Nonlinear Parameter Estimation Using Interval Analysis

Chao-Yang Gau and Mark A. Stadtherr¹ Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 USA

3rd International Conference on Foundations of Computer Aided Process Operations, Snowbird, UT, July 5–10, 1998

¹Author to whom all correspondence should be addressed. Phone: (219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

Summary

- The objective function in nonlinear parameter estimation problems may have multiple local optima.
- Standard methods for parameter estimation are local methods that provide no guarantee that the global optimum, and thus the best set of model parameters, has been found.
- Interval analysis provides a mathematically and computationally guaranteed method for reliably solving parameter estimation problems, finding the globally optimal parameter values.
- This is demonstrated using example problems in the modeling of vapor-liquid equilbrium.
 - Published parameter values (e.g., DECHEMA VLE Data Collection) are often locally, not globally, optimal.
 - Globally optimal parameter values are easily found using the interval approach.

Background—Interval Analysis

- A real interval $X = [a, b] = \{x \in \Re \mid a \le x \le b\}$ is a segment on the real number line and an interval vector $\mathbf{X} = (X_1, X_2, ..., X_n)^T$ is an *n*-dimensional rectangle or "box".
- Basic interval arithmetic for X = [a, b] and Y = [c, d] is X op $Y = \{x \text{ op } y \mid x \in X, y \in Y\}$ where $\text{op} \in \{+, -, \times, \div\}$. For example, X + Y = [a + c, b + d].
- Computed endpoints are **rounded out** to guarantee the enclosure.
- Interval elementary functions (e.g. $\exp(X)$, $\log(X)$, etc.) are also available.
- The interval extension $F(\mathbf{X})$ encloses all values of $f(\mathbf{x})$ for $\mathbf{x} \in \mathbf{X}$. That is, $F(\mathbf{X}) \supseteq \{f(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}$.
- Interval extensions can be computed using interval arithmetic (the "natural" interval extension), or with other techniques.

Background—Parameter Estimation

- Observations $y_{\mu i}$ of $i = 1, \ldots, q$ responses from $\mu = 1, \ldots, p$ experiments are available.
- Responses are to be fit to a model $y_{\mu i} = f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})$ with independent variables $\mathbf{x}_{\mu} = (x_{\mu 1}, \dots, x_{\mu m})^T$ and parameters $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)^T$.
- Various objective functions $\phi(\theta)$ can be used to determine the parameter values that provide the "best" fit, e.g.
 - Maximum likelihood
 - Relative least squares

Relative least squares will be used here.

 Optimization problem to determine parameters can be formulated as either a constrained or unconstrained problem. In the unconstrained case, the experimental observations are substituted directly into the objective function. The unconstrained formulation is used here.

Parameter Estimation

• Assuming a relative least squares objective and using an unconstrained formulation, the problem is

$$\min_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}) = \sum_{i=1}^{q} \sum_{\mu=1}^{p} \left[\frac{y_{\mu i} - f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})}{y_{\mu i}} \right]^2$$

- A common approach for solving this problem is to use the gradient of φ(θ) and to seek the stationary points of φ(θ) by solving g(θ) ≡ ∇φ(θ) = 0. This system may have many roots, including local minima, local maxima and saddle points.
- To insure that the global minimum of $\phi(\theta)$ is found, the capability to find **all** the roots of $\mathbf{g}(\theta) = \mathbf{0}$ is needed. This is provided by the **interval Newton** technique.
- Interval Newton can be combined with branch and bound so that roots of $g(\theta) = 0$ that cannot be the global minimum need not be found.

Interval Newton Method

- For the system of nonlinear equations $\mathbf{g}(\boldsymbol{\theta}) = \mathbf{0}$, find (enclose) all roots in a given initial interval $\boldsymbol{\Theta}^{(0)}$ or determine that there are none.
- At iteration k, given the interval $\Theta^{(k)}$, if $0 \in \mathbf{G}(\Theta^{(k)})$ solve the linear interval equation system

$$G'(\mathbf{\Theta}^{(k)})(\mathbf{N}^{(k)} - \boldsymbol{\theta}^{(k)}) = -\mathbf{g}(\boldsymbol{\theta}^{(k)})$$

for the "image" $\mathbf{N}^{(k)}$, where $\mathbf{G}(\mathbf{\Theta}^{(k)})$ is an interval extension of $\mathbf{g}(\boldsymbol{\theta})$ and $G'(\mathbf{\Theta}^{(k)})$ an interval extension of its Jacobian over the current interval $\mathbf{\Theta}^{(k)}$, and $\boldsymbol{\theta}^{(k)}$ is a point inside $\mathbf{\Theta}^{(k)}$.

- Any root $\theta^* \in \Theta^{(k)}$ is also contained in the image $\mathbf{N}^{(k)}$, suggesting the iteration scheme $\Theta^{(k+1)} = \Theta^{(k)} \cap \mathbf{N}^{(k)}$ (Moore, 1966).
- It follows that if $\Theta^{(k)} \cap \mathbf{N}^{(k)} = \emptyset$, then there is no root in $\Theta^{(k)}$. This is also the conclusion if $0 \notin \mathbf{G}(\Theta^{(k)})$.

Interval Newton Method (continued)

- Interval Newton provides an existence and uniqueness test: If $\mathbf{N}^{(k)} \subset \mathbf{\Theta}^{(k)}$, then:
 - There is a **unique** zero of $\mathbf{g}(\boldsymbol{\theta})$ in $\boldsymbol{\Theta}^{(k)}$.
 - The interval Newton iteration $\Theta^{(k+1)} = \Theta^{(k)}$ $\cap \mathbf{N}^{(k)}$ will converge quadratically to a tight enclosure of the root.
 - The point Newton method will converge quadratically to the root starting from any point in $\Theta^{(k)}$.
- If a unique root cannot be confirmed (N^(k) ⊂ Θ^(k)) or ruled out (Θ^(k) ∩ N^(k) = ∅), then either:
 - Continue with the next iterate $\Theta^{(k+1)}$ if it is sufficiently smaller than $\mathbf{N}^{(k)}$, or
 - **Bisect** $\Theta^{(k+1)}$ and perform interval Newton on the resulting intervals.

This is the interval Newton/generalized bisection (IN/GB) approach.

There was no solution in $\Theta^{(k)}$

θ_2

Interval Newton Method (continued)

- For g(θ) = 0, this method can enclose with mathematical and computational certainty any and all solutions in a given initial interval, or can determine that there are none.
- A preconditioned interval Gauss-Seidel like technique is often used to solve for the image $\mathbf{N}^{(k)}$ (Hansen and coworkers).
- Our implementation is based on modifications of routines taken from the packages INTBIS and INTLIB (Kearfott and coworkers).
- The interval Newton procedure can be performed on multiple intervals independently and in parallel.
- IN/GB was first implemented for process modeling problems by Schnepper and Stadtherr (1990).

Parameter Estimation in VLE Modeling

 Goal: Determine parameter values in liquid phase activity coefficient models (e.g. Wilson, NRTL, UNIQUAC):

$$\gamma_{\mu i, \mathrm{calc}} = f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})$$

• The relative least squares objective is commonly used:

$$\phi(\boldsymbol{\theta}) = \sum_{i=1}^{n} \sum_{\mu=1}^{p} \left[\frac{\gamma_{\mu i, \text{calc}}(\boldsymbol{\theta}) - \gamma_{\mu i, \text{exp}}}{\gamma_{\mu i, \text{exp}}} \right]^{2}$$

- Experimental values $\gamma_{\mu i, \exp}$ of the activity coefficients are obtained from VLE measurements at compositions $\mathbf{x}_{\mu}, \mu = 1, \dots, p$.
- Fit is usually made to binary (sometimes ternary) data. Other types of experimental data may also be used.

Example Problems

- The binary system water(1) and formic acid(2) was studied.
- Twelve problems, each a different data set from the DECHEMA VLE Data Collection (Gmehling *et al.*, 1977-1990) were considered.
- The model used was the Wilson equation. This has binary interaction parameters

$$\Lambda_{12} = (v_2/v_1) \exp(-\theta_1/RT)$$
 and
 $\Lambda_{21} = (v_1/v_2) \exp(-\theta_2/RT)$

where v_1 and v_2 are pure component molar volumes.

- The energy parameters θ_1 and θ_2 must be estimated.
- Parameter estimation results for θ_1 and θ_2 are given in the DECHEMA Collection for all twelve problems.

Results

- Each problem was solved using the interval approach (INTBIS) to determine the globally optimal values of the θ_1 and θ_2 parameters.
- These results were compared to those presented in the DECHEMA Collection.
- For each problem, the number of local minima in $\phi(\theta)$ was also determined.
- Table 1 presents a summary of these results and comparisons.
- Figure 1 shows schematically the parameter values found by INTBIS and in DECHEMA.

TABLE 1: INTBIS results vs. DECHEMA values

No. of	Minima	2	2	2	2	ŝ	2	2	Υ	2	Υ	с	2
INTBIS	$\phi(oldsymbol{ heta})$	0.0342	0.0106	0.0151	0.353	0.0257	0.0708	0.0914*	0.0342*	0.111*	0.0819*	0.0372*	0.0502
	$ heta_2$	759	1038	1167	984	1509	-1120	1250	1404	966	1394	1519	-1055
	$ heta_1$	-168	-278	-308	-282	-365	1065	-331	-340	-285	-329	-330	807
DECHEMA	$\phi(oldsymbol{ heta})$	0.0342	0.0106	0.0151	0.353	0.0257	0.0708	0.141	0.0459	0.165	0.151	0.0399	0.0502
	$ heta_2$	759	1038	1181	985	1513	-1122	-985	-608	-718	-663	-762	-1058
	$ heta_1$	-195	-278	-310	-282	-366	1067	892	370	539	450	558	812
Р	(mm Hg)	092	760	760	760	760	760	200	200	100	100	70	25
Data	Set	1	2	ς	4	5	9	*7	*∞	*6	10^*	11^{*}	12

*New globally optimal parameters found!

Results (continued)

- Each problem has multiple local minima.
- In five of the problems (data sets 7–11), the result presented in DECHEMA represents a local not global minimum.
- Using the interval approach, the global minimum was found for all problems.
- The parameter estimation results obtained from the global minimization were more consistent than those in DECHEMA (most fall in the same cluster in Figure 1).
- There are several other systems for which the results given in the DECHEMA Collection do not represent the globally best fit.

Detailed Results-Data Set 10

- This problem has five stationary points, including three minima and two saddles. Details are shown in Table 2.
- As is fairly common in this application, the stationary points lie in a steep-sided valley with a relatively flat bottom. This is shown schematically in the 3D plot of Figure 2 and the contour plot of Figure 3.
- The globally optimal parameters found using the interval approach provide a noticably better fit to the experimental data. This is shown by the relative deviation plots given in Figures 4 and 5.

TABLE 2: Stationary Points (Roots) for Data Set 10

Status	minim	saddle	minimum	saddle	global minimum
$\phi(oldsymbol{ heta})$	0.164	0.178	0.151	0.19	0.0819
Eigenvalues of Hessian	7.55E-5, 2.58E-7	6.83E-5, -1.44E-7	6.97E-5, 9.42E-8	9.08E-5, -3.54E-7	1.23E-4, 1.47E-7
$ heta_1, heta_2$	(1658, -1251)	(1165, -1083)	(452, -664)	(-37.8, 38.5)	(-329, 1394)
Root	P1	Ρ2	Р3	P4	P5

FIGURE 3: Objective Function for Data Set 10 (Contour Plot)

Computational Performance

- With initial parameter intervals of $\Theta_1^{(0)} = \Theta_2^{(0)} = [-10000, 10000]$, the computation time for the global optimization was roughly from 10 to 50 seconds on a Sun Ultra 2/1300 workstation.
- No significant efforts have been made to optimize the efficiency of the code. Tightening the evaluation of interval function extensions can potentially reduce the computation time by a order of magnitude.
- Because of the wide initial interval that can be used, as opposed to an initial point guess, the method is essentially **initialization independent**.
- The additional computation time for the interval approach, as opposed to local methods, may be well compensated by the guaranteed global reliability of the results.

Concluding Remarks

- Interval analysis is a general-purpose and modelindependent approach for solving parameter estimation problems, providing a mathematical and computational guarantee that the global optimum is found.
 - Other VLE models could be used.
 - Other objective functions (e.g, maximum likelihood) could be used.
 - Other types of data could be used.
- Interval analysis provides powerful problem solving techniques with many other applications in the modeling of thermodynamics and phase behavior and in other process modeling problems.
- Continuing advances in computing hardware and software (e.g., compiler support for interval arithmetic) will make this approach even more attractive.

- Acknowledgments
 - ACS PRF 30421-AC9
 - NSF CTS95-22835
 - NSF DMI96-96110
 - NSF EEC97-00537-CRCD
 - EPA R824731-01-0
 - DOE DE-FG07-96ER14691
 - Sun Microsystems, Inc.
- For more information:
 - Contact Prof. Stadtherr at markst@nd.edu
 - See also

http://www.nd.edu/~markst