Computation of Equilibrium States and Bifurcations in Ecosystem Models Using Interval Analysis

C. Ryan Gwaltney Mark A. Stadtherr University of Notre Dame Department of Chemical and Biomolecular Engineering

AIChE 2005 Annual Meeting

Motivation

• Nonlinear dynamic systems are of frequent interest in engineering and science

$$\dot{\mathbf{x}} = \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, \mathbf{p})$$

 $\mathbf{x} =$ state variable vector

p = parameter vector

- Common problems include computing: equilibrium points, limit cycles, bifurcations of equilibria, bifurcations of cycles
- Need a method that is guaranteed to find all equilibrium points and bifurcations of equilibria
- Of specific interest here are food chain/web models
 - Used to predict impact on ecosystems of introducing new materials (ionic liquids) into the environment

Motivation – Ionic Liquids

- Ionic liquids (ILs) are salts that are liquids at or near room temperature
- Many promising properties
 - Immeasurably low vapor pressure Do not evaporate
 - Many potential applications, including replacement solvents for volatile organic compounds (VOCs) currently used as solvents
 - Eliminates a major source of air pollution
- Could enter the environment via aqueous waste streams
 - Relatively little environmental toxicity information available
 - Single species toxicity information alone is not sufficient to predict ecosystem impacts
- Need a tool that will predict ecosystem impacts from single species toxicity information

Predator/Prey Models

- Systems of ordinary differential equations that describe the rates of change in species biomass
- Model parameters have real-life, physical meaning
- Though often simple in form, these models can exhibit rich mathematical behavior including varying numbers and stability of equilibria
- Many different models are possible, depending on the models for growth, predation, etc.
- We would like to use single species IL toxicity data in conjunction with these predator/prey models to predict the impact of IL contamination

Experimentally Verified Algae-Rotifer Model

Experimentally Verified Algae-Rotifer Model

$$\frac{dN}{dt} = \delta (N_i - N) - \frac{b_C NC}{K_C + N}$$

$$\frac{dC}{dt} = \frac{b_C NC}{K_C + N} - \frac{1}{\varepsilon} \frac{b_B CB}{K_B + C} - \delta C$$

$$\frac{dR}{dt} = \frac{b_B CR}{K_B + C} - \left(\delta + m + \lambda\right)R$$

$$\frac{dB}{dt} = \frac{b_B CR}{K_B + C} - (\delta + m)B$$

- *N* : Nitrogen (μ mol/L)
- C: C. vulgaris (µmol/L)
- *R* : Reproducing *B*. *calyciflorus* (µmol/L)
- B: Total B. calyciflorus (µmol/L)
- N_i : Nitrogen concentration of the inflow medium (µmol/L)
- δ : Dilution rate (/day)
- *m* : Mortality rate (/day)
- ε : Assimilation efficiency
- λ : Fecundity decay rate (/day)
- b_C : Max birth rate of C. vulgaris (/day)
- b_B : Max birth rate of *B*. *calyciflorus* (/day)
- K_C : Half-saturation constant for *C. vulgaris* (µmol/L)
- K_B : Half-saturation constant for B. calyciflorus (µmol/L)

Bifurcations of Equilibria

- Goal locate equilibrium points and bifurcations in predator/prey models
- A bifurcation is a change in the topological type of the phase portrait as one or more system parameters are varied
 - Codimension-one: One parameter (α) can be varied
 - Codimension-two: Two parameters (α, β) can be varied
- Bifurcations are located by solving a nonlinear algebraic system consisting of the equilibrium conditions along with one or more augmenting (test) functions

Bifurcations and Test Functions

- Codim 1: Fold and transcritical bifurcations
 - As α is varied, two equilibria collide
 - Convenient test function (avoiding calculation of eigenvalues):

$$\det \left(J(\boldsymbol{x}, \boldsymbol{\alpha}) \right) = 0$$

- Codim 1: Hopf bifurcation
 - As α is varied, J(x, α) has a pair of imaginary complex conjugate eigenvalues that cross the imaginary axis: possible stability change
 - Convenient test function based on bialternate product:

 $\det \left(2\mathbf{J}(\boldsymbol{x}, \boldsymbol{\alpha}) \otimes \mathbf{I} \right) = \mathbf{0}$

- Codim 2: Fold-Fold and Fold-Hopf
 - Located by using both augmenting functions:

det $(J(\mathbf{x},\alpha,\beta)) = 0$ & det $(2J(\mathbf{x},\alpha,\beta) \otimes I) = 0$

Locating Equilibrium States and Bifurcations

- Equilibrium states: Set the equilibrium conditions (model equations) equal to zero and solve for *x*
- Bifurcations of equilibria: Solve equilibrium conditions and augmenting function(s) for x and α (and β)
- These equation systems may have multiple solutions
- Typically these systems are solved using a continuation-based strategy
 - Initialization dependent
 - No guarantee of locating all branches
- Interval mathematics provides a method that is:
 - Initialization independent
 - Capable of locating all solution branches with certainty (see also Gehrke & Marquardt, 1997)

Interval-Newton/Generalized Bisection Method (IN/GB)

- Given a system of equations, an initial interval (bounds on all variables), and a solution tolerance:
 - IN/GB can find (enclose), with mathematical and computational certainty, all solutions to the equation system, or it can determine that no solutions exist
 - The equation system must have a finite number of real roots in the initial interval
 - No strong assumptions or simplifications to the equation system are needed

IN/GB Method

Problem: Solve f(x) = 0 for all roots in the interval $X^{(0)}$ Basic iteration scheme: For a particular subinterval (box), $X^{(k)}$, perform root inclusion test:

- Range test: Compute an interval extension (bounds on range) for each function in the system: F(X^(k))
 If 0 is not a member of F(X^(k)), delete the box
- Interval Newton test: Compute the image, N^(k), of the box by solving the linear interval equation system

$$F'(X^{(k)})(N^{(k)} - x^{(k)}) = -f(x^{(k)})$$

 $- x^{(k)}$ is a point in $X^{(k)}$

- $F'(X^{(k)})$ is the interval extension of the Jacobian matrix of f(x) over the interval $X^{(k)}$

IN/GB Method: Interval Newton Test

• There is no solution in X^(k)

IN/GB Method: Interval Newton Test

- There is a unique solution in $X^{(k)}$ that is also in $N^{(k)}$
- Additional interval-Newton steps will tightly enclose the solution with quadratic convergence

IN/GB Method: Interval Newton Test

- Any solutions in $\mathbf{X}^{(k)}$ are in $\mathbf{X}^{(k)} \cap \mathbf{N}^{(k)}$
- If the intersection is sufficiently small, repeat the root inclusion test
- Otherwise, bisect the intersection and apply the root inclusion test to each resulting subinterval

Algae-Rotifer Model

 δ – Dilution rate (/day)

Solution Branch Diagram $(N_i = 100)$

Discussion – Algae-Rotifer Model

- Computation times are good (3.0 GHz Xeon/Linux)
 - Average 0.06 s to solve for equilibrium states
 - Average 7 s to solve for fold/transcritical bifurcations
 - Average 27 s to solve for Hopf bifurcations
- Increasing the dilution rate has two effects
 - Washing in more nutrient
 - Washing out more species biomass
- Initially, increasing the nutrient wash in to the system has the predominate effect of increasing the biomass of b. calyciflorus
 - After a point, further enriching the system becomes counter productive and the state becomes unstable
- Further increasing the dilution rate will eventually stabilize the system, and then cause a decrease in the b. calyciflorus population due to washout

Food Web Model

- Hypothetical food web model
 - 7 species
 - 2 producers that compete for resources
 - 5 predators
- Predator response functions:
 - Linear (Lotka-Volterra)
 - Hyperbolic (Holling II)
 - Combination of above

Food Web Model

- Simultaneous approach
 - Solve nonlinear equations (7 x 7) for all steady-states simultaneously
- Sequential approach
 - Solve sequence of subproblems corresponding to feasible zero-nonzero states
 - In this case, 2⁷ = 128 zero-nonzero states are possible; analysis shows that 55 are feasible
 - Subproblems may be linear or nonlinear depending on the model
- Here we apply IN/GB to the simultaneous approach

 K_2 – Carrying capacity of species 2

Solution Branch Diagram

Average 5.1 s per parameter set

Model II: Hybrid Predator Response

Solution Branch Diagram

Average 60 s per parameter set

Stable

Unstable

Discussion – Food Web Model

- System behavior between the two models is identical when comparing states with zero biomass levels for species 3
- Changing species 3 to a hyperbolic predator destabilizes what was previously a stable, coexisting steady-state
- In both cases, a minimum carrying capacity is necessary for species 2 to coexist in a stable steady-state with the competitor species 1

Concluding Remarks

- Demonstrated the utility of an interval-Newton method combined with generalized bisection for the computationally rigorous and reliable location of
 - Fold, transcritical, and Hopf codimension-1 bifurcations
 - Fold-fold or Fold-Hopf codimension-2 bifurcations
 - Equilibrium states
- The utility of this method may be quite useful in dealing with systems with large numbers of solutions
 - The number of solutions is often unknown *a priori* and may not be a trivial problem to discern

Acknowledgements

- Department of Education Graduate Assistance in Areas of National Need (GAANN) grant
- Arthur J. Schmitt Foundation
- State of Indiana 21st Century Research and Technology Fund
- Bristol-Myers Squibb Company
- National Oceanic and Atmospheric Administration (NOAA) under grant #NA04OAR460076