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Motivation

• In process modeling, chemical engineers frequently need to solve nonlinear

equation systems in which the variables are constrained physically within

upper and lower bounds; that is, to solve:

f(x) = 0

xL ≤ x ≤ xU

• These problems may:

– Have multiple solutions

– Have no solution

– Be difficult to converge to any solution
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Motivation (Cont’d)

• There is also frequent interest in globally minimizing a nonlinear function

subject to nonlinear equality and/or inequality constraints; that is, to solve

(globally):

min
x

φ(x)

subject to

h(x) = 0

g(x) ≥ 0

xL ≤ x ≤ xU

• These problems may:

– Have multiple local minima (in some cases, it may be desirable to find

them all)

– Have no solution (infeasible NLP)

– Be difficult to converge to any local minima

Nov. 2002 3



Department of Chemical Engineering University of Notre Dame'

&

$

%

Motivation (Cont’d)

• One approach for dealing with these issues is interval analysis.

• Interval analysis can

– Provide the engineer with tools needed to solve modeling and optimization

problems with complete certainty.

– Provide problem-solving reliability not available when using standard local

methods.

– Deal automatically with rounding error, thus providing both mathematical

and computational guarantees.

• However, the primary drawback to this approach is that computational time

requirements may become quite high, so that its performance may be

unacceptable on some problems.
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Interval Methodology

• Interval Newton/Generalized Bisection (IN/GB)

– Given a system of equations to solve, an initial interval (bounds on all

variables), and a solution tolerance:

– IN/GB can find (enclose) with mathematical and computational certainty

either all solutions or determine that no solutions exist.

– IN/GB can also be extended and employed as a deterministic approach for

global optimization problems.

• A general purpose approach; in general requires no simplifying assumptions

or problem reformulations.

• No strong assumptions about functions need to be made.
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Interval Methodology (Cont’d)

Problem: Solve f(x) = 0 for all roots in interval X(0).

Basic iteration scheme: For a particular subinterval (box), X(k), perform root

inclusion test:

• (Range Test) Compute an interval extension (bounds on range) for each

function in the system.

– If 0 is not an element of any interval extension, delete the box. Otherwise,

• (Interval Newton Test) Compute the image, N(k), of the box by solving the

linear interval equation system

F′(X(k))(N(k) − x̃(k)) = −f(x̃(k))

– x̃(k) is some point in X(k).

– F′ (X(k)
)

is an interval extension of the Jacobian of f(x) over the box

X(k).
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Interval Methodology (Cont’d)

• There is no solution in X(k)
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Interval Methodology (Cont’d)

• There is a unique solution in X(k)

• This solution is in N(k)

• Additional interval-Newton steps will tightly enclose the solution with quadratic

convergence. (Point Newton method will also converge to solution from any

point in N(k).)
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Interval Methodology (Cont’d)

• Any solutions in X(k) are in intersection of X(k) and N(k)

• If intersection is sufficiently small, repeat root inclusion test

• Otherwise, bisect the intersection and apply root inclusion test to each

resulting subinterval
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Interval Methodology (Cont’d)

• Can be extended to global optimization problems.

• For unconstrained problems, solve for stationary points.

• For constrained problems, solve for KKT or Fritz-John points.

• Add an additional pruning condition (objective range test):

– Compute interval extension of objective function.

– If its lower bound is greater than a known upper bound on the global

minimum, prune this subinterval.

• This combines IN/GB with a branch-and-bound scheme.

• Key step, for either optimization or equation solving, is solution of linear

interval system

F′(X)(N − x̃) = −f(x̃)

Seek tightest possible bounds on solution (N − x̃), and thus on N.
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Solution Set of Linear Interval System

• Consider linear interval system Az = B.

• Solution set is defined: S = {z | Ãz = b, Ã ∈ A,b ∈ B}.

• Interval solution: An interval Z containing S.

• Computing the interval hull (tightest interval containing S) is NP-hard (Rohn

and Kreinovich, 1995).

• Several methods are available to compute an interval solution Z that contains

S, but that may not give tight bounds.

• Methods used in the context of interval-Newton:

– Preconditioned (inverse-midpoint) interval Gauss-Seidel

– Hybrid (pivoting/inverse-midpoint) preconditioner and real point selection

(HP/RP) (Gau and Stadtherr, 2002)

– LP strategy
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Solution Set of Linear Interval System
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LP Strategy for Linear Interval System

• Oettli & Prager(1964) theorem : Solution set S is defined by the constraints∣∣∣Âz − B̂
∣∣∣ ≤ ∆A |z| + ∆B

Â – component-wise midpoint matrix of A

∆A– component-wise half width matrix of A

B̂ – component-wise midpoint vector of B

∆B – component-wise half width vector of B

• To eliminate absolute value operation on z, the components of z must keep a

constant sign −→ consider each orthant separately.
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LP Strategy for Linear Interval System (Cont’d)

• In each orthant, define Dα, a diagonal matrix whose entries are αj :

αj =

{
1 zj ≥ 0

−1 zj < 0
j = 1, 2, . . . , n

• To determine bounds on S in each orthant, solve 2n linear programming

problems:

maximize (and minimize) zj , j = 1, 2, . . . , n

s.t.


 Â − ∆ADα

−Â − ∆ADα


 z ≤


 BU

−BL




αjzj ≥ 0, j = 1, 2, . . . , n

• To get optimal solution overall (interval hull), calculate extrema in all orthants

(2n in worst scenario — exponential complexity)
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LP Strategy for Linear Interval System (Cont’d)

Application to IN/GB methods:

• Solve linear interval system

F′(X)(N − x̃) = −f(x̃)

• Only the part of N that intersects X needs to be found.

• If x̃ is selected to be a corner of X, then the part of N − x̃ that lies in X
is entirely in one orthant.

• Solution of interval-Newton equation can be sought using LP in only one

orthant. Tightest possible solution obtained, while avoiding exponential

time complexity.
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Numerical Experiments

• LISS LP(Linear Interval System Solver by Linear Programming) has been

developed.

• Two error-in-variables parameter estimation problems (formulated as

unconstrained global optimization) were selected to illustrate the

improvements that can be achieved using LISS LP.

• We compare performance results of LISS LP to HP/RP (Gau and Stadtherr,

2002) on a SUN Blade 1000 model 1600 workstation.

• Performance results include

– Number of interval Newton tests performed (I-N tests)

– CPU time in seconds
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Results and Discussion

• Problem 1: Parameter estimation in VLE model (van Laar equation)

• Formulated as unconstrained global optimization with 2 parameter variables

and 10 state variables.

• LP solver uses dense linear algebra.

HP/RP LISS LP

I-N tests 303,589 156,182

CPU time (s) 664.4 496.7
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Results and Discussion (Cont’d)

• Problem 2: Parameter estimation in heat exchanger network model.

• Five unconstrained global optimization problems with 4 parameter variables

and 13m (m = 4, 8, 12, 16, 20) state variables.

• LP solver uses sparse linear algebra.

I-N tests/CPU time (s)

m Variables HP/RP LISS LP

4 56 1/0.12 2/0.27

8 108 375/211.8 44/38.1

12 160 363/498.6 299/346.0

16 212 188/645.8 83/316.8

20 264 220/1357.3 81/504.9
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Results and Discussion (Cont’d)

• Trefethen Challenge Problem #4 — Find the Global Minimum
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f(x, y) = exp(sin(50x)) + sin(60 exp(y)) + sin(70 sin(x)) + sin(sin(80y)) −
sin(10(x + y)) + (x2 + y2)/4; x ∈ [−1, 1]; y ∈ [−1, 1]
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Results and Discussion (Cont’d)

• Solution

x ∈ [−0.02440307969437517,−0.02440307969437516]

y ∈ [0.2106124271553557, 0.2106124271553558]

f ∈ [−3.306868647475245,−3.306868647475232]

• Global minimum is easily found using interval approach

HP LISS LP

I-N tests 1814 1179

CPU time (s) 0.15 0.16

• On relatively easy problems, LP-based strategy is not needed, but still can be

used without significant loss of efficiency due to LP overhead.
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Concluding Remarks

• An LP-based method can be used to solve the linear interval system arising in

the context of the interval-Newton approach for nonlinear equation solving

and global optimization.

• The method can obtain tighter bounds on the solution set than standard

methods, and thus lead to a large reduction in the number of subintervals that

must be tested during the interval-Newton procedure.

• The overhead required to solve the LP subproblems may lead to relatively

smaller improvements in overall computation time.

• The interval methodology is a powerful approach for deterministic global

optimization.
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