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Abstract

Interval analysis provides techniques that make it possible to determine all

solutions to a nonlinear algebraic equation system and to do so with mathemat-

ical and computational certainty. Such methods are based on the processing

of granules in the form of intervals and thus can be regarded as one facet of

granular computing. We review here some of the key concepts used in these

methods and then focus on some specific application areas, namely ecological

modeling, transition state analysis, and the modeling of phase equilibrium.

1 Overview

A problem encountered frequently in virtually any field of science, engineering,

or applied mathematics is the solution of systems of nonlinear algebraic equations.
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There are many applications in which such systems may have multiple solutions, a

single solution, or no solution, with the number of solutions often unknown a priori.

Can all solutions be found? If there are no solutions, can this be verified? These are

questions that are difficult or impossible to answer using conventional local methods

for equation solving. However, methods based on interval analysis are available that

can answer these questions, and do so with mathematical and computational rigor.

Such methods are based on the processing of granules in the form of intervals and thus

can be regarded as one facet of granular computing [6]. The remainder of this chapter

is organized as follows: In the next section, a brief summary of interval arithmetic is

provided, and some of the key concepts used in interval methods for equation solving

are reviewed. In subsequent sections, we focus on specific application areas, namely

the modeling of phase equilibrium (Section 3), transition state analysis (Section 4),

and ecological modeling (Section 5).

2 Background

2.1 Interval Arithmetic

Interval arithmetic in its modern form was introduced by Moore [63] and is based

on arithmetic conducted on closed sets of real numbers. A real interval X is defined

as the set of real numbers between (and including) given upper and lower bounds.

That is, X = [X, X] = {x ∈ R | X ≤ x ≤ X}. Here an underline is used to

2



indicate the lower bound of an interval, while an overline is used to indicate the

upper bound. Unless indicated otherwise, uppercase quantities are intervals, and

lower case quantities or uppercase quantities with an underline or overline are real

numbers. An interval vector X = (X1, X2, . . . , Xn)T has n interval components and

can be interpreted geometrically as an n-dimensional rectangular convex polytope or

“box.” Similarly, an n×m interval matrix A has interval elements Aij, i = 1, 2, . . . , n

and j = 1, 2, . . . , m.

Interval arithmetic is an extension of real arithmetic. For a real arithmetic oper-

ation op ∈ {+,−,×,÷}, the corresponding interval operation on intervals X and Y

is defined by:

X op Y = {x op y | x ∈ X, y ∈ Y }. (1)

That is, the result of an interval arithmetic operation on X and Y is an interval en-

closing the range of results obtainable by performing the operation with any number

in X and any number in Y . Interval extensions of the elementary functions (sin,

cos, exp, log, etc.) can be defined similarly, and computed using interval arithmetic

operations on the appropriate series expansions. For dealing with exceptions, such as

division by an interval containing zero, extended models for interval arithmetic are

available, often based on the extended real system R
∗ = R∪{−∞, +∞}. The concept

of containment sets (csets) provides a valuable framework for constructing models for

interval arithmetic with consistent handling of exceptions [24, 71]. When machine
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computations using intervals are performed, rounding errors must be handled cor-

rectly in order to insure that the result is a rigorous enclosure. Since computers can

only represent a finite set of real numbers (machine numbers), the results of floating-

point arithmetic operations that compute the endpoints of an interval must be deter-

mined using a directed (outward) rounding, instead of the standard round-to-nearest

procedure. Through the use of interval arithmetic with directed outward rounding,

as opposed to floating-point arithmetic, any potential rounding error problems are

avoided. Several good introductions to interval analysis, including interval arithmetic

and other aspects of computing with intervals, are available [24, 34, 39, 40, 67]. Im-

plementations of interval arithmetic and elementary functions are readily available

for a variety of programming environments, including INTLIB [42, 43] for Fortran 77,

INTERVAL ARITHMETIC [38] for Fortran 90, PROFIL/BIAS [70] and FILIB++

[50] for C++, and INTLAB [75] for Matlab. Recent compilers from Sun Microsystems

provide direct support for interval arithmetic and an interval data type.

For an arbitrary function f(x), the interval extension, denoted by F (X), encloses

all possible values of f(x) for x ∈ X. That is, F (X) ⊇ {f(x) | x ∈ X} encloses

the range of f(x) over X. It is often computed by substituting the given interval

X into the function f(x) and then evaluating the function using interval arithmetic.

This “natural” interval extension may be wider than the actual range of function

values, although it always includes the actual range. The potential overestimation of

the function range is due to the “dependency” problem of interval arithmetic, which
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may arise when a variable occurs more than once in a function expression. While a

variable may take on any value within its interval, it must take on the same value each

time it occurs in an expression. However, this type of dependency is not recognized

when the natural interval extension is computed. In effect, when the natural interval

extension is used, the range computed for the function is the range that would occur

if each instance of a particular variable were allowed to take on a different value in

its interval range. For the case in which f(x) is a single-use expression, that is, an

expression in which each variable occurs only once, the use of interval arithmetic

will always yield the true function range, not an overestimation. For cases in which

obtaining a single-use expression is not possible, there are several other approaches

that can be used to tighten interval extensions [24, 34, 40, 67, 72], including the use

of monotonicity [21, 66] and the use of Taylor models [58, 68].

2.2 Equation Solving Techniques

There are a many ways intervals may be used in nonlinear equation solving. No

attempt is made to survey systematically all such methods here. Instead, we highlight

some of the key concepts used in many interval methods for nonlinear equation solv-

ing. Many of these concepts can be described in terms of contraction operators, or

contractors [34]. Contractors may either reduce the size of, or completely eliminate,

the region in which solutions to the equation system of interest are being sought.

Consider the nonlinear equation solving problem f(x) = 0, for which real roots are

5



sought in an initial interval X(0). Interval-based strategies exist for contracting, elim-

inating, or dividing X(0). Reliable methods for locating all solutions to an equation

system are formed by combining these strategies. For a comprehensive treatment of

these techniques, several sources are available, including monographs by Neumaier

[67], Kearfott [40], Jaulin et al. [34], and Hansen and Walster [24].

2.2.1 Function range testing

Consider a search for solutions of f(x) = 0 in an interval X. If an interval extension

of f(x) over X does not contain zero, that is 0 /∈ F(X), then the range of f(x) over X

does not contain zero, and it is not possible for X to contain a solution of f(x) = 0.

Thus, X can be eliminated from the search space. The use of interval extensions

for function range testing is one simple way an interval can be eliminated as not

containing any roots. This is commonly used in nonlinear equation solving methods

prior to use of the contraction methods discussed below. A method that makes more

extensive use of function range testing was developed by Yamamura [91], based on use

of linear combinations of the component functions of f(x). An approach for forming

the linear combinations based on the inverse of the midpoint of the interval extension

of the Jacobian of f(x) was shown to be very effective.

2.2.2 Constraint propagation

Most constraint propagation strategies for nonlinear equation solving are based

on the concepts of hull consistency, box consistency, or some combination or variation
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thereof. These are strategies for contracting (shrinking) intervals in which roots are

sought, or possibly eliminating them entirely.

The hull consistency form of constraint propagation is based on an interval exten-

sion of fixed-point iteration [24, 41]. Consider a single equation and variable f(x) = 0,

and let it be reformulated into the fixed-point form x = g(x). If X is the search in-

terval, then any roots of f(x) = 0 must be in the interval X̃ = G(X). It may be

possible to shrink the search interval by taking the intersection of X and X̃, that is,

X ← X ∩ X̃. If this results in a contraction of X, then the process may be repeated.

Furthermore, if X ∩ X̃ = ∅, then the current search interval can be eliminated en-

tirely as containing no solutions. If there are different ways to obtain the function

g(x), then the process can be repeated using these alternative fixed-point forms. For

systems of equations, hull consistency can be applied one equation at a time and one

variable at a time (holding other variables constant at their interval values in the

current search space). In this way, contractions in one component of the search space

can be propagated readily to other components. Clearly, there are many possible

strategies for organizing this process.

Another type of constraint propagation strategy is known as box consistency

[24, 34]. In this case, all but one of the variables in an equation system are set

to their interval values in the current search space. Now there are one or more equa-

tions involving only the remaining variable, say xj. These constraints can be used

to contract Xj, the current search range for xj. There are various ways to do this,
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including univariate interval-Newton iteration [26] and methods [24] for direct calcu-

lation of new bounds for xj. This procedure can be repeated using a combination of

any equation and any variable in the equation system. Again, this provides a way for

contractions in one component of the search space to be propagated to other compo-

nents. Box consistency and hull consistency tests can also be easily combined [16, 24].

A variety of software packages are available that apply constraint propagation tech-

niques, often in combination with other interval-based methods, to solve systems of

equations. These include RealPaver [17], Numerica [86], and ICOS [32].

2.2.3 Krawczyk and interval-Newton

The Krawczyk and interval-Newton methods are contraction strategies that have

been widely used in the solution of nonlinear equation systems. They also provide

a test for the existence of a unique solution in a given interval. Both are generally

applied in connection with some bisection or other tessellation scheme [40], thus

resulting in a sequence of subintervals to be tested. Let X(k) indicate an interval in

this sequence. Using Krawczyk or interval-Newton, it is possible to contract X(k), or

even eliminate it, and also to determine if a unique solution to f(x) = 0 exists in

X(k).

In the Krawczyk method, the interval K(k) is computed from

K(k) = K(X(k),x(k)) = x(k) − Y (k)f(x(k)) + (I − Y (k)F ′(X(k)))(X(k) − x(k)). (2)

Here F ′(X(k)) indicates an interval extension of the Jacobian matrix of f(x), but
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could be any Lipschitz matrix. Also, x(k) is an arbitrary point in X(k), and Y (k)

is a real preconditioning matrix. The properties of this method have been widely

studied [3, 24, 34, 40, 64, 65, 67]. Any roots of f(x) = 0 in X(k) will also be in

K(k), thus giving the contraction scheme X(k+1) = X(k) ∩ K(k). It follows that if

X(k) ∩K(k) = ∅, then X(k) contains no roots and can be eliminated. An additional

property is that if K(k) is in the interior of X(k), then there is a unique root in X(k). If

X(k) cannot be eliminated or sufficiently contracted, or cannot be shown to contain a

unique root, then it is bisected, and the procedure repeated on each resulting interval.

Several improvements to the basic Krawczyk method have been suggested, including

a bicentered method [79] a boundary-based method [79, 80], and a componentwise

version of the algorithm [61].

In the interval-Newton method, the interval N(k) = N(X(k),x(k)) is determined

from the linear interval equation system

Y (k)F ′(X(k))(N(k) − x(k)) = −Y (k)f(x(k)). (3)

This method has also been widely studied [4, 9, 24, 34, 40, 67] and has properties

similar to the Krawczyk method. Any roots in X(k) are also in N(k), so the contraction

X(k+1) = X(k) ∩N(k) can be used. If X(k) ∩N(k) = ∅, then X(k) can be eliminated.

Furthermore, if N(k) is in the interior of X(k), there is a unique root in X(k). In this

case, the interval-Newton procedure can be repeated and converges quadratically to a

narrow enclosure of the root. Alternatively, an approximation of the root can be found

using a standard point-Newton algorithm starting from any point in X(k). Again, if
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X(k) cannot be eliminated or sufficiently shrunk, or cannot be shown to contain a

unique root, it is bisected. N(k) can be obtained from the linear interval equation

system (3) in various ways. However, an interval Gauss-Seidel procedure [22] is widely

used. In this case, N(k) is never obtained explicitly, since after each component N
(k)
i

is computed, it is intersected with X
(k)
i , and the result is then used in computing

subsequent components of N(k). For a fixed preconditioning matrix, the enclosure

provided by the interval-Newton method using Gauss-Seidel is at least as good as

that provided by the Krawczyk method [22, 67]. Nevertheless, the Krawczyk method

appears attractive, because it is not necessary to bound the solution of a system of

linear interval equations. However, in practice the interval Gauss-Seidel procedure

is a very simple and effective way to deal with the linear equation system. Overall,

interval-Newton with Gauss-Seidel is regarded as computationally more efficient than

the Krawczyk method [23, 24].

There are many variations on the interval-Newton method, corresponding to differ-

ent choices of the real point x(k) and preconditioning matrix Y (k), different strategies

for choosing the bisection coordinate, and different ways to bound the solution of Eq.

(3). The real point x(k) is typically taken to be the midpoint of X(k), and the precondi-

tioning matrix Y (k) is often taken to be either the inverse of the midpoint of F ′(X(k)),

or the inverse of the Jacobian evaluated at the midpoint of X(k). However, these

choices are not necessarily optimal [37]. For example, several alternative precondi-

tioning strategies are given by Kearfott et al. [44]. Gau and Stadtherr [14] combined
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one of these methods, a pivoting preconditioner, with a standard inverse midpoint

scheme, and was able to obtain significant performance gains compared to the use

of the inverse midpoint preconditioner alone. For the choice of the real point x(k),

one alternative strategy is to use an approximation to a root of the equation system,

perhaps obtained using a local equation solver. Gau and Stadtherr [14] suggested

a real-point selection scheme that seeks to minimize the width of the intersection

between X
(k)
i and N

(k)
i . Several bisection or other box splitting strategies have been

studied [24, 40, 45, 65]. The maximum smear heuristic [45], in which bisection is done

on the coordinate whose range corresponds to the maximum width in the function

range, is often, but not always, an effective choice. For bounding the solution of Eq.

(3) there are many possible approaches, though, as noted above, the preconditioned

interval Gauss-Seidel approach is typically quite effective. One alternative, described

by Lin and Stadtherr [51, 53], uses a linear programming strategy along with a real-

point selection scheme to provide sharp enclosures of the solution N(k) to Eq. (3).

Though, in general, sharply bounding the solution set of a linear interval equation

system is NP-hard, for the special case of interval-Newton, this linear programming

approach can efficiently provide exact (within roundout) bounds. Finally, it should

be noted that a slope matrix can be used in Eqs. (2–3) instead of a Lipschitz matrix.

In this case, the test for enclosure of a unique root is no longer applicable, unless

some type of compound algorithm is used [74].

In implementing the interval-Newton method, values of f(x) are computed using
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interval arithmetic to bound rounding errors. Thus, in effect, f(x) is interval valued.

In general, the interval-Newton method can be used to enclose the solution set of

any interval-valued function. For example, consider the problem f(x, p) = 0, where

p is some parameter. If the value of p is uncertain but is known to be in the interval

P , then we have the interval-valued function F(x, P ) and the problem is to enclose

the solution set of F(x, P ) = 0. This solution set is defined by S = {x | f(x, p) =

0, p ∈ P}. An interval enclosure of S can be found readily using the interval-Newton

method, though generally, due to bounding of rounding errors, it will not be the

smallest possible interval enclosure. However, since S is often not an interval, even

its tightest interval enclosure may still represent a significant overestimation. To

more closely approximate S, one can divide P into subintervals, obtain an interval

enclosure of the solution set over each subinterval, and then take the union of the

results.

Implementation of interval methods for nonlinear equation solving typically em-

ploy a combination of one or more of the concepts outlined above [10, 16, 41], per-

haps also in connection with some manipulation of the equation system to be solved

[46, 47, 91]. Often function range testing and constraint propagation techniques are

used first to contract intervals, as these methods have low computational overhead.

Then, more costly interval-Newton steps can be applied to the contracted intervals

to obtain final solution enclosures. In most such equation solving algorithms, the

intervals can be treated as independent granules of data. Thus, parallel implementa-
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tions of interval methods are generally apparent, though must be done with proper

attention to load balancing in order to be most effective [13, 48, 76].

In the subsequent sections, we will look at some specific applications of interval

methods for nonlinear equation solving. The core steps in the algorithm used to

solve these problems can be outlined as follows: For a given X(k), 1) Apply function

range test; if X(k) is not eliminated, then 2) Apply hull consistency (this is done on

a problem specific basis); if X(k) is not eliminated, then 3) Apply interval-Newton,

using either the hybrid preconditioning technique of Gau and Stadtherr [14], or the

linear programming method of Lin and Stadtherr [53]; if X(k) is not eliminated, or

a unique root in X(k) not identified, then 4) Bisect X(k). This is only one possible

way to implement an interval method for nonlinear equation solving applications.

However, it has proved to be effective on a wide variety of problems, some of which

are discussed below. The applications considered next are purely equation solving

problems. However, since many optimization problems can be easily converted into

an equivalent system of equations, the techniques described above are also often

applied to problems requiring global optimization, typically in connection with some

branch-and-bound procedure.

3 Modeling of Liquid-Liquid Phase Equilibrium

The modeling of phase behavior is a rich source of problems in which interval

methods can play an important role, by ensuring that correct results are reliably
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obtained [8, 89]. Of interest is the development and use of models for predicting

the number, type (liquid, vapor, solid), and composition of the phases present at

equilibrium for mixtures of chemical components at specified conditions. In model

development, parameter estimation problems arise, which typically require solution of

a nonconvex optimization problem. Unfortunately, it is not uncommon to find that

literature values for parameters are actually locally, but not globally optimal [11].

Use of parameters that are not globally optimal may result in rejection of a model

that would otherwise be accepted if globally optimal parameters were used. For the

case of vapor-liquid equilibrium modeling, Gau and Stadtherr [11, 12] have used an

interval method to guarantee that the globally optimal parameters are found. After

models are developed, they are used to compute the phase equilibrium for mixtures

of interest. This is another global optimization problem, the global minimization of

the total Gibbs energy in the case of specified temperature and pressure. Again, it is

not uncommon to find literature solutions that are locally optimal only, and thus do

not represent stable equilibrium states [89]. For the phase stability and equilibrium

problems, and for related phase behavior calculations, there have been a number of

successful applications of interval methods to the underlying equation solving and

optimization problems [8, 27–31, 55, 56, 60, 78, 82–84, 88–90].

In this section, we will focus on the problem of parameter estimation in the mod-

eling of liquid-liquid equilibrium. This can be formulated as a nonlinear equation

solving problem involving only two equations and variables. However, the number of
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solutions to this system is unknown a priori, and it is not uncommon to see incorrect

solutions reported in the literature.

3.1 Problem Formulation

Consider liquid-liquid equilibrium in a two-component system at fixed tempera-

ture and pressure. For this case, the necessary and sufficient condition for equilibrium

is that the total Gibbs energy be at a global minimum. The first-order optimality

conditions on the Gibbs energy lead to the equal activity conditions,

aI
i = aII

i , i = 1, 2, (4)

stating the equality of activities of each component (1 and 2) in each phase (I and

II). This is a necessary but not sufficient condition for equilibrium. Given an activ-

ity coefficient model (ai = γixi), expressed in terms of observable component mole

fractions x1 and x2 = 1− x1, and activity coefficients γ1 and γ2 expressed in terms of

composition and two binary parameters θ12 and θ21, then the equal activity conditions

can be expressed as

xI
iγ

I
i(x

I
1, x

I
2, θ12, θ21) = xII

i γII
i (xII

1 , xII
2 , θ12, θ21), i = 1, 2. (5)

Experimental measurements of the compositions of both phases are available. Thus,

in Eq. (5), the values of xI
1, xII

1 , xI
2, and xII

2 are fixed. This results in a system of two

equations in the two parameters θ12 and θ21. This provides a widely used approach

for parameter estimation in activity coefficient models for liquid-liquid equilibrium
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[73, 81], as generally it is possible to use physical grounds to reject all but one solu-

tion to Eq. (5). Parameter solutions are generally sought using local methods with

multistart. A curve-following approach can also be used [33], but its reliability is step-

size dependent and is not guaranteed. In this section, we will use an interval-Newton

approach, as outlined at the end of Section 2, to determine reliably all solutions to

Eq. (5) for the case in which the NRTL activity coefficient model is used.

In the NRTL model, the activity coefficients for use in Eq. (5) are given by

ln γ1 = x2
2

[

τ21

(

G21

x1 + x2G21

)2

+
τ12G12

(x2 + x1G12)2

]

(6)

ln γ2 = x2
1

[

τ12

(

G12

x2 + x1G12

)2

+
τ21G21

(x1 + x2G21)2

]

, (7)

where

τ12 =
g12 − g22

RT
=

∆g12

RT

τ21 =
g21 − g11

RT
=

∆g21

RT

G12 = exp(−α12τ12)

G21 = exp(−α21τ21).

Here gij is an energy parameter characteristic of the i–j interaction, and the parameter

α = α12 = α21 is related to the nonrandomness in the mixture. The nonrandomness

parameter α frequently is taken to be fixed when modeling liquid-liquid equilibrium.

The binary parameters that must be determined from experimental data are then

θ12 = ∆g12 and θ21 = ∆g21.
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3.2 n-Butanol and Water

Consider a mixture of n-butanol (component 1) and water (component 2) at

T = 363 K and atmospheric pressure. Liquid-liquid phase equilibrium is observed ex-

perimentally with phase compositions xI
1 = 0.020150 and xII

1 = 0.35970. Heidemann

and Mandhane [25] modeled this system using NRTL with α = 0.4. They obtained

three solutions for the binary parameters, as shown in Table 1, in terms of τ12 and

τ21. Applying the interval method to solve this system of nonlinear equations, with

an initial search interval of θ12 ∈ [−1 × 106, 1 × 106] and θ21 ∈ [−1 × 106, 1 × 106],

we find only two solutions, as also shown in Table 1. The extra solution found by

Heidemann and Mandhane [25] is well within the search space used by the interval

method, so clearly is a spurious solution resulting from numerical difficulties in the

local method used to solve Eq. (5). This can be verified by direct substitution of

solution 3 into the equal activity conditions. When equal activity is expressed in the

form of Eq. (5), the residuals for solution 3 are close to zero. However, when equal

activity is expressed in terms of ln xi and ln γi, by taking the logarithm of both sides

of Eq. (5), it becomes clear that the residuals for solution 3 are not really zero.

3.3 1, 4-Dioxane and 1, 2, 3-Propanetriol

Consider a mixture of 1, 4-dioxane (component 1) and 1, 2, 3-propanetriol at T =

298 K and atmospheric pressure. Liquid-liquid phase equilibrium is observed exper-

imentally with phase compositions xI
1 = 0.2078 and xII

1 = 0.9934. Mattelin and

17



Verhoeye [59] modeled this system using NRTL with various values of α. We will

focus on the case of α = 0.15. They obtained six solutions for the binary parameters,

which are reported graphically without giving exact numerical values. Applying the

interval method, with the same initial search interval as given above, we find only

four solutions, as shown in Table 2 in terms of τ12 and τ21. The extra solutions found

by Mattelin and Verhoeye [59] are well within the search space used by the interval

method. Again, it appears that numerical difficulties in the use of local methods has

led to spurious solutions.

3.4 Remarks

In this section, we have seen a small nonlinear equation system that in some

cases is numerically difficult to solve using standard local methods, as evident from

the reporting of spurious roots in the literature. Using an interval-Newton method,

tight enclosures of all roots in the initial search space could be found very easily and

efficiently, with computational times on the order of seconds (3.2 GHz Intel Pentium

4).

4 Transition State Analysis

In molecular modeling, the search for features on a potential energy hypersurface

is often required and is a very challenging computational problem. In some cases,

finding a global minimum is required, but the existence of a very large number of local
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minima, the number of which may increase exponentially with the size of a molecule or

the number of molecules, makes the problem extremely difficult. Interval methods can

play a role in solving these problems [49, 54], but are limited in practice to problems of

relatively low dimension. In other problems in computational chemistry, it is desired

to find all stationary points. Interval methods for equation solving have been applied

to one such problem, involving the use of lattice density functional theory to model

adsorption in a nanoscale pore, by Maier and Stadtherr [57]. Another such problem

is transition state analysis, as summarized below, and described in more detail by Lin

and Stadtherr [52].

Transition state theory is a well-established method which, by providing an ap-

proach for computing the kinetics of infrequent events, is useful in the study of nu-

merous physical systems. Of particular interest here is the problem of computing the

diffusivity of a sorbate molecule in a zeolite. This can be done using transition state

analysis, as described by June et al. [35]. It is assumed that diffusive motion of the

sorbate molecules through the zeolite occurs by a series of uncorrelated hops between

potential energy minima in the zeolite lattice. A sorption state or site is constructed

around each minimum of the potential energy hypersurface. Any such pair of sites i

and j then is assumed to be separated by a dividing surface on which a saddle point

of the potential energy hypersurface is located. The saddle point can be viewed as

the transition state between sites, and a pair of steepest decent paths from the saddle

point connect the minima associated with the i and j sites. Obviously, in this appli-
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cation, and in other applications of transition-state theory, finding all local minima

and saddle points of the potential energy surface, V, is critical. We show here, using

a sorbate-zeolite system, the use of an interval-Newton method, as outlined at the

end of Section 2, to find all stationary points of a potential energy surface.

Stationary points satisfy the condition g = ∇V = 0; that is, at a stationary

point, the gradient of the potential energy surface is zero. Using the eigenvalues

of H = ∇2V, the Hessian of the potential energy surface, stationary points can be

classified into local minima, local maxima, and saddle points (of order determined

by the number of negative eigenvalues). There are a number of methods for locating

stationary points. A Newton or quasi-Newton method, applied to solve the nonlinear

equation system ∇V = 0, yields a solution whenever the initial guess is sufficiently

close to a stationary point. This method can be used in an exhaustive search, using

many different initial guesses, to locate stationary points. The set of initial guesses

to use might be determined by the user (intuitively or arbitrarily) or by some type of

stochastic multistart approach. Another popular approach is the use of eigenmode-

following methods, as done, for example, by Tsai and Jordan [85]. These methods can

be regarded as variations of Newton’s method. In an eigenmode-following algorithm,

the Newton step is modified by shifting some of the eigenvalues of the Hessian (from

positive to negative or vice versa). By selection of the shift parameters, one can

effectively find the desired type of stationary points, e.g., minima and first-order

saddles. There are also a number of other approaches, many involving some stochastic
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component, for finding stationary points.

In the context of sorbate-zeolite systems, June et al. [35] use an approach in

which minima and saddle points are located separately. A three step process is

employed in an exhaustive search for minima. First, the volume of the search space

(one asymmetric unit) is discretized by a grid with a spacing of approximately 0.2 Å,

and the potential and gradient vector are tabulated on the grid. Second, each cube

formed by a set of nearest-neighbor grid nodes is scanned, and the three components

of the gradient vector on the eight vertices of the cube are checked for changes in sign.

Finally, if all three components are found to change sign on two or more vertices of

the cube, a BFGS quasi-Newton minimization search algorithm is initiated to locate

a local minimum, using the coordinates of the center of the cube as the initial guess.

Two different algorithms are tried for determining the location of saddle points. One

searches for global minimizers in the function gTg, i.e. the sum of the squares of the

components of the gradient vector. The other algorithm, due to Baker [5], searches for

saddle points directly from an initial point by maximizing the potential energy along

the eigenvector direction associated with the smallest eigenvalue and by minimizing

along directions associated with all other eigenvalues of the Hessian.

All the methods discussed above have a major shortcoming. They provide no

guarantee that all local minima and saddle points of interest will actually be found.

One approach to resolving this difficulty is given by Westerberg and Floudas [87],

who transform the equation-solving problem ∇V = 0 into an equivalent optimization
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problem that has global minimizers corresponding to the solutions of the equation

system (i.e., the stationary points of V). A deterministic global optimization algo-

rithm, based on a branch-and-bound strategy with convex underestimators, then is

used to find these global minimizers. Whether all stationary points are actually found

depends on proper choice of a parameter (α) used in obtaining the convex underesti-

mators, and Westerberg and Floudas do not use a method that guarantees a proper

choice. However, there do exist techniques [1, 2], based on an interval representation

of the Hessian, that in principle could be used to guarantee a proper value of α,

though likely at considerable computational expense. We demonstrate here an ap-

proach in which interval analysis is applied directly to the solution of ∇V = 0 using

an interval-Newton methodology. This provides a mathematical and computational

guarantee that all stationary points of the potential energy surface are found (or,

more precisely, enclosed within an arbitrarily small interval).

4.1 Problem Formulation

Zeolites are materials in which AlO4 and SiO4 tetrahedra are the building blocks

of a variety of complex porous structures characterized by interconnected cavities and

channels of molecular dimensions [36]. Silicalite contains no aluminum and thus no

cations. This has made it a common and convenient choice as a model zeolite system.

The crystal structure of silicalite, well known from X-ray diffraction studies [69], forms

a three-dimensional interconnected pore network through which a sorbate molecule
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can diffuse. In this work, the phase with orthorhombic symmetry is considered, and

a rigid lattice model, in which all silicon and oxygen atoms in the zeolite framework

are occupying fixed positions and there is perfect crystallinity, is assumed. One

spherical sorbate molecule (united atom) will be placed in the lattice, corresponding

to infinitely dilute diffusion. The system is comprised of 27 unit cells, each of which

is 20.07× 19.92× 13.42Å with 96 silicon atoms and 192 oxygen atoms.

All interactions between the sorbate and the oxygen atoms of the lattice are treated

atomistically with a truncated Lennard-Jones 6-12 potential. That is, for the inter-

action between the sorbate and oxygen atom i, the potential is given by

Vi =























a
r12
i

− b
r6
i

ri < rcut

0 ri ≥ rcut,

(8)

where a is a repulsion parameter, b is an attraction parameter, rcut is the cutoff

distance, and ri is the distance between the sorbate and oxygen atom i. This distance

is given by

r2
i = (x− xi)

2 + (y − yi)
2 + (z − zi)

2, (9)

where (x, y, z) are the Cartesian coordinates of the sorbate, and (xi, yi, zi), i = 1, . . . , N

are the Cartesian coordinates of the N oxygen atoms. The silicon atoms, being re-

cessed within the SiO4 tetrahedra, are neglected in the potential function. Therefore,

the total potential energy, V, of a single sorbate molecule in the absence of neighboring

sorbate molecules is represented by a sum over all lattice oxygens,

V =

N
∑

i=1

Vi. (10)
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The interval-Newton approach is applied to determine the sorbate locations (x, y, z)

that are stationary points on the potential energy surface V given by Eq. (10), that

is, to solve the nonlinear equation system ∇V = 0. To achieve tighter interval exten-

sions of the potential function and its derivatives, and thus improve the performance

of the interval-Newton method, the mathematical properties of the Lennard-Jones

potential and its first- and second-order derivatives can be exploited, as described in

detail by Lin and Stadtherr [52].

4.2 Results and Discussion

Due to the orthorhombic symmetry of the silicalite lattice, the search space for

stationary points is only one asymmetric unit, [0, 10.035] × [0, 4.98] × [0, 13.42] Å,

which is one-eighth of a unit cell. This defines the initial interval for the interval-

Newton method, namely X (0) = [0, 10.035] Å, Y (0) = [0, 4.98] Å, and Z(0) = [0, 13.42]

Å. Following June et al. [35], stationary points with extremely high potential, such

as V > 0, will not be sought. To do this, we calculate the interval extension of V

over the interval currently being tested. If its lower bound is greater than zero, the

current interval is discarded.

Using the interval-Newton method, with the linear programming strategy of Lin

and Stadtherr [53], a total of 15 stationary points were found in a computation time

of 724 seconds (1.7 GHz Intel Xeon). The locations of the stationary points, their

energy value, and their type are listed in Table 3. Five local minima were found,
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along with 8 first-order saddle points and two second-order saddle points. June et al.

[35] report the same five local minima, as well as 9 of the 10 saddle points. They do

not report finding the lower energy second-order saddle point (saddle point #14 in

Table 3).

The second-order saddle point #14, not reported by June et al. [35], is very

close to the first-order saddle point #13, and slightly lower in energy. Apparently

neither of the two methods tried by June et al. [35] was able to locate this point.

The first method they tried uses the same grid-based optimization scheme used to

locate local minima in V, but instead applied to minimize gTg. However, stationary

points #13 and #14 are approximately 0.1Å apart, while the grid spacing they used

was approximately 0.2Å. This illustrates the danger in using grid-based schemes for

finding all solutions to a problem. By using the interval methods described here,

one never needs to be concerned about whether a grid spacing is fine enough to find

all solutions. The second method they tried was Baker’s algorithm [5], as described

briefly above, but it is unclear how they initialized the algorithm. A key advantage of

the interval method is that no point initialization is required. Only an initial interval

must be supplied, here corresponding to one asymmetric unit, and this is determined

by the geometry of the zeolite lattice. Thus, in this context, the interval method is

initialization independent.
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4.3 Remarks

Lin and Stadtherr [53] have also studied two other sorbate-zeolite systems, and

used the interval method to find all stationary points on the potential energy surfaces.

While we have concentrated here on problems involving transition-state analysis of

diffusion in zeolites, we anticipate that the method will be useful in many other types

of problems in which transition-state theory is applied.

5 Food Web Models

Ecological models, including models of food webs, are increasingly being used

as aids in the management and assessment of ecological risks. As a first step in

using a food web model, an understanding is needed of the predicted equilibrium

states (steady states) and their stability. To determine the equilibrium states, a

system of nonlinear equations must be solved, with the number of solutions often

not known a priori. Finding bifurcations of equilibria (parameter values at which

the number of equilibrium states or their stability changes) is another problem of

interest, which can also be formulated as a nonlinear equation solving problem. For

both of these problems, continuation methods are typically used, but are initialization

dependent and provide no guarantees that all solutions will be found. Gwaltney et

al. [20] and Gwaltney and Stadtherr [19] have demonstrated the use of an interval-

Newton method to find equilibrium states and their bifurcations for some simple food

chain models. Interval methods have been also successfully applied to the problem
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of locating equilibrium states and singularities in traditional chemical engineering

problems, such as reaction and reactive distillation systems [7, 15, 62, 77]. We will

consider here a seven-species food web, and use an interval-Newton approach, as

outlined at the end of Section 2, to solve for all steady states predicted by the model.

5.1 Problem Formulation

The seven-species food web is shown schematically in Fig. 1. It involves two

producers (species 1 and 2) and five consumers (species 3–7). The producers are

assumed to grow logistically, while the consumers obey predator response functions

that will be specified below.

The model equations (balance equations) are, for i = 1, . . . , 7,

fi(m) =
dmi

dt
= migi(m) = mi

[

ri +

7
∑

j=1

aijpij(m)

]

. (11)

Here the variables are the species biomasses mi, i = 1, . . . , 7, which are the compo-

nents of the biomass vector m. The constants aij represent combinations of different

model parameters, and also indicate the structure of the food web. The constants

ri consist of intrinsic growth and death rate parameters. The functions pij(m) are

determined by the choice of predator response function for the predator-prey inter-

action involving species i and j. For the 1-3 interaction, we assume a hyperbolic

response function (Holling type II). This leads to p13(m) = m3/(m1 + B13), and

p31(m) = m1/(m1 + B13), where B13 is the half-saturation constant for consumption

of species 1 by species 3. For all other interactions, we assume a linear response
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function (Lotka-Volterra), giving pij(m) = mj. Values of all constants in the model

are given by Gwaltney [18]. To determine the equilibrium states predicted by this

model, solution of the nonlinear equation system

fi(m) = migi(m) = 0, i = 1, . . . , 7 (12)

is required.

5.2 Results and Discussion

There are two basic strategies for solving the equation system. In the simultaneous

strategy, we simply solve Eq. (12) directly, as a system of seven equations in seven

variables. In the sequential strategy, a sequence of smaller problems is solved, one

for each feasible zero-nonzero state. A set of feasible zero-nonzero states can be

constructed from the structure of the food web. For example, the state [1030060]

(this indicates that species 1, 3 and 6 have nonzero biomasses, and that species 2,

4, 5 and 7 are absent) is feasible. However, the state [1204067] is not feasible, since

in the absence of species 3 and 5 species 6 cannot exist. For a relatively small food

web, it is not difficult to construct the set of feasible zero-nonzero states. However,

for large food webs this is nontrivial, as the number of such states can become very

large. For the seven-species web of interest here, there are 55 feasible zero-nonzero

states. For each zero-nonzero state, an equation system is formulated to solve for the

corresponding steady states. For example, for the [1030060] state, m1 6= 0, thus it is

required that g1 = 0. Similarly, g3 = 0 and g6 = 0. This provides three equations in
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the three nonzero variables m1, m3, and m6. The remaining components of Eq. (12)

are satisfied because m2 = m4 = m5 = m7 = 0.

An interval-Newton approach was used to solve the nonlinear equation system

(12) in connection with both the simultaneous and sequential approaches. This was

done for several different values of the model parameter K2, the carrying capacity

for producer species 2. A partial set of results (m1 and m2 only) is shown in Figure

2. It is clear that for a particular value of K2, there are often several steady states.

When nonlinear predator response functions are used, the number of steady states is

also unknown a priori. The interval method provides a means to guarantee that all

steady-state solutions will be found. When the simultaneous approach was used, and

a single 7 × 7 equation system solved, the CPU time required for each value of K2

averaged about 60 seconds (3.2 GHz Pentium 4). When the sequential approach was

used, and a sequence of many smaller systems solved, the CPU time required for each

value of K2 averaged about 0.02 seconds. Clearly it is much more effective to use a

sequential strategy. For further discussion of this problem and an interpretation of

the results, see Gwaltney [18].

5.3 Remarks

In computing the equilibrium states in nonlinear food web models, it is possible

to have a very large number of solutions. For example, Gwaltney [18] also considered

a food web with 12 species and explicit resource dynamics (4 nutrients). For some
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sets of parameter values, well over 300 steady-state solutions were found by using

the sequential approach with an interval-Newton method. In cases for which a large

number of solutions is possible, and the number of solutions is not known, the use of

interval methods for nonlinear equation solving is an attractive approach for ensuring

that no solutions will be missed.

6 Concluding Remarks

In the examples presented here, we have shown that an interval method for non-

linear equation solving, in particular an approach incorporating the interval-Newton

method, is a powerful approach for the solution of systems of nonlinear equation sys-

tems. The method provides a mathematical and computational guarantee that all

solutions within a specified initial interval are enclosed. Continuing improvements

in solution methods, together with advances in software and hardware for the use of

intervals, will make this an increasingly attractive problem solving tool.

The validation provided by the interval approach comes at the expense of addi-

tional computation time. Essentially one has a choice between fast methods that may

give an incorrect or incomplete answer, or a slower method that is guaranteed to give

the correct results. Thus, a modeler may need to consider the trade off between the

additional computing time and the risk of getting the wrong answer to a problem.

Certainly, for “mission critical” situations, the additional computing expense is well

spent.
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Table 1: Comparison of NRTL parameter estimates for the mixture n-butanol and

water (α = 0.4, T = 363 K) obtained by Heidemann and Mandhane [25] and by the

use of an interval method.

Reference [25] Interval Method

Solution τ12 τ21 τ12 τ21

1 0.0075 3.8021 0.0075 3.8021

2 10.182 3.8034 10.178 3.8034

3 -73.824 -15.822
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Table 2: NRTL parameter estimates for the mixture 1, 4-dioxane and 1, 2, 3-

propanetriol (α = 0.15 and T = 298.15 K) found using an interval method. Mattelin

and Verhoeye [59] reported finding 6 solutions.

Interval Method

Solution τ12 τ21

1 5.6379 -0.59940

2 13.478 -82.941

3 38.642 13.554

4 39.840 3.0285
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Table 3: Stationary points of the potential energy surface of xenon in silicalite

No. Type Energy(kcal/mol) x(Å) y(Å) z(Å)

1 minimum -5.9560 3.9956 4.9800 12.1340

2 minimum -5.8763 0.3613 0.9260 6.1112

3 minimum -5.8422 5.8529 4.9800 10.8790

4 minimum -5.7455 1.4356 4.9800 11.5540

5 minimum -5.1109 0.4642 4.9800 6.0635

6 1st order -5.7738 5.0486 4.9800 11.3210

7 1st order -5.6955 0.0000 0.0000 6.7100

8 1st order -5.6060 2.3433 4.9800 11.4980

9 1st order -4.7494 0.1454 3.7957 6.4452

10 1st order -4.3057 9.2165 4.9800 11.0110

11 1st order -4.2380 0.0477 3.9147 8.3865

12 1st order -4.2261 8.6361 4.9800 12.8560

13 1st order -4.1405 0.5925 4.9800 8.0122

14 2nd order -4.1404 0.5883 4.8777 8.0138

15 2nd order -4.1027 9.1881 4.1629 11.8720
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Figure 1: Diagram illustrating the predation relationships in the seven species food

web model.
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Figure 2: Solution branch diagrams illustrating the change in the steady-state biomass values of species 1 (m1) and

species 2 (m2) with change in species 2 carrying capacity (K2) for the seven-species food web model. Black lines indicate

stable equilibria. Gray lines indicate unstable equilibria.
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