Nonlinear Parameter Estimation Using Interval Analysis

Chao-Yang Gau and Mark A. Stadtherr ${ }^{1}$
Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 USA

3rd International Conference on
Foundations of Computer Aided Process Operations,
Snowbird, UT, July 5-10, 1998

[^0]
Summary

- The objective function in nonlinear parameter estimation problems may have multiple local optima.
- Standard methods for parameter estimation are local methods that provide no guarantee that the global optimum, and thus the best set of model parameters, has been found.
- Interval analysis provides a mathematically and computationally guaranteed method for reliably solving parameter estimation problems, finding the globally optimal parameter values.
- This is demonstrated using example problems in the modeling of vapor-liquid equilbrium.
- Published parameter values (e.g., DECHEMA VLE Data Collection) are often locally, not globally, optimal.
- Globally optimal parameter values are easily found using the interval approach.

Background-Interval Analysis

- A real interval $X=[a, b]=\{x \in \Re \mid a \leq x \leq b\}$ is a segment on the real number line and an interval vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ is an n-dimensional rectangle or "box".
- Basic interval arithmetic for $X=[a, b]$ and $Y=$ $[c, d]$ is X op $Y=\{x$ op $y \mid x \in X, y \in Y\}$ where op $\in\{+,-, \times, \div\}$. For example, $X+Y=$ $[a+c, b+d]$.
- Computed endpoints are rounded out to guarantee the enclosure.
- Interval elementary functions (e.g. $\exp (X), \log (X)$, etc.) are also available.
- The interval extension $F(\mathbf{X})$ encloses all values of $f(\mathbf{x})$ for $\mathbf{x} \in \mathbf{X}$. That is, $F(\mathbf{X}) \supseteq\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}$.
- Interval extensions can be computed using interval arithmetic (the "natural" interval extension), or with other techniques.

Background—Parameter Estimation

- Observations $y_{\mu i}$ of $i=1, \ldots, q$ responses from $\mu=1, \ldots, p$ experiments are available.
- Responses are to be fit to a model $y_{\mu i}=f_{i}\left(\mathbf{x}_{\mu}, \boldsymbol{\theta}\right)$ with independent variables $\mathbf{x}_{\mu}=\left(x_{\mu 1}, \ldots, x_{\mu m}\right)^{T}$ and parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)^{T}$.
- Various objective functions $\phi(\boldsymbol{\theta})$ can be used to determine the parameter values that provide the "best" fit, e.g.
- Maximum likelihood
- Relative least squares Relative least squares will be used here.
- Optimization problem to determine parameters can be formulated as either a constrained or unconstrained problem. In the unconstrained case, the experimental observations are substituted directly into the objective function. The unconstrained formulation is used here.

Parameter Estimation

- Assuming a relative least squares objective and using an unconstrained formulation, the problem is

$$
\min _{\boldsymbol{\theta}} \phi(\boldsymbol{\theta})=\sum_{i=1}^{q} \sum_{\mu=1}^{p}\left[\frac{y_{\mu i}-f_{i}\left(\mathbf{x}_{\mu}, \boldsymbol{\theta}\right)}{y_{\mu i}}\right]^{2}
$$

- A common approach for solving this problem is to use the gradient of $\phi(\boldsymbol{\theta})$ and to seek the stationary points of $\phi(\boldsymbol{\theta})$ by solving $\mathbf{g}(\boldsymbol{\theta}) \equiv \nabla \phi(\boldsymbol{\theta})=\mathbf{0}$. This system may have many roots, including local minima, local maxima and saddle points.
- To insure that the global minimum of $\phi(\boldsymbol{\theta})$ is found, the capability to find all the roots of $\mathrm{g}(\boldsymbol{\theta})=\mathbf{0}$ is needed. This is provided by the interval Newton technique.
- Interval Newton can be combined with branch and bound so that roots of $\mathbf{g}(\boldsymbol{\theta})=\mathbf{0}$ that cannot be the global minimum need not be found.

Interval Newton Method

- For the system of nonlinear equations $\mathbf{g}(\boldsymbol{\theta})=\mathbf{0}$, find (enclose) all roots in a given initial interval $\Theta^{(0)}$ or determine that there are none.
- At iteration k, given the interval $\boldsymbol{\Theta}^{(k)}$, if $0 \in$ $\mathbf{G}\left(\boldsymbol{\Theta}^{(k)}\right)$ solve the linear interval equation system

$$
G^{\prime}\left(\boldsymbol{\Theta}^{(k)}\right)\left(\mathbf{N}^{(k)}-\boldsymbol{\theta}^{(k)}\right)=-\mathbf{g}\left(\boldsymbol{\theta}^{(k)}\right)
$$

for the "image" $\mathbf{N}^{(k)}$, where $\mathbf{G}\left(\boldsymbol{\Theta}^{(k)}\right)$ is an interval extension of $\mathbf{g}(\boldsymbol{\theta})$ and $G^{\prime}\left(\boldsymbol{\Theta}^{(k)}\right)$ an interval extension of its Jacobian over the current interval $\boldsymbol{\Theta}^{(k)}$, and $\boldsymbol{\theta}^{(k)}$ is a point inside $\boldsymbol{\Theta}^{(k)}$.

- Any root $\boldsymbol{\theta}^{*} \in \boldsymbol{\Theta}^{(k)}$ is also contained in the image $\mathbf{N}^{(k)}$, suggesting the iteration scheme $\boldsymbol{\Theta}^{(k+1)}=$ $\boldsymbol{\Theta}^{(k)} \cap \mathbf{N}^{(k)}$ (Moore, 1966).
- It follows that if $\boldsymbol{\Theta}^{(k)} \cap \mathbf{N}^{(k)}=\emptyset$, then there is no root in $\Theta^{(k)}$. This is also the conclusion if $0 \notin \mathbf{G}\left(\boldsymbol{\Theta}^{(k)}\right)$.

Interval Newton Method (continued)

- Interval Newton provides an existence and uniqueness test: If $\mathbf{N}^{(k)} \subset \boldsymbol{\Theta}^{(k)}$, then:
- There is a unique zero of $\mathbf{g}(\boldsymbol{\theta})$ in $\Theta^{(k)}$.
- The interval Newton iteration $\boldsymbol{\Theta}^{(k+1)}=\boldsymbol{\Theta}^{(k)}$ $\cap \mathbf{N}^{(k)}$ will converge quadratically to a tight enclosure of the root.
- The point Newton method will converge quadratically to the root starting from any point in $\Theta^{(k)}$.
- If a unique root cannot be confirmed $\left(\mathbf{N}^{(k)} \subset \mathbf{\Theta}^{(k)}\right)$ or ruled out $\left(\boldsymbol{\Theta}^{(k)} \cap \mathbf{N}^{(k)}=\emptyset\right)$, then either:
- Continue with the next iterate $\Theta^{(k+1)}$ if it is sufficiently smaller than $\mathbf{N}^{(k)}$, or
- Bisect $\Theta^{(k+1)}$ and perform interval Newton on the resulting intervals.

This is the interval Newton/generalized bisection (IN/GB) approach.

Any solutions in $\Theta^{(k)}$ are also in
intersection of $\Theta^{(k)}$ and $N^{(k)}$

Unique solution in $\Theta^{(k)}$
This solution is in $N^{(k)}$
Point Newton method will converge to it

Interval Newton Method (continued)

- For $\mathbf{g}(\boldsymbol{\theta})=\mathbf{0}$, this method can enclose with mathematical and computational certainty any and all solutions in a given initial interval, or can determine that there are none.
- A preconditioned interval Gauss-Seidel like technique is often used to solve for the image $\mathbf{N}^{(k)}$ (Hansen and coworkers).
- Our implementation is based on modifications of routines taken from the packages INTBIS and INTLIB (Kearfott and coworkers).
- The interval Newton procedure can be performed on multiple intervals independently and in parallel.
- IN/GB was first implemented for process modeling problems by Schnepper and Stadtherr (1990).

Parameter Estimation in VLE Modeling

- Goal: Determine parameter values in liquid phase activity coefficient models (e.g. Wilson, NRTL, UNIQUAC):

$$
\gamma_{\mu i, \text { calc }}=f_{i}\left(\mathbf{x}_{\mu}, \boldsymbol{\theta}\right)
$$

- The relative least squares objective is commonly used:

$$
\phi(\boldsymbol{\theta})=\sum_{i=1}^{n} \sum_{\mu=1}^{p}\left[\frac{\gamma_{\mu i, \operatorname{calc}}(\boldsymbol{\theta})-\gamma_{\mu i, \exp }}{\gamma_{\mu i, \exp }}\right]^{2} .
$$

- Experimental values $\gamma_{\mu i, \exp }$ of the activity coefficients are obtained from VLE measurements at compositions $\mathbf{x}_{\mu}, \mu=1, \ldots, p$.
- Fit is usually made to binary (sometimes ternary) data. Other types of experimental data may also be used.

Example Problems

- The binary system water(1) and formic acid(2) was studied.
- Twelve problems, each a different data set from the DECHEMA VLE Data Collection (Gmehling et al., 1977-1990) were considered.
- The model used was the Wilson equation. This has binary interaction parameters

$$
\begin{aligned}
& \Lambda_{12}=\left(v_{2} / v_{1}\right) \exp \left(-\theta_{1} / R T\right) \text { and } \\
& \Lambda_{21}=\left(v_{1} / v_{2}\right) \exp \left(-\theta_{2} / R T\right)
\end{aligned}
$$

where v_{1} and v_{2} are pure component molar volumes.

- The energy parameters θ_{1} and θ_{2} must be estimated.
- Parameter estimation results for θ_{1} and θ_{2} are given in the DECHEMA Collection for all twelve problems.

Results

- Each problem was solved using the interval approach (INTBIS) to determine the globally optimal values of the θ_{1} and θ_{2} parameters.
- These results were compared to those presented in the DECHEMA Collection.
- For each problem, the number of local minima in $\phi(\boldsymbol{\theta})$ was also determined.
- Table 1 presents a summary of these results and comparisons.
- Figure 1 shows schematically the parameter values found by INTBIS and in DECHEMA.
TABLE 1: INTBIS results vs. DECHEMA values

Data	P	DECHEMA				INTBIS	No. of	
Set	$(\mathrm{mm} \mathrm{Hg})$	θ_{1}	θ_{2}	$\phi(\boldsymbol{\theta})$	θ_{1}	θ_{2}	$\phi(\boldsymbol{\theta})$	Minima
1	760	-195	759	0.0342	-168	759	0.0342	2
2	760	-278	1038	0.0106	-278	1038	0.0106	2
3	760	-310	1181	0.0151	-308	1167	0.0151	2
4	760	-282	985	0.353	-282	984	0.353	2
5	760	-366	1513	0.0257	-365	1509	0.0257	3
6	760	1067	-1122	0.0708	1065	-1120	0.0708	2
$7 *$	200	892	-985	0.141	-331	$\mathbf{1 2 5 0}$	$\mathbf{0 . 0 9 1 4 *}$	2
8^{*}	200	370	-608	0.0459	-340	$\mathbf{1 4 0 4}$	$\mathbf{0 . 0 3 4 2 *}$	3
9^{*}	100	539	-718	0.165	-285	$\mathbf{9 9 6}$	$\mathbf{0 . 1 1 1 *}$	2
10^{*}	100	450	-663	0.151	-329	$\mathbf{1 3 9 4}$	$\mathbf{0 . 0 8 1 9 *}$	3
11^{*}	70	558	-762	0.0399	-330	$\mathbf{1 5 1 9}$	$\mathbf{0 . 0 3 7 2 *}$	3
12	25	812	-1058	0.0502	807	-1055	0.0502	2

*New globally optimal parameters found!

FIGURE 1: INTBIS results vs. DECHEMA values

Results (continued)

- Each problem has multiple local minima.
- In five of the problems (data sets 7-11), the result presented in DECHEMA represents a local not global minimum.
- Using the interval approach, the global minimum was found for all problems.
- The parameter estimation results obtained from the global minimization were more consistent than those in DECHEMA (most fall in the same cluster in Figure 1).
- There are several other systems for which the results given in the DECHEMA Collection do not represent the globally best fit.

Detailed Results-Data Set 10

- This problem has five stationary points, including three minima and two saddles. Details are shown in Table 2.
- As is fairly common in this application, the stationary points lie in a steep-sided valley with a relatively flat bottom. This is shown schematically in the 3D plot of Figure 2 and the contour plot of Figure 3.
- The globally optimal parameters found using the interval approach provide a noticably better fit to the experimental data. This is shown by the relative deviation plots given in Figures 4 and 5.

FIGURE 2: Objective Function for Data Set 10 (3D Plot)

FIGURE 3: Objective Function for Data Set 10 (Contour Plot)

FIGURE 4: Comparison of Relative Deviation in γ_{1}

FIGURE 5: Comparison of Relative Deviation in γ_{2}

Computational Performance

- With initial parameter intervals of $\Theta_{1}^{(0)}=\Theta_{2}^{(0)}=$ $[-10000,10000]$, the computation time for the global optimization was roughly from 10 to 50 seconds on a Sun Ultra 2/1300 workstation.
- No significant efforts have been made to optimize the efficiency of the code. Tightening the evaluation of interval function extensions can potentially reduce the computation time by a order of magnitude.
- Because of the wide initial interval that can be used, as opposed to an initial point guess, the method is essentially initialization independent.
- The additional computation time for the interval approach, as opposed to local methods, may be well compensated by the guaranteed global reliability of the results.

Concluding Remarks

- Interval analysis is a general-purpose and modelindependent approach for solving parameter estimation problems, providing a mathematical and computational guarantee that the global optimum is found.
- Other VLE models could be used.
- Other objective functions (e.g, maximum likelihood) could be used.
- Other types of data could be used.
- Interval analysis provides powerful problem solving techniques with many other applications in the modeling of thermodynamics and phase behavior and in other process modeling problems.
- Continuing advances in computing hardware and software (e.g., compiler support for interval arithmetic) will make this approach even more attractive.
- Acknowledgments
- ACS PRF 30421-AC9
- NSF CTS95-22835
- NSF DMI96-96110
- NSF EEC97-00537-CRCD
- EPA R824731-01-0
- DOE DE-FG07-96ER14691
- Sun Microsystems, Inc.
- For more information:
- Contact Prof. Stadtherr at markst@nd.edu
- See also
http://www.nd.edu/~markst

[^0]: ${ }^{1}$ Author to whom all correspondence should be addressed. Phone: (219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

