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Epidemiological models can be used to study the impact of an infection within a population. These models often involve
parameters that are not known with certainty. Using a methodfor the verified solution of nonlinear dynamic models we can
bound the disease trajectories that are possible for given bounds on the uncertain parameters. The method used is based on
the use of an interval Taylor series to represent dependenceon time and the use of Taylor models to represent dependence
on uncertain parameters and/or initial conditions. The useof this method in epidemiology is demonstrated using the SIRS
model, and other variations of Kermack-McKendrick models,including the case of time-dependent transmission.
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1. Introduction

Ordinary differential equations (ODEs) are the basis for
many mathematical models in the sciences, including pop-
ulation models used in epidemiology. Specifically, the
Kermack-McKendrick model was one of the first devel-
oped to simulate the spread of infectious diseases such as
bubonic plague and cholera. This model and other com-
partmental models in epidemiology partition the popula-
tion into classes and describe the rate of population change
in each class.

Many variations of the original Kermack-
McKendrick model have been described, typically
using names based on acronyms of the involved classes.
The Kermack-McKendrick model is a SIR (Susceptible,
Infected, Recovered) model with a simple type of flux
between the three classes. Generalizations of this model
are sometimes referred to as SEIRS models. These
models incorporate a fourth class (Exposed) within the
population, accounting for diseases with an incubation
period. These models also account for nonpermanent
immunity, thus allowing individuals to again become
Susceptible (thus the second S in the acronym). Anderson
and May (1979) investigated a SIRS model with vari-
ous mechanisms for transition between the population
classes, but assuming a constant total population (either
by assuming no deaths within the population or that the
number of births of Susceptible persons was equivalent
to the number of deaths of all population classes). They

discussed this use of modeling as it applies to a variety
of diseases including measles, smallpox, and tetanus.
Hethcote (1976) investigated a variety of mathematical
models whose classes and interactions are a subset of
the SEIRS model, including SI, SIS, and SIR variations.
Several investigators have focused on a single specific
model, computing theoretical bifurcation points as well as
some transient and steady-state solutions. This includes
work on an SEI model (Pugliese, 1990), an SEIR model
(Li, Graef, Wand and Karsai, 1999), and an SEIS model
(Fan, Li and Wang, 2001). Models can be either closed
or open. In a closed model, the population is assumed
to remain constant, while models with variable total
populations are open. In open models, there are fluxes
other than those between the compartments, such as the
birth and death of individuals.

In the simplest version of the SEIRS model, the
mechanisms for transfer between classes lead to trans-
fer rates (fluxes) that are a function of the population of
one class (first-order process) or of two classes (second-
order process). For example, the rate of exposure is pro-
portional to the product of the Susceptible population and
the Infected population, and the rate of recovery is pro-
portional to the Infected population. However, other non-
linear and constant contact rates have also been consid-
ered in the literature (Liu, Levin and Iwasa, 1986; Green-
halgh, 1997; Dushoff, Plotkin, Levin and Earn, 2004).
These models have been studied in both continuous (dif-
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ferential equation) and discrete (Markov chain) form.
Our focus here is on continuous epidemiological

models that are systems of ODEs and formulated as ini-
tial value problems (IVPs). Thus, the model is integrated
over time, starting with specified initial values for the dif-
ferent population classes. While some population models
are simple enough to solve analytically, at least for steady-
state values, in cases where no analytical solution exists,
numerical schemes are necessary to obtain the population
trajectories of each class. Of interest here is the verified
(i.e., mathematically and computationally guaranteed) so-
lution of such systems of ODEs, especially systems that
involve uncertainty in initial conditions or model parame-
ters. Even in the absence of uncertainty, traditional numer-
ical methods, such as Euler’s method or the Runge-Kutta
schemes, only approximate the solution of an ODE sys-
tem, since truncation errors from both function approxi-
mation and machine arithmetic are present. When there is
uncertainty in the initial conditions and/or model param-
eters, normal use of traditional methods cannot account
rigorously for the uncertainties.

Accounting for uncertainties is particularly impor-
tant in the context of epidemiological models, since in
many, if not most, cases, initial populations and model
parameters (e.g., rate constants) may not be known ex-
actly. We will assume that, for such uncertain quantities,
only upper and lower bounds are available. That is, uncer-
tain quantities will be represented by intervals. Since this
implies that there are infinitely many possible values for
the uncertain quantities, the underlying ODE system will
have infinitely many possible solutions. To solve such a
system, we seek rigorous, verified bounds on the possible
trajectories.

For determining rigorous bounds on the solution of
an ODE system, with or without uncertainties, the use of
interval methods (also called validated or verified meth-
ods) is a natural approach, as computations with intervals,
as opposed to real numbers, can provide both mathemat-
ically and computationally guaranteed enclosures. Excel-
lent reviews of interval methods for IVPs are available in
the literature (Nedialkov, Jackson and Corliss, 1999; Ne-
her, Jackson and Nedialkov, 2007). Much work has
been done for the case in which the initial values are
given by intervals, and there are several available soft-
ware packages that deal with this case, including AWA
(Lohner, 1992), VNODE (Nedialkov, Jackson and Pryce,
2001), and COSY VI (Berz and Makino, 1998). How-
ever, relatively little work has been done on the case in
which parameters are given by intervals. In the work
described here, we will use a recently developed solver
for parametric ODEs (Lin and Stadtherr, 2007) called
VSPODE (Validating Solver for Parametric ODEs), which
is used to produce guaranteed bounds on the solutions
of nonlinear dynamic systems with interval-valued ini-
tial states and parameters. Both COSY VI and VSPODE

use Taylor models (Makino and Berz, 1996; Makino and
Berz, 1999; Makino and Berz, 2003), though in different
ways, to deal with the uncertain quantities (parameters
and initial values). In this paper, we propose the use of
Taylor-model methods, specifically VSPODE, for prop-
agating uncertainties through nonlinear ODE models in
population epidemiology. As examples, we will use sev-
eral variants of the original Kermack-McKendrick model.

This paper is divided as follows. The next section
will provide an overview of the general population epi-
demiology model used, and a general statement of the
ODE problem to be addressed. Section 3 gives back-
ground on interval analysis and Taylor models. In Section
4 we outline the specific method that is used, and in Sec-
tion 5 we present examples and highlight results of apply-
ing this method to solve population epidemiology prob-
lems.

2. Problem Statement

In this section we introduce the notation used to describe
the epidemiological models of interest, and state the gen-
eral ODE problem to be solved. In order to maintain a
consistent set of variables and parameters, we will outline
a general epidemiological population model that encom-
passes all of the specific models to be used as examples.
We adopt the notation of Edelstein-Keshet (2005) for this
general model and use it as consistently as possible both
here and in Section 5.

We assume that all members of a population belong
to a class with respect to a disease: either Susceptible, Ex-
posed, Infected, or Recovered. The disease is spread, re-
sulting in increased Exposed and/or Infected populations,
when a Susceptible member encounters an Infected mem-
ber. We also assume that all members within a class are
identical; this means, for instance, that they have the same
probabilities of being infected or of recovering. Models
based on these assumptions may be developed on a dis-
crete scale, in which the populations are modeled stochas-
tically, or on a continuous scale, in which the populations
are modeled using deterministic ODEs. We consider only
the latter approach here.

An individual can move from one class to another
via different processes, each of which is population (or,
elsewhere in the literature, population density) dependent.
These processes are:

1. Exposure. This is the process in which individu-
als exit the Susceptible class and enter the Exposed
class. The exposure rate is given byβsi, where
si, the product of the Susceptible populations and
Infected populationi, represents the frequency at
which a Susceptible member comes in contact with
an Infected member, andβ represents the probabil-
ity that this contact spreads the disease agent. Use
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of the termβsi for exposure rate is often called
simple mass-action incidence (Liet al., 1999) or
pseudo mass-action incidence (de Jong, Diekmann
and Heesterbeek, 1995).

2. Infection. In this process, individuals move from the
Exposed class to the Infected class. This occurs at a
rate proportional to the Exposed populatione, with a
proportionality constant ofǫ, the infection rate con-
stant. Thus, the infection rate isǫe.

3. Recovery. In this process, members move from the
Infected class to the Recovered class, at a rate propor-
tional to the Infected population. Thus, the recovery
rate is represented byνi, where the proportionality
constantν is the recovery rate constant.

4. Loss of Immunity (Susceptibility). In this process,
which implies that immunity is only temporary, in-
dividuals move from the Recovered class to the Sus-
ceptible class, with a rate proportional to the Recov-
ered populationr, and expressed byγr, with γ as the
proportionality constant.

The population of a class also depends on assump-
tions made regarding births and deaths and their respective
rates. Generally, a base probability of deathd is assumed
for all classes, but is incremented tod+α for the Infected
class. For this case then, the death rates areds, de, anddr
for the Susceptible, Exposed, and Recovered classes, re-
spectively, and(d + α)i for the Infected class. New births
are almost always assumed to add to the Susceptible class
(i.e., no individual is born as Exposed, Infected, or Recov-
ered). A base probability of birthsb is generally assigned
to all classes, but may be decremented for the Exposed
and/or Infected classes. Assuming the same probability of
births for all classes, then the total birth rate isbn, where
n = s + e + i + r is the total population of all classes.

Specific variations of the SEIRS framework are de-
veloped by deciding which classes are present, what fluxes
exist between the classes, how births and deaths are han-
dled, and whether the system is open or closed. Unsteady
population balances can then be performed on each class,
based on rate expressions of the type described above, for
movement between the classes and for births and deaths.
This leads directly to a set of ODEs that describes the rate
of change of each population. The specific models for
each of the examples considered here will be established
in Section 5.

Each continuous SEIRS model, or variation thereof,
is representable as a system of ODEs, for which an IVP
must be solved. As discussed above, the initial values,
as well as the parameters in the ODE model, may be un-
certain and thus these quantities are will be represented
by intervals. In general mathematical form, this problem

may be written

y′(t) = f(y, θ), y(t0) = y0 ∈ [y0], θ ∈ [θ], (1)

wheret ∈ [t0, tm] for sometm > t0. Herey is then-
dimensional vector of state variables with initial valuey0,
andθ is ap-dimensional vector of time-invariant parame-
ters.[y0] and[θ] are interval vectors (see Section 3.1) that
enclose uncertainties in the initial states and parameters,
respectively. We assume thatf is (k − 1) times contin-
uously differentiable with respect toy and(q + 1) times
continuously differentiable with respect toθ. Herek is the
order of the truncation error in the interval Taylor series
(ITS) method used by VSPODE, andq is the order of the
Taylor model in VSPODE used to represent dependence
on parameters and initial values. We also assume thatf
can be represented by a finite number of standard func-
tions. If the ODE model is nonautonomous (as in Section
5.2), it can be easily converted to the autonomous form of
Eq. (1). Our specific goal is to obtain a rigorously guar-
anteed enclosure of the state variablesy at all times of
interest fromt0 to tm.

3. Background

3.1. Interval Analysis. The real interval vector[x] =
[x; x] is an enclosure of the real vectorx = [x1, . . . , xn]T,
n ≥ 1. The real vectorsx = [x1, . . . , xn]T and x =
[x1, . . . , xn]T provide the lower and upper bounds, re-
spectively, on the components ofx. That is,xi ≤ xi ≤ xi

or xi ∈ [xi; xi]. An n-dimensional interval vector can be
interpreted geometrically as ann-dimensional rectangle
or box.

Basic arithmetic operations are defined on interval
scalars according to[x] ◦ [y] = {x ◦ y | x ∈ [x], y ∈
[y]}, ◦ ∈ {+,−,×,÷}, with division in the case of[y]
containing zero allowed only in extensions of interval
arithmetic (Hansen and Walster, 2004). Addition and mul-
tiplication are commutative and associative but only sub-
distributive. Interval versions of the elementary functions
can also be defined.

For a real functionf(x), an interval extensionf I([x])
encloses the range off(x) for x ∈ [x]. That is,f I([x]) ⊇
{f(x) | x ∈ [x]}. Whenf(x) can be written as a se-
ries of arithmetic operations and elementary functions, an
interval extension can be obtained by substituting[x] into
f(x) and evaluating using interval arithmetic. In this case,
f I([x]) = f([x]), which is referred to as the natural inter-
val extension. Computing the interval extension in this
way may result in overestimation of the function range
due to the “dependency” problem. While a variable may
take on any value within its interval, it must take on the
samevalue each time it occurs in an expression. How-
ever, this type of dependency is not recognized when the
natural interval extension is computed. In effect, when the
natural interval extension is used, the range computed for
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the function is the range that would occur if each instance
of a particular variable was allowed to take on a different
value in its interval range. Iff(x) is a single-use expres-
sion, in which no variable appears more than once, then
the natural interval extension will correspond to the exact
function range.

Another source of overestimation that may arise in
the use of interval methods is the “wrapping” effect. This
occurs when an interval is used to enclose (wrap) a set
of results that is not an interval. If this overestimation is
propagated from step to step in an integration procedure
for ODEs it can quickly lead to the loss of a meaningful
enclosure.

Several good introductions to interval analysis, as
well as interval arithmetic and other aspects of comput-
ing with intervals, are available (Hansen and Walster,
2004; Jaulin, Kieffer, Didrit and́E. Walter, 2001; Kear-
fott, 1996; Neumaier, 1990). Implementations of inter-
val arithmetic and elementary functions are also readily
available, and recent compilers from Sun Microsystems
directly support interval arithmetic and an interval data
type.

3.2. Taylor Models. Makino and Berz (1996; 1999)
have described a remainder differential algebra (RDA) ap-
proach for bounding function ranges and control of the de-
pendency problem of interval arithmetic. In this method, a
function is represented using a model consisting of a Tay-
lor polynomial and an interval remainder bound. Such a
model is called a Taylor model.

One way of forming a Taylor model of a function
is by using the Taylor theorem. Consider a real function
f(x) that is (q + 1) times partially differentiable on[x]
and letx0 ∈ [x]. The Taylor theorem states that for each
x ∈ [x], there exists a realζ with 0 < ζ < 1 such that

f(x) = pf (x − x0) + rf (x − x0, ζ), (2)

wherepf is aq-th order polynomial (truncated Taylor se-
ries) in (x − x0) and rf is a remainder, which can be
quantitatively bounded over0 < ζ < 1 andx ∈ [x] us-
ing interval arithmetic or other methods to obtain an in-
terval remainder bound[rf ]. A q-th order Taylor model
Tf = pf +[rf ] for f(x) over[x] then consists of the poly-
nomial pf and the interval remainder bound[rf ] and is
denoted byTf = (pf , [rf ]). Note thatf ∈ Tf for x ∈ [x]
and soTf encloses the range off over [x]. The function
f can thus be bounded by seeking bounds on the Taylor
modelTf , as described below.

In practice, it is more useful to compute Taylor mod-
els of functions by performing Taylor model operations.
Arithmetic operations with Taylor models can be done
using the RDA operations given by Makino and Berz
(1996; 1999; 2003), which include addition, multiplica-
tion, reciprocal, and intrinsic functions. Using these, itis

possible to start with simple functions such as the con-
stant functionf(x) = k, for which Tf = (k, [0; 0]),
and the identity functionf(xi) = xi, for which Tf =
(xi0 +(xi−xi0), [0; 0]), and then to compute Taylor mod-
els for very complicated functions. Therefore, it is pos-
sible to compute a Taylor model for any function repre-
sentable in a computer environment by simple operator
overloading through RDA operations. It has been shown
that, compared to other rigorous bounding methods, the
Taylor model often yields sharper bounds for modest to
complicated functional dependencies (Makino and Berz,
1996; Makino and Berz, 1999; Neumaier, 2003). The uses
and limitations of Taylor models are discussed in more de-
tail by Neumaier (2003).

An interval bound on a Taylor modelT = (p, [r])
over[x] is denoted by[T ] and is given by[T ] = [p] + [r],
where [p] is an interval bound on the polynomial part
p. The range bounding of the interval polynomial[p] =
p([x]−x0) is an important issue, which directly affects the
performance of Taylor model methods. The exact range
bounding of an interval polynomial is NP hard, and di-
rect evaluation using interval arithmetic is very inefficient,
often providing only loose bounds, which may negate
any benefit of choosing Taylor model methods over tra-
ditional interval methods. Alternative bounding schemes
are mostly focused on the exact bounding of the first-
and second-order terms ofp (Neumaier, 2003), but exact
bounding of a general interval quadratic can also be com-
putationally expensive (in the worst case, exponential in
the number of variables). Lin and Stadtherr (2007) use a
simple compromise approach in which only the first-order
and thediagonalsecond-order terms are considered for
exact bounding, and other terms are evaluated directly us-
ing interval arithmetic. This is the approach used on the
problems considered here.

4. Solution Procedure

In this section we outline the method used for solv-
ing the problem described in Section 2. Specifically, it
is desired to determine a rigorously verified enclosure
of all possible solutions to the IVP expressed in Eq.
(1). We denote byy(t; tj, [yj ], [θ]) the set of solutions
{y(t; tj , yj, θ) | yj ∈ [yj ], θ ∈ [θ]}, whereyj = y(tj) and
y(t; tj , yj , θ) denotes a solution ofy′(t) = f(y, θ) for
the initial conditiony = yj at t = tj . We will sum-
marize a method for determining enclosures[yj ] of the
state variables at each time stepj = 1, . . . , m, such that
y(tj ; t0, [y0], [θ]) ⊆ [yj].

Assume that attj we have an enclosure[yj ] of
y(tj ; t0, [y0], [θ]), and that we want to carry out an inte-
gration step to compute the next enclosure[yj+1]. Then,
in the first phase of the method, the goal is to find a step
sizehj = tj+1 − tj > 0 and a rough enclosure[ỹj ] of the
solution such that a unique solutiony(t; tj , yj, θ) ∈ [ỹj ] is
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guaranteed to exist for allt ∈ [tj , tj+1], all yj ∈ [yj ], and
all θ ∈ [θ]. We apply a traditional interval method, with
high order enclosure, to the parametric ODEs by using an
interval Taylor series (ITS) with respect to time. That is,
we determinehj and[ỹj ] such that for[yj] ⊆ [ỹj ]

0,

[ỹj ] =

k−1∑

i=0

[0; hj]
if (i)([yj ], [θ]) + [0; hj]

kf (k)([ỹj ]
0, [θ])

⊆ [ỹj ]
0. (3)

Herek denotes the order of the Taylor series,[ỹj ]
0 is an

initial estimate of[ỹj], and thef (i) are the Taylor coeffi-
cients ofy(t) with respect to time, which can be obtained
recursively in terms ofy′(t) = f(y, θ). When Eq. (3)
is satisfied, it demonstrates (Corliss and Rihm, 1996) that
there exists a unique solutiony(t; tj , yj, θ) ∈ [ỹj] for all
t ∈ [tj , tj+1], all yj ∈ [yj], and allθ ∈ [θ].

In the second phase of the method, we com-
pute a tighter enclosure[yj+1] ⊆ [ỹj ], such that
y(tj+1; t0, [y0], [θ]) ⊆ [yj+1]. This is done by using an
ITS approach to computeTyj+1(y0, θ), a Taylor model
of yj+1 in terms of the initial valuesy0 and parameters
θ, and then obtaining the enclosure[yj+1] = [Tyj+1 ].
For the Taylor model computations, we begin by repre-
senting the interval initial states and parameters by the
Taylor models (identity functions)Ty0 and Tθ, respec-
tively. Then, we can determine Taylor modelsTf(i) of
the Taylor series coefficientsf (i)(yj , θ) by using RDA
operations to computeTf(i) = f (i)(Tyj

, Tθ). Using an
interval Taylor series foryj+1 with coefficients given by
Tf(i) , and using the mean value theorem, one can obtain
Tyj+1(y0, θ), the desired Taylor model ofyj+1 in terms
of the parametersθ and initial statesy0. To control the
wrapping effect, the state enclosures are propagated using
a new type of Taylor model consisting of a polynomial
and aparallelepiped(as opposed to an interval) remain-
der bound. Complete details of the computation ofTyj+1

are given by Lin and Stadtherr (2007). An implementa-
tion of this approach, called VSPODE (Verifying Solver
for Parametric ODEs), has been developed and tested by
Lin and Stadtherr (2007), who compared its performance
with results obtained using the popular VNODE package
(Nedialkovet al., 1999; Nedialkovet al., 2001). For the
test problems used, VSPODE provided tighter enclosures
on the state variables than VNODE, and required signifi-
cantly less computation time. Information about the avail-
ability of VSPODE can be obtained by contacting the au-
thors.

5. Examples

In this section we explore variations on the general popu-
lation model outlined in Section 2. These examples have

been explored for real-valued initial conditions and pa-
rameters elsewhere in the literature. When possible, we
use similar values. Interval values are used where some
initial values or parameters are not reported.

As in Section 2, we adopt the notation and terminol-
ogy of Edelstein-Keshet (2005) where applicable, so that
all models are comparable. VSPODE was used with its
default ITS orderk = 17 and default Taylor model order
q = 5. When Monte Carlo simulations are run for pur-
poses of comparison, they are done so in MATLAB, using
the ode45 routine with default tolerances, unless other-
wise noted.

5.1. Basic SIRS Model. The basic SIRS model is
most similar to the constant-population model first stud-
ied by Kermack and McKendrick (1927). In this model,
infection is guaranteed and instantaneous after success-
ful exposure, so there is no Exposed class as in the gen-
eral model. The steady-states of this model can be easily
found algebraically (Edelstein-Keshet, 2005) and the tran-
sient trajectories are relatively simple, so this serves asa
good initial test problem for evaluating the performance
of VSPODE.

This SIRS model assumes a constant total population
n = s+i+r. Since we can determine the Recovered pop-
ulation fromr = n − s − i, we only need unsteady pop-
ulation balances on the Susceptible and Infected classes.
For the Susceptible class, this balance is

ds

dt
= −βsi + γr = −βsi + γ(n − s − i). (4)

Here the first term on the right-hand side is the loss of
Susceptibles due to infection (flux from Susceptible to In-
fected class), and the second term is the gain of Suscep-
tibles due to loss of immunity (flux from Recovered to
Susceptible class). Similarly, for the Infected class, the
balance is

di

dt
= βsi − νi, (5)

where the second term on the right-hand side represents
the flux from the Infected to the Recovered class.

For this simple example, we have chosen a total pop-
ulation ofn = 500000 individuals (indv), with an initial
Infected population ofi0 = 2000 indv and initial Sus-
ceptible populated ofs0 = 498000 indv. We also set
the susceptibility rate to beγ = 50 yr−1. Uncertain val-
ues are assumed for the recovery rate,ν ∈ [0.125; 0.250]
yr−1, and for the infection probability,β ∈ [2; 2.5]×10−5

yr−1indv−1.
VSPODE was applied to determine a verified enclo-

sure of all possible solutions to this model fort = 0 to
t = 10 yr. The results, out tot = 2 yr, are shown fors(t)
in Fig. 1 and fori(t) in Fig. 2. The curves shown in these
figures are upper and lower bounds, which are mathemati-
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Fig. 1. VSPODE enclosure of Susceptible population trajectory
for simple SIRS model.

0 0.5 1 1.5 2
0

1

2

3

4

5

6
x 10

5

time (t)

in
fe

ct
ed

 p
op

ul
at

io
n 

(i)

Fig. 2. VSPODE enclosure of Infected population trajectoryfor
simple SIRS model.

cally and computationally guaranteed, on the possible tra-
jectories of the Susceptible and Infected populations.

Since interval methods have a reputation of often
producing only very loose bounds, we checked the tight-
ness of the VSPODE bounds by comparison to the re-
sults of a Monte Carlo simulation with 100000 trials. For
each trial real values ofν andβ are selected at random
from within their specified interval bounds. Bounds ob-
tained from Monte Carlo analysis are not guaranteed and
in general will yield an inner estimate of the true bounds
(the guaranteed VSPODE bounds represent an outer es-
timate). The Monte Carlo simulation results are shown
by the shaded areas in Figs 3 and 4, onto which the
VSPODE bounds from Figs. 1 and 2 have been super-
imposed. On the scale of these figures, there is no ap-
parent gap between the VSPODE bounds and the Monte
Carlo simulation results, indicating that VSPODE pro-
vides very tight bounds on the possible population trajec-
tories for this system. This can be seen more quantita-
tively in Tables 1 and 2, which provide a direct numeri-
cal comparison of the bounds obtain from VSPODE and
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Fig. 3. Monte Carlo simulation (shaded area) and VSPODE en-
closure of Susceptible population trajectory for simple
SIRS model.

0 0.5 1 1.5 2
0

1

2

3

4

5

6
x 10

5

time (t)

in
fe

ct
ed

 p
op

ul
at

io
n 

(i)

Fig. 4. Monte Carlo simulation (shaded area) and VSPODE en-
closure of Infected population trajectory for simple SIRS
model.

from Monte Carlo analysis. The true bounds on the tra-
jectories will be between the VSPODE bounds (outer es-
timate) and the Monte Carlo bounds (inner estimate). The
closeness of these two sets of bounds demonstrates that
the method used in VSPODE is capable of determining
verified bounds that are in fact quite tight. For the final
time of t = 10 yr, the VSPODE bounds converge to a
solution ofs ∈ [4373; 12501] andi ∈ [485073; 494389].
This numerical result can be compared to exact interval
bounds obtained from the analytical steady-state solution,
ss = ν/β = [5000; 12500], andis = (γn−ss)/(ν+γ) =
[485074; 493766]. The method employed by VSPODE
accurately and tightly bounds the true solution. The
Monte Carlo simulation results fort = 10 yr give bounds
of s ∈ [5010; 12486] and i ∈ [485094; 493757], which
are clearly not rigorous bounds of the true solution. For
VSPODE, the computation time required was 17.9 s, and
for 100000 Monte Carlo trials with ode45 in Matlab, the
computation time was 1820 s (both times on an Intel Pen-
tium 4 3.2GHz workstation running Red Hat Linux).
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Table 1. Numerical comparison of VSPODE enclosure and
Monte Carlo simulation (MC) for Susceptible popula-
tion s in simple SIRS model.

t s (VSPODE) s (MC) s (MC) s (VSPODE)
0.2 477193 477197 485712 486323
0.4 318703 319584 417148 419180
0.6 63839 68319 212357 216113
0.8 7769 11062 56262 57489
1.0 3988 5528 19204 19673
1.2 4194 5053 13459 13590
1.4 4324 5013 12631 12670
1.6 4361 5010 12515 12528
1.8 4370 5010 12494 12505
2.0 4372 5009 12496 12502

Table 2. Numerical comparison of VSPODE enclosure and
Monte Carlo simulation (MC) for Infected population
i in simple SIRS model.

t i (VSPODE) i (MC) i (MC) i (VSPODE)
0.2 13612 13728 22751 22761
0.4 80385 82448 180048 180898
0.6 282559 286360 430625 434961
0.8 440344 441604 487722 490957
1.0 477942 478411 493240 494764
1.2 483989 484123 493713 494565
1.4 484904 484945 493753 494436
1.6 485045 485062 493756 494400
1.8 485068 485079 493757 494391
2.0 485072 485080 493757 494389

Physically interpreting the results of this model, it is
clear that an epidemic is sustained in this population. The
large value ofi at long times is due to the small probabil-
ity of recovery compared to the fast rate of susceptibility.
At large i, the termβsi dominates the dynamics of this
system, maintaining a large value ofi while suppressing
the populations of thes andr classes.

5.2. SIRS Model with Time-Dependent Parameter.
Another use of the SIRS model assumes that the proba-
bility of infection β is time-variant, according to an ex-
pression such as

β(t) = β0(1 + β1cos(2πt)/n). (6)

This model has been used to simulate an illness like in-
fluenza, which is known to exhibit such “seasonal forcing”
(Dushoffet al., 2004).

For this example, we adopt parameter values consis-
tent with the study of Dushoffet al. (2004). These val-
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Fig. 5. VSPODE enclosure of Infected population trajectoryfor
SIRS model with seasonal forcing, showing initial tran-
sients.
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Fig. 6. VSPODE enclosure of Infected population trajectoryfor
SIRS model with seasonal forcing, fort ≥ 2.2 yr.

ues are:ν = 50 yr−1, γ = 0.125 yr−1, n = 500000
indv, β0 = 400 yr−1, andβ1 = 0.04 (Dushoff et al.
(2004) mistakenly report usingβ1 = 0.02). For initial
conditions, we assume an initial outbreak in the interval
i0 ∈ [1000, 4000] indv and[s0] = n − [i0]. The results of
Dushoffet al. (2004) suggest that any initial condition in
this range should converge to the same limit cycle. Thus,
we test here whether the VSPODE bounds contract from
the initial bounds to a tight bound on the limit cycle.

When the time-dependent expression forβ, Eq. (6),
is substituted into the basic SIRS model, Eqs. (4) and
(5), the result is a nonautonomous model. Prior to use of
VSPODE, this is converted into the autonomous form of
Eq. (1), by definingt as a new state variable with deriva-
tive of one. VSPODE was then used to compute verified
bounds on the populations trajectories for this model from
t = 0 to t = 20 yr.

The initial transient results fori(t) out to t = 2.2
yr. are shown in Fig. 5. On the scale of this figure,
the upper and lower trajectory bounds cannot be distin-
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guished. There is a sharp peak in the number of infec-
tions almost instantly in this simulation, with a maximum
value of aroundi = 340000 indv at timet = 0.02 yr.
At this point, the diameter of the interval boundingi is
about 20000 indv, which is about a six-fold increase over
the interval uncertainty on the initial conditioni0. How-
ever, by a time of aboutt = 0.33 yr, the diameter of the
interval boundingi has shrunk to1 or less, where it re-
mains for larger values of time. Sincei is in units of in-
dividuals, this means that we have essentially zero-width
bounds fort larger than about0.33 yr. Thus, while the un-
certainty in the initial conditions affects the magnitude of
the initial peak in infections, the trajectories very quickly
converge to a solution that is independent of the initial
states, and this behavior and been captured by VSPODE.
For t between2.2 and20 yr., the results are shown (with
a different scale fori) in Fig. 6. Since the bounds oni
are essentially zero-width, they are not distinguishable in
the figure. These results are consistent with the results of
Dushoffet al. (2004), who show only the limit cycle be-
havior on the time intervalt ∈ [10; 20] yr., and fairly accu-
rately track the data associated with a strain of influenza.

5.3. SEI Model with Variable Total Population. The
SEI model (Pugliese, 1990) assumes that recovery from
illness is impossible, so there is no Recovered class to
consider. However, the model remains dynamic because
the total populationn = s + e + i is not assumed to be
constant. In this model, the total population may increase
through births of new individuals, with different birth rates
for each of the population classes. The different birth rates
are represented by using a base birth rate constantb, and
then decrementing this by “penalty” parametersδ1 for the
Exposed class andδ2 for the Infected class. It is also as-
sumed that the Infected class has a death rate that is higher
than the death rate of the other classes, with this additional
rate represented by an incrementα in the base death rate
constantd.

In these terms, the SEI model is given by

ds

dt
= (b − d)s + b(1 − δ1)e + b(1 − δ2)i − βsi (7)

de

dt
= βsi − (d + ǫ)e (8)

di

dt
= ǫe − (d + α)i (9)

Following Pugliese (1990), and taking days as the time
unit, we set the model parameters asb = 0.15 day−1,
d = 0.1 day−1, δ1 = 0, δ2 = 0.9 day−1, β = 0.025
day−1indiv−1, ǫ = 1 day−1, andα = 0.1 day−1. Note
that sinceδ1 = 0, there is a birth rate penalty only for
Infected individuals. The initial states are taken to bee0 =
0, i0 = 10000, s0 ∈ [480000, 490000].
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Fig. 7. VSPODE enclosure of susceptible population trajectory
of SEI model.
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Fig. 8. VSPODE enclosure of total population trajectory of SEI
model.

The trajectory bounds of the Infected class for the
first 30 days, as determined by VSPODE, are shown in
Fig. 7. This shows that the uncertainty in the initial pop-
ulation of Susceptibles is propagated into uncertainty in
the Infected population, and that this uncertainty has been
bounded by VSPODE. The longer term behavior of this
system is cyclic, as shown in Fig. 8 out tot = 800 days,
which is consistent with the results of Pugliese (1990).
For this problem, the phase shift of the cycles depends on
the initial state, so zero-width bounds, as observed in the
previous example, cannot be expected here. On the scale
of Fig. 8, the VSPODE bounds are not distinguishable
and appear to be quite tight. However, comparison with
a Monte Carlo analysis shows that, for larger values of
time, the VSPODE bounds get increasingly worse at the
extremes in the trajectories. This behavior is shown quan-
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Table 3. Numerical comparison of VSPODE enclosure and
Monte Carlo simulation (MC) of total population of
SEI model near peaks of each oscillation.

t n (VSPODE) n (MC) n (MC) n (VSPODE)
104.88 386332 392070 394594 400326
196.00 332511 339078 341463 348021
283.10 304527 310961 313300 319723
367.74 286613 292756 295064 301193
450.66 274015 279870 282127 287968
532.33 264497 270088 272308 277884
613.03 257015 262387 264575 269931
692.96 250895 256136 258294 263521
772.29 245420 250804 252971 258339
851.22 238813 245638 247947 254756
932.13 196818 221081 225851 250080

titatively in Table 3. Eventually, beyond aboutt = 950
days, VSPODE fails to obtain meaningful bounds. Do
obtain bounds for larger values oft, the initial interval on
s0 could be subdivided, with VSPODE then run on each
subinterval, and the results combined. Of course, this
“subinterval reconstitution” procedure will significantly
increase the computational expense.

5.4. SEIR Model with Variable Population Size.
This model (Li et al., 1999) is similar to the previous
example, except that recovery is possible, with recovery
providing permanent immunity. Thus, there is now a Re-
covered population class, and there is no flux from the
Recovered class to the Susceptible class. The only growth
in the Susceptible class is from new births, with the birth
rate is assumed to be the same for all classes. In this par-
ticular SEIR model, another important feature is that the
transmission probabilityβ is taken to be inversely pro-
portional to the total population. Thus,β = σ/n with
n = s + e + i + r andσ a proportionality constant.

For this situation, the model equations (Liet al.,
1999) are

ds

dt
= bn − ds − σsi/n (10)

de

dt
= σsi/n− (ǫ + d)e (11)

di

dt
= ǫe − (ν + α + d)i (12)

dr

dt
= νi − dr (13)

We use the parameter values given by Liet al. (1999) and
assume years as the time unit. These values areb = 0.5
yr−1, d = 0.18 yr−1, σ = 20 yr−1, ǫ = 4 yr−1, ν = 1.5
yr−1, andα = 6 yr−1. For the initial state, we choose
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Fig. 9. VSPODE enclosure of Infected population trajectoryfor
SEIR model.
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Fig. 10. VSPODE enclosure of total population trajectory for
SEIR model.

a total population ofn0 = 500000 indv with 10% al-
ready infected, soi0 = 50000 indv. The initial popula-
tions of the other classes are uncertain and assumed to be
s0 ∈ [400000; 405000] indv, e0 ∈ [10000; 15000] indv
andr0 ∈ [30000; 40000] indv.

VSPODE was applied to determine a verified enclo-
sure of all possible population trajectories for this model
for t = 0 to t = 10 yr. The results fori(t) and n(t)
are shown in Figures 9 and 10, respectively. The curves
shown are mathematically and computationally guaran-
teed upper and lower bounds on the infected and total pop-
ulations as a function of time.

Again, we checked the tightness of the VSPODE
bounds by comparison to the results of a Monte Carlo
analysis (100000 trials). For this problem, we could ob-
tain accurate trajectories from the Matlab ode45 routine
only by using very strict tolerances (relative tolerance of
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Fig. 11. Monte Carlo simulation (shaded area) and VSPODE
enclosure of Infected population trajectory for SEIR
model.
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Fig. 12. Monte Carlo simulation (shaded area) and VSPODE
enclosure of total population trajectory for SEIR
model.

1× 10−5 and absolute tolerance of1× 10−8). The Monte
Carlo simulation results are shown by the shaded areas
in Figs. 11 and 12, onto which the VSPODE results
from Figs 9 and 10 have been superimposed. It is clear
VSPODE provides very tight bounds on the possible pop-
ulation trajectories for this system. A more quantitative
comparison is provided by Tables 4 and 5, in which there
a direct numerical comparison of the bounds obtain from
VSPODE and from Monte Carlo analysis. It should be
emphasized that the Monte Carlo analysis does not pro-
vide true bounds, only an inner estimate of the bounds.
VSPODE provides rigorous bounds that tightly bound the
true solution in this case.

The results shown in Figures 9 and 10 are consistent
with those of Liet al. (1999), who discuss the numerical

Table 4. Numerical comparison of VSPODE enclosure and
Monte Carlo simulation (MC) of infected population
of SEIR model.

t i (VSPODE) i (MC) i (MC) i (VSPODE)
1.0 54447 54448 55188 55203
2.0 16743 16753 18112 18115
3.0 8306 8312 9026 9028
4.0 9374 9375 9950 9951
5.0 13949 13950 14541 14545
6.0 16573 16574 17281 17285
7.0 14789 14790 15571 15573
8.0 12967 12970 13707 13709
9.0 12846 12850 13545 13549
10.0 13599 13608 14300 14310

Table 5. Numerical comparison of VSPODE enclosure and
Monte Carlo simulation (MC) of total population of
SEIR model.

t n (VSPODE) n (MC) n (MC) n (VSPODE)
1.0 341797 341833 357282 357316
2.0 224886 224949 239007 239033
3.0 229684 229703 242026 242046
4.0 256999 257008 269565 269599
5.0 273219 273229 286461 286496
6.0 265838 265854 279566 279590
7.0 253450 253474 267028 267054
8.0 251486 251509 264779 264807
9.0 255898 255928 269158 269198
10.0 259120 259178 272517 272586

conditions necessary to sustain an epidemic in detail. In
this simulation, the epidemic is sustained within a small
fraction of the total population. As the simulation contin-
ues pastt = 10 yr, the population bounds approach their
expected numerical steady-state values.

6. Concluding Remarks

Nonlinear ODE models in population epidemiology of-
ten involve uncertainty in the parameters related to dis-
ease transmission or in the initial states of the popula-
tions. We have demonstrated here the use of a recently
developed interval method (Lin and Stadtherr, 2007) for
determining mathematically and computationally guaran-
teed bounds on the population trajectories that are possi-
ble for given bounds on the uncertain quantities. Using
Monte Carlo analysis, it was also shown that it is possible
for these bounds to be quite tight.

It has been assumed here that the uncertainties in pa-
rameters and initial conditions are represented by inter-
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vals. This means that there is no information provided
about the probability distribution of the uncertain values,
only their upper and lower bounds. In subsequent work,
we will consider the case of epidemiological models in
which there are probability distributions for the uncer-
tainty, and show how this can be used to obtain proba-
bilistic bounds on the population trajectories.
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