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Summary

� The objective function in nonlinear parameter
estimation problems may have multiple local optima.

� Standard methods for parameter estimation are
local methods that provide no guarantee that the
global optimum, and thus the best set of model
parameters, has been found.

� Interval analysis provides a mathematically and

computationally guaranteed method for reliably
solving parameter estimation problems, �nding the
globally optimal parameter values.

� This is demonstrated using example problems in the
modeling of vapor-liquid equilbrium.

{ Published parameter values (e.g., DECHEMA
VLE Data Collection) are often locally, not
globally, optimal.

{ Globally optimal parameter values are easily found
using the interval approach.
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Background|Interval Analysis

� A real interval X = [a; b] = fx 2 < j a � x � bg is
a segment on the real number line and an interval
vector X = (X1;X2; :::;Xn)

T is an n-dimensional
rectangle or \box".

� Basic interval arithmetic for X = [a; b] and Y =
[c; d] is X op Y = fx op y j x 2 X; y 2 Y g
where op 2 f+;�;�;�g. For example, X + Y =
[a+ c; b+ d].

� Computed endpoints are rounded out to guarantee
the enclosure.

� Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

� The interval extension F (X) encloses all values of
f(x) for x 2 X. That is, F (X) � ff(x) j x 2 Xg.

� Interval extensions can be computed using interval
arithmetic (the \natural" interval extension), or with
other techniques.
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Background|Parameter Estimation

� Observations y�i of i = 1; : : : ; q responses from
� = 1; : : : ; p experiments are available.

� Responses are to be �t to a model y�i = fi(x�;�)
with independent variables x� = (x�1; : : : ; x�m)

T

and parameters � = (�1; : : : ; �n)
T .

� Various objective functions �(�) can be used to
determine the parameter values that provide the
"best" �t, e.g.

{ Maximum likelihood
{ Relative least squares

Relative least squares will be used here.

� Optimization problem to determine parameters
can be formulated as either a constrained or
unconstrained problem. In the unconstrained
case, the experimental observations are substituted
directly into the objective function. The
unconstrained formulation is used here.
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Parameter Estimation

� Assuming a relative least squares objective and using
an unconstrained formulation, the problem is

min
�

�(�) =

qX
i=1

pX
�=1

�
y�i � fi(x�;�)

y�i

�2

� A common approach for solving this problem is to
use the gradient of �(�) and to seek the stationary
points of �(�) by solving g(�) � r�(�) = 0.
This system may have many roots, including local
minima, local maxima and saddle points.

� To insure that the global minimum of �(�) is found,
the capability to �nd all the roots of g(�) = 0 is
needed. This is provided by the interval Newton

technique.

� Interval Newton can be combined with branch and
bound so that roots of g(�) = 0 that cannot be the
global minimum need not be found.
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Interval Newton Method

� For the system of nonlinear equations g(�) = 0,
�nd (enclose) all roots in a given initial interval
�(0) or determine that there are none.

� At iteration k, given the interval �(k), if 0 2
G(�(k)) solve the linear interval equation system

G0(�(k))(N(k) � �
(k)) = �g(�(k))

for the \image" N(k), where G(�(k)) is an
interval extension of g(�) and G0(�(k)) an interval
extension of its Jacobian over the current interval
�(k), and �

(k) is a point inside �(k).

� Any root �� 2 �(k) is also contained in the image
N(k), suggesting the iteration scheme �(k+1) =
�(k) \ N(k) (Moore, 1966).

� It follows that if �(k) \ N(k) = ;, then there
is no root in �(k). This is also the conclusion if
0 =2 G(�(k)):
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Interval Newton Method (continued)

� Interval Newton provides an existence and
uniqueness test: If N(k) � �(k), then:

{ There is a unique zero of g(�) in �(k).
{ The interval Newton iteration �(k+1) = �(k)

\ N(k) will converge quadratically to a tight
enclosure of the root.

{ The point Newton method will converge
quadratically to the root starting from any point
in �(k).

� If a unique root cannot be con�rmed (N(k) � �(k))
or ruled out (�(k) \ N(k) = ;), then either:

{ Continue with the next iterate �(k+1) if it is
suÆciently smaller than N(k), or

{ Bisect �(k+1) and perform interval Newton on
the resulting intervals.

This is the interval Newton/generalized bisection
(IN/GB) approach.
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θ1

θ2

Θ(k)
N

(k)

Any solutions in

intersection of

(k)

(k) (k)
Θ are also in

Θ and N
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Θ
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Interval Newton Method (continued)

� For g(�) = 0, this method can enclose with

mathematical and computational certainty any
and all solutions in a given initial interval, or can
determine that there are none.

� A preconditioned interval Gauss-Seidel like
technique is often used to solve for the image N(k)

(Hansen and coworkers).

� Our implementation is based on modi�cations of
routines taken from the packages INTBIS and
INTLIB (Kearfott and coworkers).

� The interval Newton procedure can be performed
on multiple intervals independently and in parallel.

� IN/GB was �rst implemented for process modeling
problems by Schnepper and Stadtherr (1990).
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Parameter Estimation in VLE Modeling

� Goal: Determine parameter values in liquid phase
activity coeÆcient models (e.g. Wilson, NRTL,
UNIQUAC):

�i;calc = fi(x�;�)

� The relative least squares objective is commonly
used:

�(�) =

nX
i=1

pX
�=1

�
�i;calc(�)� �i;exp

�i;exp

�2
:

� Experimental values �i;exp of the activity
coeÆcients are obtained from VLE measurements
at compositions x�; � = 1; : : : ; p.

� Fit is usually made to binary (sometimes ternary)
data. Other types of experimental data may also be
used.
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Example Problems

� The binary system water(1) and formic acid(2) was
studied.

� Twelve problems, each a di�erent data set from the
DECHEMA VLE Data Collection (Gmehling et al.,
1977-1990) were considered.

� The model used was the Wilson equation. This has
binary interaction parameters

�12 = (v2=v1) exp(��1=RT ) and
�21 = (v1=v2) exp(��2=RT )

where v1 and v2 are pure component molar volumes.

� The energy parameters �1 and �2 must be estimated.

� Parameter estimation results for �1 and �2 are given
in the DECHEMA Collection for all twelve problems.
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Results

� Each problem was solved using the interval approach
(INTBIS) to determine the globally optimal values
of the �1 and �2 parameters.

� These results were compared to those presented in
the DECHEMA Collection.

� For each problem, the number of local minima in
�(�) was also determined.

� Table 1 presents a summary of these results and
comparisons.

� Figure 1 shows schematically the parameter values
found by INTBIS and in DECHEMA.
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FIGURE 1: INTBIS results vs. DECHEMA values
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Results (continued)

� Each problem has multiple local minima.

� In �ve of the problems (data sets 7{11), the result
presented in DECHEMA represents a local not
global minimum.

� Using the interval approach, the global minimum
was found for all problems.

� The parameter estimation results obtained from the
global minimization were more consistent than those
in DECHEMA (most fall in the same cluster in
Figure 1).

� There are several other systems for which the results
given in the DECHEMA Collection do not represent
the globally best �t.
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Detailed Results{Data Set 10

� This problem has �ve stationary points, including
three minima and two saddles. Details are shown in
Table 2.

� As is fairly common in this application, the
stationary points lie in a steep-sided valley with a
relatively at bottom. This is shown schematically
in the 3D plot of Figure 2 and the contour plot of
Figure 3.

� The globally optimal parameters found using the
interval approach provide a noticably better �t to
the experimental data. This is shown by the relative
deviation plots given in Figures 4 and 5.
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FIGURE 2: Objective Function for Data Set 10 (3D Plot)
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FIGURE 3: Objective Function for Data Set 10 (Contour Plot)
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FIGURE 4: Comparison of Relative Deviation in 1
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FIGURE 5: Comparison of Relative Deviation in 2
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Computational Performance

� With initial parameter intervals of �
(0)
1 = �

(0)
2 =

[�10000; 10000], the computation time for the
global optimization was roughly from 10 to 50
seconds on a Sun Ultra 2/1300 workstation.

� No signi�cant e�orts have been made to optimize
the eÆciency of the code. Tightening the evaluation
of interval function extensions can potentially reduce
the computation time by a order of magnitude.

� Because of the wide initial interval that can be used,
as opposed to an initial point guess, the method is
essentially initialization independent.

� The additional computation time for the interval
approach, as opposed to local methods, may be well
compensated by the guaranteed global reliability of
the results.
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Concluding Remarks

� Interval analysis is a general-purpose and model-

independent approach for solving parameter
estimation problems, providing a mathematical

and computational guarantee that the global
optimum is found.

{ Other VLE models could be used.
{ Other objective functions (e.g, maximum
likelihood) could be used.

{ Other types of data could be used.

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems.

� Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive.
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