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AbSt r Ac t Models of process dynamics often involve uncertain param-
eters, inputs and/or initial states. Even if probability distributions for the 
uncertainties are available, they too may be imprecise. An approach for rig-
orously and tightly bounding the effects of such uncertainty in process mod-
els is described here, and it is shown how this can be extended to determine 
rigorous bounds on the probabilities of achieving desired outcomes.
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Introduction

The process models used in analysis and design, whether static or dynamic, 
often involve uncertainties in parameters, inputs, and/or initial states. 
Determining how these uncertainties propagate through a model to affect its 
outputs, and doing so rigorously, can be a very challenging problem, espe-
cially for nonlinear dynamic systems. The problem is further complicated 
by the fact that the probability distributions describing the uncertainties 
may not be known precisely, if they are known at all. If there is no known 
probability distribution for an uncertain quantity, but only bounds, then the 
uncertainty can be modeled using an interval. If some knowledge of the prob-
ability distribution is available, but it is imprecise, then this can be modeled 
using a probability box (p-box), which provides upper and lower bounds on 
the cumulative probability distribution function for the uncertain quantity. 
We will concentrate here on the latter case, in which uncertain quantities in 
the process model are characterized by imprecise probabilities represented 
by p-boxes. Furthermore, we will focus on the difficult case of a nonlinear 
dynamic model, i.e., a nonlinear system of ordinary differential equations 
(ODEs) for which an initial value problem (IVP) must be solved.

One common approach for dealing with this problem is Monte Carlo analy-
sis. However, in this approach, it is not possible to investigate the complete 
space of uncertain quantities in a finite number of simulations, and thus Monte 
Carlo analysis may fail to capture all possible system behaviors, especially in 
the case of nonlinear systems. We will describe here an approach for rigor-
ously and tightly bounding the effects of uncertainty in process models, and 
show how this can be extended to determine rigorous bounds on the probabil-
ities that desired outcomes are achieved. This approach is enabled by the use 
of Taylor models to represent the solution of IVPs with uncertain parameters 
and/or initial states, as described recently by Lin and Stadtherr (2007b). 

The rest of this paper is organized as follows. In the next section, we pro-
vide some background on the approaches used here for representing uncer-
tainties, as well as on the use of Taylor models. This is followed by a formal 
problem statement and then a description of the solution procedure used. 
Finally a demonstrative example is provided, with comparison to results 
obtained from Monte Carlo simulation.

background

There are several ways to treat numerical uncertainty in mathematical mod-
els. In this section, we provide background on the specific approaches used 
here, namely intervals and p-boxes. We also provide background on the use 
of Taylor models.
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Intervals

A real interval X is the set of real numbers between and inclusive of its lower 
bound X and upper bound X; that is, X X X x X x X= = ∈ℜ ≤ ≤[ , ] { | } . Thus, 
an interval can be used to represent an uncertain quantity for which no infor-
mation is available other than its lower and upper bounds. Intervals are also 
used to represent computational uncertainties due to machine rounding. 
That is, a real number that is not exactly machine representable is bounded 
by an interval determined from the real number’s nearest floating-point rep-
resentations. An interval vector X = ( , , , )X X Xn1 2 

T has n real interval com-
ponents and can be thought of as an n-dimensional rectangle or box. Interval 
matrices are similarly defined.

Basic arithmetic operations are defined on intervals according to

 
X Y x y x X y Yop op= ∈ ∈{ | , }  (1)

for op ∈ + - × ÷{ , , , } and, in the case of division, 0 ∉Y, though division in 
the case of Y containing zero is allowed in extensions of interval arithmetic 
(e.g., Hansen and Walster, 2004). Commutativity and associativity hold for 
addition and multiplication, but these operations are only subdistributive. 
Interval versions of the elementary functions can also be defined.

For a real function f(x), an interval extension F(X)  encloses the range of f(x) 
for all x ∈ X. When f(x) can be written as a series of arithmetic operations and 
elementary functions, substituting X into f(x) and evaluating using interval 
arithmetic gives the “natural” interval extension. However, computing the 
interval extension in this manner often results in overestimation of the func-
tion range due to the “dependency” problem. This issue may arise if there are 
multiple occurrences of the same variable in the function, since in computing 
the natural interval extension each such occurrence is treated as being inde-
pendent, though clearly this is not the case. Another source of overestima-
tion that may arise in the use of interval methods is the “wrapping” effect. 
This occurs when an interval is used to enclose (wrap) a set of results that is 
not an interval. If overestimation due to either of these issues is propagated 
from step to step in an integration procedure for ODEs, it can quickly lead to 
the loss of a meaningful enclosure. One approach for addressing these issues 
is the use of Taylor models, as discussed later in this section.

Several good introductions to interval analysis, as well as interval arith-
metic and other aspects of computing with intervals, are available (e.g., 
Hansen and Walster, 2004; Jaulin et al., 2001; Kearfott, 1996; Neumaier, 1990). 
Implementations of interval arithmetic and elementary functions are also 
readily available, and recent compilers from Sun Microsystems directly sup-
port interval arithmetic and an interval data type.

Probability Boxes (P-boxes)

If more is known about an uncertain quantity than simply its upper and 
lower bounds, then this can be represented in a number of ways. We will 
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assume here that some information, not necessarily precise, is known about 
the probability distribution of the uncertainty. In other situations, the use of 
fuzzy numbers (e.g., Dubois and Prade, 1978), clouds (e.g., Neumaier, 2004), 
and other representations of uncertain knowledge may be appropriate, 
depending on the type of information that is available.

For some quantity (variable or parameter) x, the cumulative distribution 
function (CDF) F(z) gives the probability that x ≤ z. In practice, knowledge of 
the probability distribution describing an uncertainty is often itself uncer-
tain. To deal with imprecise probability distributions, we use probability 
boxes (p-boxes) (e.g., Ferson, 2002; Ferson et al., 2004). A p-box, as defined 
below, is a way to bound probability distributions, in much the same way 
that an interval is used to bound a real number. Furthermore, arithmetic 
operations with p-boxes can be performed, again in much the same way as 
done with intervals. Computations with p-boxes allow for more information 
about the uncertainty of a quantity to be utilized in modeling and analysis.

Formally, a p-box is the set of all CDFs enclosed by two bounding CDFs 
F(z) and G(z); that is, 

 ( , ) { ( )| ( ) ( ) ( )}.F G H z F z H z G z= ≥ ≥  (2)

Less formally, a p-box can be thought of as a set of interval bounds on a 
cumulative distribution function, and thus, in practice, computation with 
p-boxes and intervals are analogous (Ferson, 2002). The bounding functions 
F(z) and G(z) are decomposed into interval-mass pairs, and interval arithme-
tic is then applied. Therefore, computation with p-boxes involves the same 
issues of dependency and (especially) wrapping that occur in computations 
with intervals. For a p-box represented as n interval-mass pairs, a single 
arithmetic operation with another independent p-box provides a result with 
n2  interval-mass pairs, and a p-box with n  interval-mass pairs must then be 
used to condense (wrap) this result.

A p-box may be constructed from any available information about an 
uncertain quantity, including, but not limited to, any combination of its 
maximum, minimum, mean, median, or standard deviation. An interval is a 
special case of a p-box where only the maximum and minimum are known. 
P-boxes may also be created by assuming a particular form of probability 
distribution for the bounding functions F(z) and G(z). Some sample p-boxes 
are shown in Figure 1. Figure 1(a) shows a p-box representation of a standard 
interval. Figure 1(b) gives the p-box for a variable whose minimum, median, 
and maximum are known. Figure 1(c) is a p-box created from two differ-
ent uniform distributions as bounding functions. It is important to note that 
the true probability distribution simply lies between the bounding functions 
and does not necessarily take the same form as a bounding function; that is, 
a distribution within a p-box bounded by uniform distributions is not neces-
sarily also uniform.
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Rigorous Propagation of Imprecise Probabilities 81

Taylor Models

In order to alleviate the overestimation problems that occur in interval 
computations, Makino and Berz (1996, 1999) have described a remainder 
differential algebra (RDA) approach for bounding function ranges. In this 
method, a function is represented using a model consisting of a real-valued 
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FIgure 1 
Examples of p-boxes for given knowledge of uncertainty.  See text for discussion.
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Taylor polynomial and an interval remainder bound. Such a model is called 
a Taylor model.

One way of forming a Taylor model of a function is through direct use of 
the Taylor theorem. Consider a real function f(x)  that is (q + 1) times partially 
differentiable on X and let x X0 ∈ . The Taylor theorem states that for each 
x X∈ , there exists a real ζ  with 0 1< <ζ  such that

 
f p rf f( ) ( ) ( , )x x x x x= - + -0 0 ζ  (3)

where p f  is a q-th order polynomial (truncated Taylor series) in ( )x x- 0 ,  
and rf  is a remainder term, which can be quantitatively bounded over 
0 1< <ζ  and x X∈ using interval arithmetic or other methods to obtain an 
interval remainder bound R f . A q-th order Taylor model T p Rf f f= +  for f(x) 
over X  then consists of the polynomial pf  and the interval remainder bound 
Rf  and is denoted by T p Rf f f= ( , ) . Note that f Tf∈  for x X∈ ; therefore, Tf  
encloses the range of f over X.

In practice, it is more useful to compute Taylor models of functions by 
performing arithmetic operations on other Taylor models. Arithmetic opera-
tions, including addition, multiplication, reciprocal, and intrinsic functions, 
can be done using the RDA operations described by Makino and Berz (1996; 
1999; 2003). Using these, it is possible to start with simple functions such 
as the constant function f k( )x = , for which T kf = ( , [ , ])0 0 , and the identity 
function f x xi i( ) = , for which T x x xf i i= + -( ( ), [ , ])0 0 0 0 , and then to compute 
Taylor models for more complicated functions. Hence, it is possible to com-
pute a Taylor model for any function representable in a computer environ-
ment by simple operator overloading through RDA operations. It has been 
shown that the Taylor model often yields sharper bounds for modest to 
complicated functional dependencies compared to other rigorous bounding 
methods (Makino and Berz, 1996, 1999; Neumaier, 2003). A discussion of the 
uses and limitations of Taylor models has been given by Neumaier (2003).

Problem Statement

Consider the parametric, autonomous IVP

 ′ = = ∈ ∈y f y y y Y( ) ( , ), ( ) ,t tθ θ0 0 0 Θ  (4)

over the time interval t t tm∈[ , ]0   where t tm > 0 . Here, y is the n-dimensional 
vector of state variables whose initial value is y0, and q  is a p-dimensional 
vector of time-invariant parameters. The uncertainties in the initial states 
and parameters are enclosed in the interval vectors Y0  and Θ, respectively. 
Further, additional probabilistic information is available for at least one com-
ponent of y0 or Θ, and this information is expressed in the form of a p-box. 
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We also assume that f is (k - 1) times continuously differentiable with respect 
to y and (q + 1) times continuously differentiable with respect to q. Here, k  is 
the order of the truncation error in the interval Taylor series (ITS) used in the 
solution procedure (see below), and q  is the order of the Taylor model used to 
represent dependence on initial values and parameters. We also assume that  
f is representable by a finite number of standard functions.

Our goal is twofold: 1) to obtain verified (e.g., mathematically and compu-
tationally guaranteed) enclosures of the state variables y at specified times tk 

of interest from t0 to tm, and 2) to obtain a probability distribution, in the form 
of a p-box, for the values of y within these enclosures.

Solution Procedure

In this section, we summarize the solution methods used to achieve the two 
goals stated above. 

enclosing the State Variables

Interval methods (also called validated methods or verified methods) for 
ODEs provide a natural approach for computing the desired enclosure of 
the state variables in the problem stated above. Traditional interval meth-
ods usually consist of two processes applied at each integration step. In the 
first process, existence and uniqueness of the solution are proved using the 
Picard-Lindelöf operator and the Banach fixed point theorem, and a rough 
enclosure of the solution is computed. In the second process, a tighter enclo-
sure of the solution is computed. In general, both processes are realized by 
applying interval Taylor series (ITS) expansions with respect to time, and 
using automatic differentiation to obtain the Taylor coefficients. An excel-
lent review of the traditional interval methods has been given by Nedialkov  
et al. (1999), and more recent work has been reviewed by Neher et al. (2007). 
For addressing this problem, there are various packages available, includ-
ing AWA (Lohner, 1992), VNODE (Nedialkov, 1999; Nedialkov et al., 2001) 
COSY VI (Berz & Makino, 1998) and ValEncIA-IVP (Rauh et al., 2006). In 
this study, we will use a new validating solver VSPODE (Lin & Stadtherr, 
2007b) for parametric ODEs, which is capable of determining guaranteed 
bounds on the solutions of dynamic systems with interval-valued initial 
states and parameters, and which offers significant performance improve-
ments over the popular VNODE package. The method makes use, in a novel 
way, of the Taylor model approach (Makino & Berz, 1996, 1999, 2003) to deal 
with the dependency and wrapping problems on the uncertain quantities 
(parameters and initial values). We will summarize here the basic ideas of 
the method used.
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As in traditional interval methods, each integration step in VSPODE con-
sists of two phases, as noted above. Assume that at time tj  there is a known 
enclosure (computed in the previous time step) Yj  of y yj jt= ( ) . In the first 
phase of the next time step, a step size h t tj j j= -+1  and coarse enclosure Yj
are determined such that a unique solution y Y( )t j∈   is guaranteed to exist 
for all t t tj j∈ +[ , ]1 , all y Yj j∈  and all q  ∈ Θ. This is achieved using a high-order 
(k) ITS with respect to time and the traditional approach using the Picard-
Lindelöf operator and the Banach fixed-point theorem. In the second phase 
of the method, a tighter enclosure Y Yj j+ ⊆1

  is computed, such that y Yj j+ +∈1 1  
for all y Y0 0∈  and all q  ∈ Θ. This is done by using an ITS approach to com-
pute T yy j+1 0( , )θ , a Taylor model of y j+1  in terms of the initial values y0  and 
parameters q. To compute this Taylor model, we begin by representing the 
interval initial states and parameters by the Taylor models (identity func-
tions) Ty0

 and Tθ , respectively. Then, we can determine Taylor models T
f [ ]i  

of the Taylor series coefficients f y[ ]( , )i
0 θ  by using RDA operations to com-

pute T f T T
f y[ ]

[ ]( , )i
i=

0 θ . Using an ITS for y j+1  with coefficients given by T
f [ ]i ,  

and using the mean-value theorem, one can obtain T yy j+1 0( , )θ , the desired 
Taylor model of y j+1  in terms of y0 and q. To control the wrapping effect, the 
state enclosures are propagated using a new type of Taylor model consist-
ing of a polynomial and a parallelepiped (as opposed to an interval) remain-
der bound. Complete details of the computation of Ty j+1

 using VSPODE are 
given by Lin and Stadtherr (2007b), who also describe a procedure for effi-
cient bounding of T yy j+1 0( , )θ  over y Y0 0∈  and θ ∈Θ  to obtain the final state 
enclosure Y j+1 .

Probability Distribution of State Variables

Using the method summarized above, we can obtain, for the specified 
time of interest tk , a Taylor model T yyk

( , )0 θ , that gives the state variables 
y yk kt= ( )  as a polynomial function p yyk

( , )0 θ  of the initial states y Y0 0∈  and 
the parameters θ ∈Θ, plus a small remainder bound. If probability distribu-
tions (p-boxes) are available for y0 and for q, then these can be substituted 
directly into T yyk

( , )0 θ , and a p-box giving bounds on the probability distri-
bution for yk can be computed using p-box operations. 

Straightforward application of p-box operations to evaluate the Taylor 
model T yyk

( , )0 θ  may lead to significant overestimation of bounds on the true 
probability distribution of the state variables, due to the dependency prob-
lem and the wrapping effect. One method to obtain a much tighter enclosure 
is subinterval reconstitution (SIR). In this procedure, when p-box operations 
are done using the Taylor model, the intervals of the decomposed p-box are 
further partitioned into subintervals, which are then projected through the 
Taylor model separately. The final bounds are then reconstituted using the 
union of the subinterval results (Ferson and Hajagos, 2004). Results obtained 
from use of SIR will, in general, also overestimate the bounds somewhat, but 
if a reasonably large number of subintervals are used, the p-box bounds can 
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become quite good. P-box operations and evaluation of the Taylor model, 
including optional use of SIR, can be performed using the risk analysis soft-
ware RAMAS Risk Calc (Ferson, 2002). We also employ our own skeletal 
Matlab implementation of p-box arithmetic and SIR.

Example: bioreactor Process

We consider here the microbial growth of a single biomass feeding on a sub-
strate in a bioreactor. The process is described by the ODE system 

 ′ = -X D X( )µ α  (5)

 
′ = - -S D S S k Xf( ) ,µ

 (6)

where X and S represent the biomass and substrate concentrations, respec-
tively, a is the process heterogeneity parameter, D is the dilution rate, Sf is 
the concentration of substrate in the influent, k is the yield coefficient, and 
the growth rate m of biomass follows Monod reaction kinetics (Bastin and 
Douchain, 1990; Bequette, 2003). For Monod kinetics,

 

µ
µ

=
+

max ,
S

K SS  
(7)

where mmax is the maximum growth rate and Ks is the saturation parameter. 
The initial states (t = 0) are X0  and S0.

For this example, we will consider two quantities to be uncertain, namely the  
maximum growth rate parameter mmax  and the initial biomass concentration 
X0. Two different cases for these uncertain quantities will be considered. The 
other parameters, including the initial substrate concentration, are taken to 
be fixed at the values shown in Table 1 (Lin and Stadtherr, 2007a).

For all p-box operations, the p-boxes used were discretized into 100 interval-
mass pairs (each interval corresponding to a single percentile). In applying 

TaBle 1 

Fixed Quantities in Bioreactor Example.

Parameter Value Units

S0 0.8 g S/L

a 0.5

D 0.36 day-1

Sf 5.7 g S/L
k 10.53 g S/g X
Ks 7.0 g S/L
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VSPODE, the order of the interval Taylor series used was  k = 17, while the 
order of the Taylor model used was q = 5. In the integration procedure, a 
constant step size of h = 0.2 was used, though this step size is automatically 
reduced if needed. The Taylor model remainder bounds were obtained using 
a QR-factorization process (Lin and Stadtherr, 2007b). In the SIR procedure 
for computation with p-boxes, each of the 100 interval-mass pairs of the 
p-box was bisected. All problems were solved on an Intel Pentium 4 3.2 GHz 
machine running Red Hat Linux.

Case 1: X0 [0.794, 0.864]∈  and µmax [1.15, 1.25]∈

In this first case, there is an uncertainty of about ±4.2% (relative to the mean) 
in both µmax  and X0. We shall assume that the uncertainty in both these 
quantities can be described by p-boxes bounded by uniform distributions, 
as shown in Figure 2. We further assume that these two uncertainties are 
independent from one another (i.e., there is no correlation between them).
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FIgure 2 
P-box representation of uncertainties for case 1 in bioreactor example.
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Using the procedure described above, we computed p-box representations 
for the probability distribution of the state variables at four different times, 
t = 2.5, 5, 7.5, and 10 days. These results are plotted in Figure 3 for the bio-
mass concentration X(t), showing (from left to right) the p-box results as time 
increases. For example, these results show that the probability that X ≤ 0 82.  
is bounded by the interval [ . , . ]%72 1 78 3  at t = 2 5.  days, by [ . , . ]%49 4 54 8  at 
t = 5  days, by [ . , . ]%14 9 20 7  at t = 7 5.  days, and by [ , . ]%0 3 5  at t = 10 days. 
These bounds are mathematically and computationally rigorous. The compu-
tational expense of obtaining these results was quite small. Use of VSPODE 
to determine the Taylor model for the state variables at t = 10 days required 
0.444 seconds. Once the Taylor model was obtained, the p-box operations 
(with SIR) needed to get the final results for t = 10 days required 188.2 seconds  
using Matlab.

As a basis for comparison, we also determined probability bounds for X(t) 
at the same four points in time using Monte Carlo simulation. To do this first 
requires sampling the space of the probability distributions for mmax and X0. 
We used 100 samples, each a uniform distribution chosen randomly from 
the p-boxes for mmax  and X0 . For each of these 100 distributions, we then ran 
(using Matlab with ode45) 50,000 simulations to obtain a probability distri-
bution for X. Combining the results for each of the 100 input distributions, 
we obtain Figure 4, again showing the results for increasing time from left 
to right. The results (Figure 3) obtained using the Taylor model approach 
described here are clearly consistent with the MC results. It is important to 
note: 1) Probability bounds obtained from MC analysis are not rigorous, but 
those obtained from the Taylor model analysis are. For the number of trials 
done here, which is relatively large to ensure meaningful results, the compu-
tational expense was quite large, about 9 hours (vs. about 3 minutes for the 
more rigorous Taylor model approach). 2) The probability bounds from MC 
become quite narrow at the median, less so than obtained from the Taylor 
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FIgure 3 
Case 1 results from Taylor model method. P-box bounds for biomass concentration X(t) at (left 
to right) t = 2.5, 5, 7.5 and 10 days.
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FIgure 4 
Case 1 results from Monte Carlo analysis. Probability distributions for biomass concentration 
X(t) at (left to right) t = 2.5, 5, 7.5 and 10 days.
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FIgure 5
P-box representation of uncertainties for Case 2 in bioreactor example.
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model analysis. This reflects the use of only uniform distributions in the MC 
analysis. A p-box with uniform bounds also contains non-uniform distribu-
tions, and this is accounted for in results of Figure 3. 

Case 2: X0 ∈[0.81, 0.83] and m max ∈[1.08, 1.32] 

In this case, we consider a larger degree of uncertainty in mmax, now ±10%, 
than in the previous case, and a smaller degree of uncertainty in X0, now 
about ±1.2%. Again we assume probability distributions contained in p-boxes 
with uniform bounds, as shown in Figure 5.

Figure 6 shows the p-box enclosures for the reactor biomass concentration 
obtained from the Taylor model approach with p-box arithmetic, and Figure 7  
shows the probability distributions obtained using Monte Carlo analysis. 
Though the Taylor model results are quite good for t = 2.5, 5 and 7.5 days, they  
are not as good for t = 10 days, the p-box for which is noticeably wider than 
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FIgure 6 
Case 2 results from Taylor model method. P-box bounds for biomass concentration X(t) at (top, 
left to right) t = 2.5, 5, 7.5 and (bottom) 10 days.
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the other p-boxes, and in comparison to the MC results. This is occurring 
in part because of growth, as time increases, in the width of the remainder 
bound term in the Taylor model, and is a reflection of the relatively large 
range of mmax  considered. Better results could be obtained by bisecting mmax  
and employing a SIR-like procedure on the Taylor model level (i.e., a different 
Taylor model for each mmax  subinterval).

concluding remarks

The parametric nonlinear ODEs that arise in process models for design and 
analysis often include uncertainty in parameters and initial states, and the 
distribution of this uncertainty is often not known precisely. We have pre-
sented here a new approach, based on Taylor models and probability boxes 
(p-boxes) for propagating such imprecise probability distributions into the 
state variable trajectories, enabling the computation of rigorous bounds 
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FIgure 7 
Case 2 results from Monte Carlo analysis. Probability distributions for biomass concentration 
X(t) at (top, left to right) t = 2.5, 5, 7.5 and (bottom) 10 days.
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on the probabilities that desired outcomes can be achieved. In comparison 
to Monte Carlo analysis, this new approach provides not only guaranteed 
bounds, but also a reasonable computational cost. Though we can demon-
strate this for a variety of process models, we have focused here on the case 
of a bioreactor process, computing bounds on the probability distribution of 
the biomass trajectory.
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