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Motivation

• Nonlinear dynamic systems are of frequent interest in 
engineering and science

• Common problems include computing: equilibrium points, 
limit cycles, bifurcations of equilibria, bifurcations of 
cycles

• Need a method that is guaranteed to find all equilibrium 
points and bifurcations of equilibria

• Of specific interest here are food chain/web models
– Used to predict impact on ecosystems of introducing new materials 

(ionic liquids) into the environment
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Motivation – Ionic Liquids

• Ionic liquids (ILs) are salts that are liquids at or near room 
temperature

• Many promising properties
– Immeasurably low vapor pressure – Do not evaporate
– Many potential applications, including replacement solvents for 

volatile organic compounds (VOCs) currently used as solvents
– Eliminates a major source of air pollution

• Could enter the environment via aqueous waste streams
– Relatively little environmental toxicity information available
– Single species toxicity information alone is not sufficient to predict 

ecosystem impacts

• Need a tool that will predict ecosystem impacts from single 
species toxicity information



Predator/Prey Models

• Systems of ordinary differential equations that describe the 
rates of change in species biomass

• Model parameters have real-life, physical meaning
• Though often simple in form, these models can exhibit rich 

mathematical behavior including varying numbers and 
stability of equilibria

• Many different models are possible, depending on the 
models for growth, predation, etc.

• We would like to use single species IL toxicity data in 
conjunction with these predator/prey models to predict the 
impact of IL contamination



Experimentally Verified Algae-Rotifer Model
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Experimentally Verified Algae-Rotifer Model
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N : Nitrogen (µmol/L) 
C : C. vulgaris (µmol/L)  
R : Reproducing  B. calyciflorus (µmol/L) 
B : Total B. calyciflorus (µmol/L)

Ni : Nitrogen concentration of
the inflow medium (µmol/L)

δ : Dilution rate (/day)

m : Mortality rate (/day)
ε : Assimilation efficiency
λ : Fecundity decay rate (/day)
bC : Max birth rate of C. vulgaris (/day)
bB : Max birth rate of B. 

calyciflorus (/day)
KC : Half-saturation constant for 

C. vulgaris (µmol/L)
KB : Half-saturation constant for 

B. calyciflorus (µmol/L)



Bifurcations of Equilibria

• Goal – locate equilibrium points and bifurcations in 
predator/prey models

• A bifurcation is a change in the topological type of the phase 
portrait as one or more system parameters are varied
– Codimension-one:  One parameter (α) can be varied
– Codimension-two:  Two parameters (α, β) can be varied

• Bifurcations are located by solving a nonlinear algebraic 
system consisting of the equilibrium conditions along with one 
or more augmenting (test) functions



Bifurcations and Test Functions

• Codim 1: Fold and transcritical bifurcations
– As α is varied, two equilibria collide
– Convenient test function (avoiding calculation of eigenvalues):

det (J(x,α)) = 0

• Codim 1: Hopf bifurcation
– As α is varied, J(x,α) has a pair of imaginary complex conjugate 

eigenvalues that cross the imaginary axis: possible stability change
– Convenient test function based on bialternate product:

det (2J(x,α) ⊗ I) = 0

• Codim 2: Fold-Fold and Fold-Hopf
– Located by using both augmenting functions:

det (J(x,α,β)) = 0 & det (2J(x,α,β) ⊗ I) = 0



Locating Equilibrium States and Bifurcations

• Equilibrium states:  Set the equilibrium conditions (model 
equations) equal to zero and solve for x

• Bifurcations of equilibria:  Solve equilibrium conditions and 
augmenting function(s) for x and α (and β)

• These equation systems may have multiple solutions
• Typically these systems are solved using a continuation-based 

strategy
– Initialization dependent
– No guarantee of locating all branches

• Interval mathematics provides a method that is:
– Initialization independent
– Capable of locating all solution branches with certainty (see also 

Gehrke & Marquardt, 1997)



Interval-Newton/Generalized Bisection 
Method (IN/GB)

• Given a system of equations, an initial interval (bounds 
on all variables), and a solution tolerance:
– IN/GB can find (enclose), with mathematical and 

computational certainty, all solutions to the equation 
system, or it can determine that no solutions exist

– The equation system must have a finite number of 
real roots in the initial interval

– No strong assumptions or simplifications to the 
equation system are needed



IN/GB Method

Problem: Solve f(x) = 0 for all roots in the interval X(0)

Basic iteration scheme: For a particular subinterval (box),
X(k), perform root inclusion test:
• Range test: Compute an interval extension (bounds on 

range) for each function in the system: F(X(k))
– If 0 is not a member of F(X(k)), delete the box

• Interval Newton test: Compute the image, N(k), of the box 
by solving the linear interval equation system

F´(X(k))(N(k) – x(k)) = – f (x(k))
– x(k) is a point in X(k)

– F´(X(k)) is the interval extension of the Jacobian matrix of f(x) over 
the interval X(k)



IN/GB Method: Interval Newton Test
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• There is no solution in X(k)



IN/GB Method: Interval Newton Test
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• There is a unique solution in X(k) that is also in N(k)

• Additional interval-Newton steps will tightly enclose the solution
with quadratic convergence



IN/GB Method: Interval Newton Test
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• Any solutions in X(k) are in X(k) ∩ N(k)

• If the intersection is sufficiently small, repeat the root inclusion test
• Otherwise, bisect the intersection and apply the root inclusion test to

each resulting subinterval



δ - Dilution rate (/day)
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Algae-Rotifer Model

δ vs. Ni Bifurcation Diagram

TE: Transcritical of Equilibria
H: Hopf

Diagram generated using IN/GB

Consistent with Fussmann, et al., 
2000
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δ - Dilution rate (/day)
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Solution Branch Diagram  (Ni = 100)
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Discussion – Algae-Rotifer Model

• Computation times are good 
(3.0 GHz Xeon/Linux)
– Average 0.06 s to solve for equilibrium states
– Average 7 s to solve for fold/transcritical bifurcations
– Average 27 s to solve for Hopf bifurcations

• Increasing the dilution rate has two effects
– Washing in more nutrient
– Washing out more species biomass

• Initially, increasing the nutrient wash in to the system has the
predominate effect of increasing the biomass of b. calyciflorus
– After a point, further enriching the system becomes counter productive 

and the state becomes unstable
• Further increasing the dilution rate will eventually stabilize the system, 

and then cause a decrease in the b. calyciflorus population due to 
washout



Food Web Model

• Hypothetical food web 
model
– 7 species
– 2 producers that 

compete for resources
– 5 predators

• Predator response 
functions:
– Linear (Lotka-

Volterra)
– Hyperbolic (Holling II)
– Combination of above

n7
n6

n5

n4n3

n2n1



Food Web Model

• Simultaneous approach
– Solve nonlinear equations (7 x 7) for all steady-states 

simultaneously

• Sequential approach
– Solve sequence of subproblems corresponding to 

feasible zero-nonzero states
– In this case, 27 = 128 zero-nonzero states are possible; 

analysis shows that 55 are feasible
– Subproblems may be linear or nonlinear depending on 

the model

• Here we apply IN/GB to the simultaneous 
approach



Model I: Lotka-Volterra Predator Response

Solution Branch Diagram
Κ2 – Carrying capacity of species 2
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Model II: Hybrid Predator Response

All predators are Lotka-Volterra, except species 3 which is hyperbolic



Discussion – Food Web Model

• System behavior between the two models is identical when 
comparing states with zero biomass levels for species 3

• Changing species 3 to a hyperbolic predator destabilizes 
what was previously a stable, coexisting steady-state

• In both cases, a minimum carrying capacity is necessary 
for species 2 to coexist in a stable steady-state with the 
competitor species 1



Concluding Remarks

• Demonstrated the utility of an interval-Newton method 
combined with generalized bisection for the 
computationally rigorous and reliable location of
– Fold, transcritical, and Hopf codimension-1 bifurcations
– Fold-fold or Fold-Hopf codimension-2 bifurcations
– Equilibrium states

• The utility of this method may be quite useful in dealing 
with systems with large numbers of solutions
– The number of solutions is often unknown a priori and may not be 

a trivial problem to discern
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