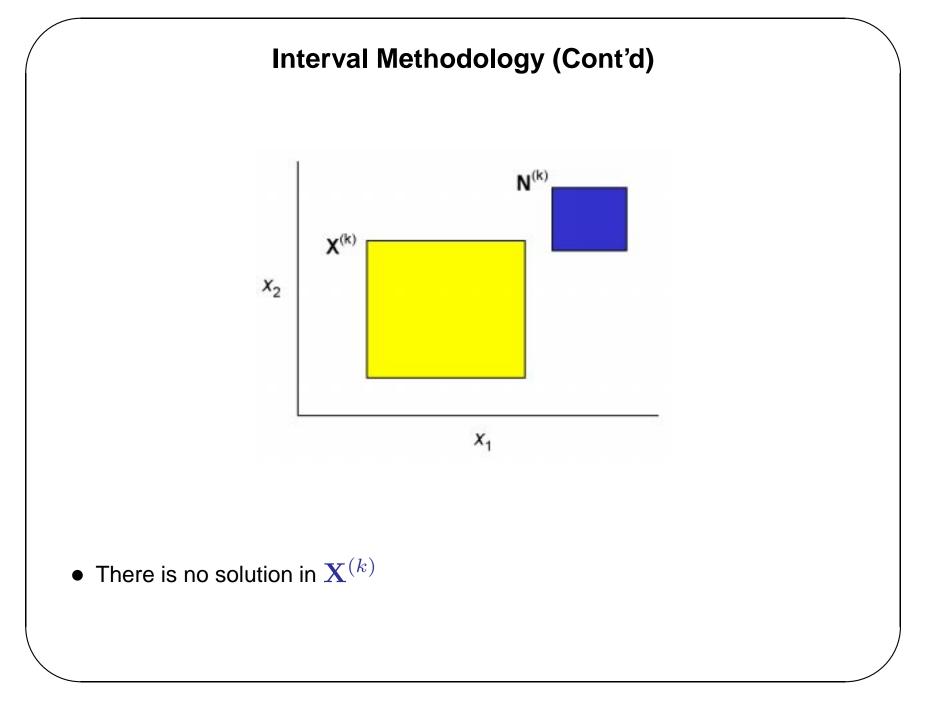
Problem: Solve $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ for all roots in interval $\mathbf{X}^{(0)}$.

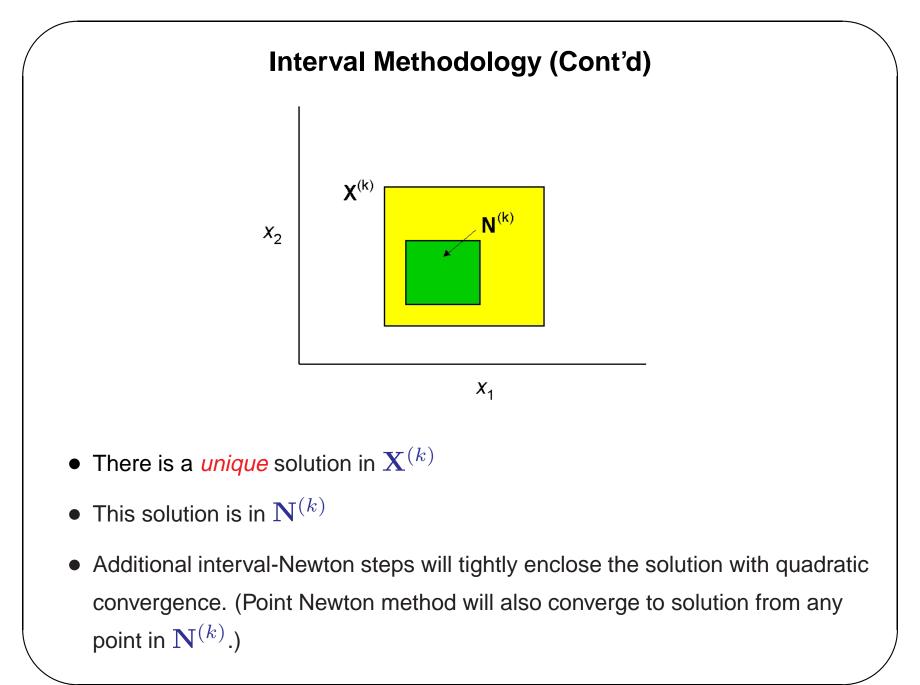
Basic iteration scheme: For a particular subinterval (box), $\mathbf{X}^{(k)}$, perform root inclusion test:

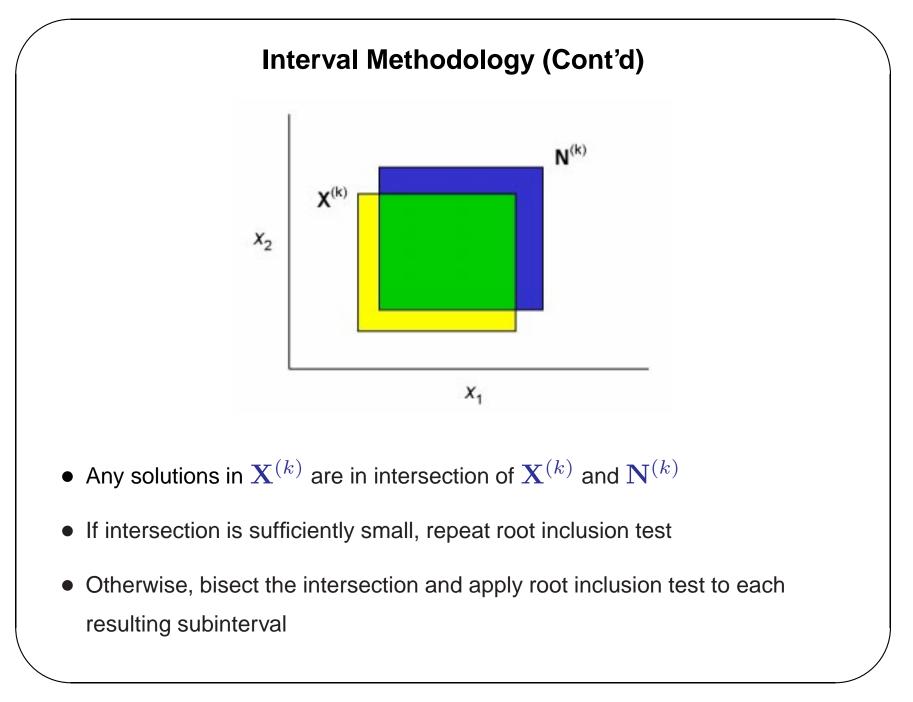
- (Range Test) Compute an interval extension (bounds on range) for each function in the system.
 - If 0 is not an element of any interval extension, delete the box. Otherwise,
- (Interval Newton Test) Compute the *image*, $\mathbf{N}^{(k)}$, of the box by solving the linear interval equation system

$$\mathbf{F}'(\mathbf{X}^{(k)})(\mathbf{N}^{(k)} - \tilde{\mathbf{x}}^{(k)}) = -\mathbf{f}(\tilde{\mathbf{x}}^{(k)})$$

- $\tilde{\mathbf{x}}^{(k)}$ is some point in $\mathbf{X}^{(k)}$.
- $\mathbf{F}'(\mathbf{X}^{(k)})$ is an interval extension of the Jacobian of $\mathbf{f}(\mathbf{x})$ over the box $\mathbf{X}^{(k)}$.







Interval Methodology (Cont'd)

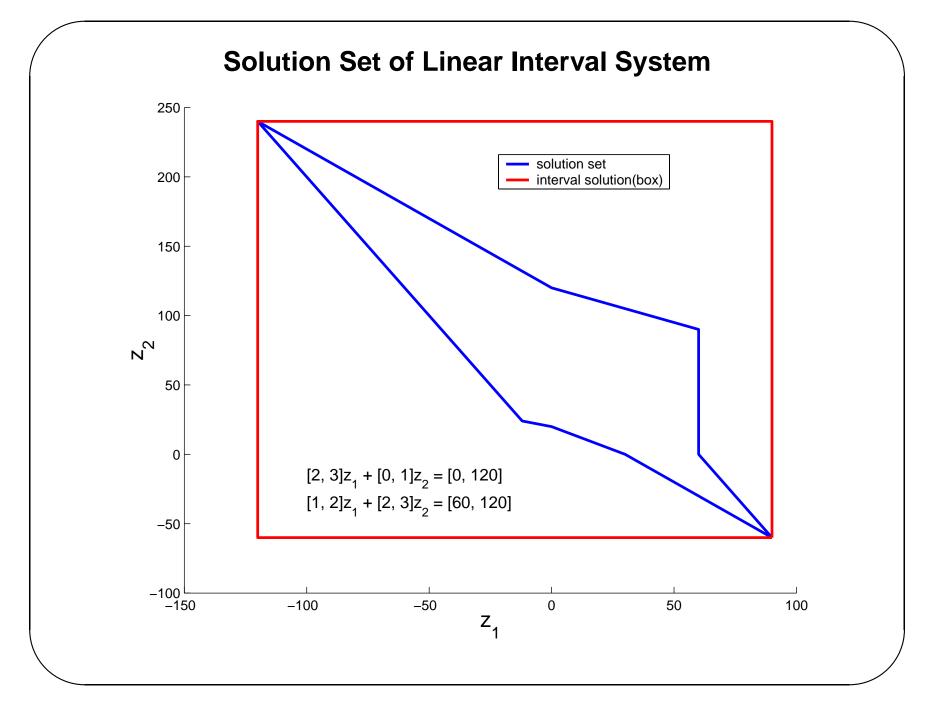
- Can be extended to global optimization problems.
- For unconstrained problems, solve for stationary points.
- For constrained problems, solve for KKT or Fritz-John points.
- Add an additional pruning condition (objective range test):
 - Compute interval extension of objective function.
 - If its lower bound is greater than a known upper bound on the global minimum, prune this subinterval.
- This combines IN/GB with a branch-and-bound scheme.
- Key step, for either optimization or equation solving, is solution of linear interval system

$$\mathbf{F}'(\mathbf{X})(\mathbf{N} - \tilde{\mathbf{x}}) = -\mathbf{f}(\tilde{\mathbf{x}})$$

Seek tightest possible bounds on solution $(N - \tilde{x})$, and thus on N.

Solution Set of Linear Interval System

- Consider linear interval system Az = B.
- Solution set is defined: $\mathbf{S} = \{ \mathbf{z} \mid \tilde{\mathbf{A}}\mathbf{z} = \mathbf{b}, \tilde{\mathbf{A}} \in \mathbf{A}, \mathbf{b} \in \mathbf{B} \}.$
- Interval solution: An interval \mathbf{Z} containing \mathbf{S} .
- Computing the interval hull (tightest interval containing S) is NP-hard (Rohn and Kreinovich, 1995).
- Several methods are available to compute an interval solution Z that contains
 S, but that may not give tight bounds.
- Methods used in the context of interval-Newton:
 - Preconditioned (inverse-midpoint) interval Gauss-Seidel
 - Hybrid (pivoting/inverse-midpoint) preconditioner and real point selection (HP/RP) (Gau and Stadtherr, 2002)
 - LP strategy



LP Strategy for Linear Interval System

• Oettli & Prager(1964) theorem : Solution set S is defined by the constraints

$$\left| \hat{\mathbf{A}} \mathbf{z} - \hat{\mathbf{B}} \right| \le \Delta \mathbf{A} \left| \mathbf{z} \right| + \Delta \mathbf{B}$$

 $\hat{\mathbf{A}}$ – component-wise midpoint matrix of \mathbf{A}

 ΔA – component-wise half width matrix of A

 $\hat{\boldsymbol{B}}$ – component-wise midpoint vector of \boldsymbol{B}

 $\Delta\!B$ – component-wise half width vector of B

To eliminate absolute value operation on z, the components of z must keep a constant sign → consider each orthant separately.

LP Strategy for Linear Interval System (Cont'd)

• In each orthant, define D_{α} , a diagonal matrix whose entries are α_i :

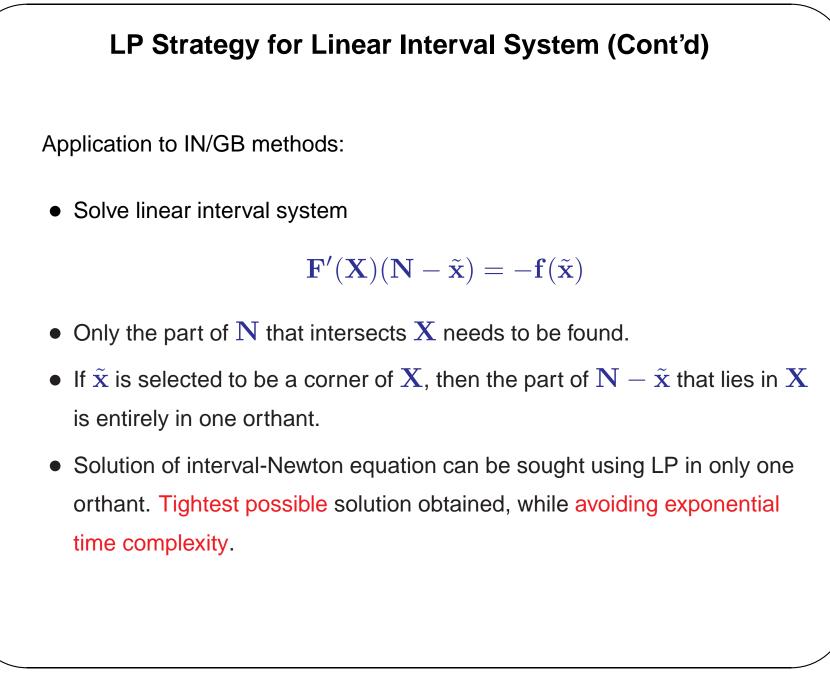
$$\alpha_j = \begin{cases} 1 & \mathbf{z}_j \ge 0\\ -1 & \mathbf{z}_j < 0 \end{cases} \quad j = 1, 2, \dots, n$$

• To determine bounds on S in each orthant, solve 2n linear programming problems:

maximize (and minimize)
$$\mathbf{z}_j, \ j = 1, 2, \dots, n$$

s.t. $\begin{pmatrix} \hat{\mathbf{A}} - \Delta \mathbf{A} D_{\alpha} \\ -\hat{\mathbf{A}} - \Delta \mathbf{A} D_{\alpha} \end{pmatrix} \mathbf{z} \leq \begin{pmatrix} \mathbf{B}^U \\ -\mathbf{B}^L \end{pmatrix}$
 $\alpha_j \mathbf{z}_j \geq 0, \ j = 1, 2, \dots, n$

 To get optimal solution overall (interval hull), calculate extrema in all orthants (2ⁿ in worst scenario — exponential complexity)



Numerical Experiments

- LISS_LP(Linear Interval System Solver by Linear Programming) has been developed.
- Two error-in-variables parameter estimation problems (formulated as unconstrained global optimization) were selected to illustrate the improvements that can be achieved using LISS_LP.
- We compare performance results of LISS_LP to HP/RP (Gau and Stadtherr, 2002) on a SUN Blade 1000 model 1600 workstation.
- Performance results include
 - Number of interval Newton tests performed (I-N tests)
 - CPU time in seconds

Results and Discussion

- Problem 1: Parameter estimation in VLE model (van Laar equation)
- Formulated as unconstrained global optimization with 2 parameter variables and 10 state variables.
- LP solver uses dense linear algebra.

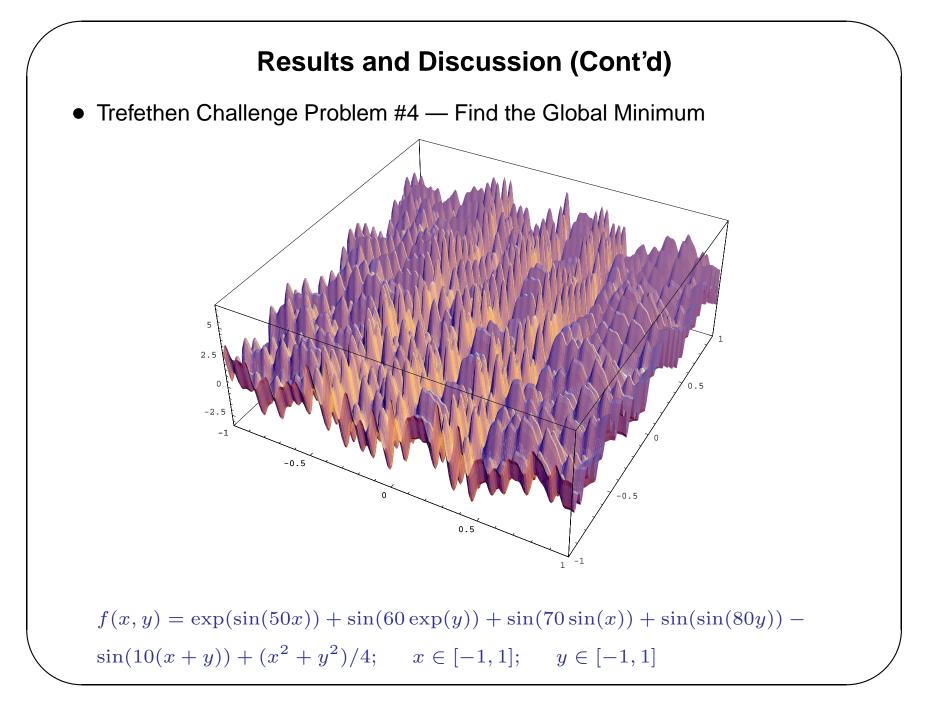
	HP/RP	LISS_LP
I-N tests	303,589	156,182
CPU time (s)	664.4	496.7

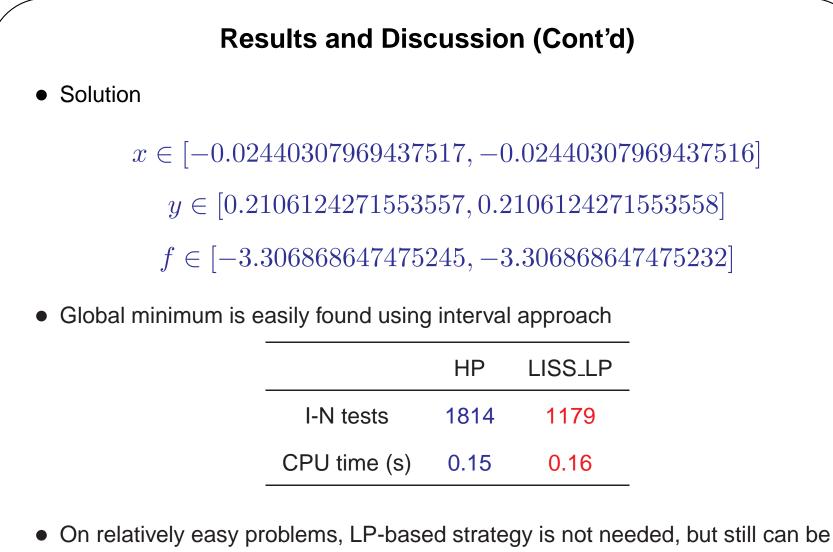
Results and Discussion (Cont'd)

- Problem 2: Parameter estimation in heat exchanger network model.
- Five unconstrained global optimization problems with 4 parameter variables and $13m \ (m = 4, 8, 12, 16, 20)$ state variables.
- LP solver uses sparse linear algebra.

m	Variables	HP/RP	LISS_LP
4	56	1/0.12	2/0.27
8	108	375/211.8	44/38.1
12	160	363/498.6	299/346.0
16	212	188/645.8	83/316.8
20	264	220/1357.3	81/504.9

I-N tests/CPU time (s)





used without significant loss of efficiency due to LP overhead.

Concluding Remarks

- An LP-based method can be used to solve the linear interval system arising in the context of the interval-Newton approach for nonlinear equation solving and global optimization.
- The method can obtain tighter bounds on the solution set than standard methods, and thus lead to a large reduction in the number of subintervals that must be tested during the interval-Newton procedure.
- The overhead required to solve the LP subproblems may lead to relatively smaller improvements in overall computation time.
- The interval methodology is a powerful approach for deterministic global optimization.

