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Abstract

One approach for representing uncertainty is the use of fuzzy sets or fuzzy numbers. A new

approach is described for the solution of nonlinear dynamic systems with parameters and/or

initial states that are uncertain and represented by fuzzy sets or fuzzy numbers. Unlike current

methods, which address this problem through the use of sampling techniques and do not account

rigorously for the effect of the uncertain quantities, the new approach is not based on sampling

and provides mathematically and computationally rigorous results. This is achieved through the

use of explicit analytic representations (Taylor models) of state variable bounds in terms of the

uncertain quantities. Examples are given that demonstrate the use of this new approach and its

computational performance.

Keywords: Uncertainty; Fuzzy sets; Fuzzy numbers; Nonlinear dynamic systems; Interval analy-

sis; Dynamic simulation



1 Introduction

In the context of engineering and science, nonlinear dynamic models typically involve uncer-

tain quantities. For example, in an initial value problem (IVP) described by a system of ordinary

differential equations (ODEs), the initial conditions may be uncertain, and there may be uncer-

tain parameters in the ODE model. Determining the effect of such uncertainties on the model

outputs is clearly an important issue. To address this problem requires first that an appropriate

representation of the uncertain quantities be chosen, and then that these be propagated through

the nonlinear ODE model to determine the corresponding uncertainties in the model outputs.

There are a number of approaches that can be used to represent uncertainty. A common ap-

proach is to treat an uncertain quantity as a random variable described by some probability dis-

tribution. However, the true probability distribution may itself be uncertain. This gives rise to

the concept of a probability distribution variable, as described by Li & Hyman (2004), which is

typically characterized by a probability box (p-box) (Ferson et al., 1996; Williamson & Downs,

1990) that provides bounds on the probability distribution function. However, many types of un-

certainty arise from lack of knowledge, not from randomness, and so may not be appropriately

represented through the use of probabilities. In this case, one simple approach is to treat an un-

certain quantity as an interval. This requires only knowledge of an upper and lower bound on the

uncertainty, and implies nothing about the distribution of the uncertainty. If there is more insight

into the nature of the uncertainty, then it might be represented using a fuzzy set (Zadeh, 1965) or a

fuzzy number (a particular type of fuzzy set) (Nahmias, 1977; Dubois & Prade, 1980; Kaufmann &

Gupta, 1985; Hanss, 2005). Fuzzy sets can be viewed as representing possibilities, not probabilities,

and form the basis for a theory of possibility (Zadeh, 1978) that is a counterpart to the traditional

theory of probability. The relationships between possibilities and probabilities have been well ex-

plored (e.g., Dubois & Prade, 1982; Klir & Parviz, 1992; Gupta, 1993; Dubois et al., 2004), with a

basis in Zadeh’s (1978) possibility/probability consistency principle. This states that something

must be possible before it can be probable. Thus, one simple interpretation of possibility is as an

upper bound on probability. A fuzzy number can be interpreted as a nested set of intervals, with

each successively smaller interval representing a range that is “more possible” than the larger one

before it.
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Hanss (2005) provides several examples of the use of fuzzy numbers to represent uncertainties

in engineering problems involving linear and nonlinear ODE and PDE models. The formulation

and solution of such “fuzzy-parameterized” models is a subdomain of fuzzy set theory that has

received relatively little attention, with much more work having been focused on the use of fuzzy

logic and reasoning methods. For example, just within the field of chemical engineering, there

have been many applications of fuzzy logic and reasoning, in process control (e.g., Gromov et al.,

1995; Chen et al., 2001; Andujar & Bravo, 2005; Chen & Chang, 2006; Sanjuan et al., 2006; Zhang

et al., 2006; Kaucsár et al., 2007), safety and reliability analysis (e.g., Yu & Lee, 1991; Takeda et al.,

1994; Guimarães & Lapa, 2004; Meel & Seider, 2006; Yong et al., 2007; Hassana et al., 2009), knowl-

edge processing (e.g., Arva & Csukas, 1987; Vrba, 1991; Hanratty & Joseph, 1992; Hanratty et al.,

1992; Dohnal et al., 1994; Gromov et al., 1996; Johansen & Foss, 1997; Schmitz & Aldrich, 1998;

Tsekouras et al., 2002; Claudel et al., 2003; Stephane & Marc, 2008), and other areas.

In this paper, we will focus on the use of fuzzy sets and fuzzy numbers to represent uncertain-

ties in nonlinear dynamic models, and consider how to compute the resulting fuzzy trajectories in

a verified way. For propagation of fuzzy uncertainties in dynamic models, a typical approach is

to solve the underlying ODE problem multiple times using prescribed and/or arbitrary samples

of the uncertainty quantities. For example, this is the basis of the “transformation method” of

Hanss (2002, 2005). In general, however, this approach is not rigorous and may underestimate the

true effect of an uncertain quantity on the model outputs, as discussed in more detail below. We

will describe here a much different strategy for the propagation of fuzzy uncertainties in dynamic

models. This approach is not based on sampling, and provides mathematically and computation-

ally rigorous results in all cases. Our method is based on the use of techniques (Lin & Stadtherr,

2007) developed for the verified solution of parametric ODE systems. These techniques provide

explicit analytic representations (Taylor models) of the state variables, from which rigorous inter-

val bounds on the state variables can be obtained. We explore here how to extend these techniques

to provide rigorous fuzzy set bounds on the state variables in fuzzy-parameterized, nonlinear dy-

namic models.

The remainder of this paper is structured as follows: In the next section we will provide a

concise formulation of the problem to be solved. In Section 3, wewill provide background on some

of the concepts and methods that we will utilize. This includes background on interval analysis,
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fuzzy sets and numbers, fuzzy arithmetic, and Taylor models. Then, in Section 4 we will describe

our new approach for the rigorous solution of fuzzy-parameterized, nonlinear dynamic models,

with examples and results given in Section 5. Finally in Section 6 we will provide concluding

remarks about this work.

2 Problem Statement

We will consider nonlinear dynamic systems described by IVPs of the form

dy

dt
= f (y, θ), y(t0) = y0, t ∈ [t0, tm]. (1)

Here the n state variables are represented by the state vector y and have initial values y0. There

are p time-invariant parameters represented by the parameter vector θ. The parameters and initial

values are uncertain and bounded by the intervals Θ and Y0, respectively. That is,

θ ∈ Θ, y0 ∈ Y0. (2)

Additional information about the uncertainties is available in the form of fuzzy numbers or,

more generally, in the form of fuzzy sets. That is, for a parameter θi ∈ Θi, the interval Θi

supports a fuzzy set denoted by Θ̃i, i = 1, . . . , p, and we define the fuzzy parameter vector

Θ̃ = (Θ̃1, . . . , Θ̃p)T. Similarly, for an initial value y0,i ∈ Y0,i, the interval Y0,i supports a fuzzy

set Ỹ0,i, i = 1, . . . , n, and we define the fuzzy initial state vector Ỹ0 = (Ỹ0,1, . . . , Ỹ0,n)T. In these

terms, the uncertainties can now be described by

θ ∈ Θ̃, y0 ∈ Ỹ0. (3)

Fuzzy sets and numbers will be described in more detail in Section 3.2. Our goal is to rigorously

propagate these uncertainties, thus computing fuzzy sets Ỹi(t), i = 1, . . . , n, that characterize the

uncertainty in the state trajectories yi(t), i = 1, . . . , n. That is, we seek to determine the fuzzy state

vector Ỹ(t) = (Ỹ1(t), . . . , Ỹn(t))T.

We assume that f is representable by a finite number of standard functions, and that it is

sufficiently differentiable for the verified ODE solver used (see Section 4.1). We also note that if

the ODE model is nonautonomous, or involves parameters with time dependence of a known

form, then such a model can easily be converted into the form of Eq. (1).

3



3 Background

3.1 Interval Analysis

A real (closed) interval X =
[
X,X

]
can be defined as the set X =

{
x ∈ R | X ≤ x ≤ X

}
.

Here an underline is used to indicate the lower bound of an interval and an overline is used

to indicate the upper bound. The width of an interval is w(X) = X − X. A real interval vec-

tor X = (X1, . . . ,Xn)T has n real interval components and can be interpreted geometrically as

an n-dimensional rectangle. Basic arithmetic operations with intervals X and Y are defined by

X ◦ Y = {x ◦ y | x ∈ X, y ∈ Y} , ◦ ∈ {+,−,×,÷}, with division in the case of 0 ∈ Y allowed only

in extensions of interval arithmetic (Hansen & Walster, 2004). Interval versions of the elementary

functions are similarly defined. The endpoints of an interval are computed with a directed (out-

ward) rounding; that is, the lower bound is rounded down and the upper bound is rounded up.

Thus, interval operations are guaranteed to produce bounds that are rigorous both mathemati-

cally and computationally. A number of good introductions to interval analysis and computing

with intervals are available (Moore et al., 2009; Hansen &Walster, 2004; Jaulin et al., 2001; Kearfott,

1996; Neumaier, 1990).

For a real function f (x) with interval-valued variables x ∈ X, the interval extension F(X)

can be defined as a real interval that bounds the range of f (x) for x ∈ X. One way to compute

F(X) is to substitute X into the expression for f (x) and then to evaluate with interval arithmetic.

However, the tightness of these bounds depends on the form of the expression used to evaluate

f (x). If this is a single-use expression, in which no variable appears more than once, then the ex-

act function range will be obtained (within roundout). However, if any variable appears multiple

times, then overestimation of the range may occur. This overestimation is due to the “depen-

dency” problem of interval arithmetic. A variable may take on any value within its interval, but it

must take on the same value each time it occurs in an expression. Unfortunately, this dependency

is not detected when the interval extension is computed using standard interval arithmetic. For

example, consider the case f (x) = (1− x)/(2− x), with x ∈ [0, 1]. Using interval arithmetic gives

F([0, 1]) = (1− [0, 1])/(2 − [0, 1]) = [0, 1]/[1, 2] = [0, 1]. This correctly bounds, but significantly

overestimates, the true function range of [0, 1/2]. Using a different expression for this function,

f (x) = 1/(x − 2) + 1, which is now a single-use expression, and evaluating with interval arith-
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metic gives F([0, 1]) = 1/([0, 1] − 2) + 1 = 1/[−2,−1] + 1 = [−1,−1/2] + 1 = [0, 1/2], the true

function range. We could also obtain the true range by noting that, for x 6= 2, f (x) is a monoton-

ically decreasing function. Thus, F([0, 1]) = [ f (1), f (0)] = [0, 1/2]. For more general cases, there

are various other techniques that can be used to sharpen interval function evaluations, including

the use of centered forms and interval-splitting techniques. Another source of overestimation that

may occur in the use of interval methods is the “wrapping” effect. This occurs when an interval

is used to enclose (wrap) a set of results that is not an interval. One approach that can be used to

address both the dependency problem and the wrapping effect is the use of Taylor models, which

will be described below in Section 3.4.

3.2 Fuzzy Sets and Fuzzy Numbers

Consider an ordinary set A ⊂ R. One way of expressing the membership of a real number

x ∈ R in this set is through a ”membership function” of the form

µA(x) =





1 if x ∈ A

0 otherwise.

(4)

That is, x is either a member of the set A, and has a membership degree of µA(x) = 1, or is

not a member of A, and has a membership degree of µA(x) = 0. In contrast to this “crisp” set,

with µA(x) ∈ {0, 1}, a “fuzzy” set Ã is allowed to also have elements with membership degree

between zero and one, i.e., µÃ(x) ∈ [0, 1]. For example (Hanss, 2005), we might define the set TF

of “freezing temperatures” as an ordinary (crisp) set with membership function

µTF(x) =





1 if x ≤ 0

0 if x > 0

(5)

where x indicates temperature in degrees Celsius. But, we might define the set of “cold tempera-

tures” as a fuzzy set T̃C with membership function

µT̃C
(x) =





1 if x ≤ −10

2/3 if −10 < x ≤ 0

1/3 if 0 < x ≤ 10

0 if x > 10.

(6)
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Thus, a temperature of −5 ◦C belongs to the set of cold temperatures, but with a membership

degree of 2/3. Here, the fuzziness in the set has arisen due to the subjective specification “cold.”

When someone uses the term “cold” it is possible that they are referring to a temperature below

10 ◦C. But it is more possible that they are referring to a temperature below 0 ◦C, and still more

possible that they are referring to a temperature below −10 ◦C.

There are a variety of terms used to describe fuzzy sets and their membership functions. The

“support” of a fuzzy set Ã in R is the crisp set of all x ∈ R with nonzero membership in Ã.

That is, support(Ã) = {x ∈ R | µÃ(x) > 0}. We will say that x is a member of Ã if it is a

member of support(Ã). That is, x ∈ Ã if x ∈ support(Ã). The “α-cut” of Ã is the crisp set

(Ã)α = {x ∈ R | µÃ(x) ≥ α}, and the “strong α-cut” is (Ã)α+ = {x ∈ R | µÃ(x) > α}. Thus,

support(Ã) = (Ã)0+. Also, this implies that α-cuts are “nested”; that is, (Ã)α2 ⊆ (Ã)α1
when

α1 < α2. The α-cut (Ã)1 is referred to as the “core” of Ã. In terms of its α-cuts, the membership

function of Ã can be expressed as

µÃ(x) = max
α∈[0,1]

αµ(Ã)α
(x). (7)

Note that (Ã)α is a crisp set, so µ(Ã)α
(x) ∈ {0, 1}.

A fuzzy set is convex if all of its α-cuts are convex. This implies that all α-cuts, α ∈ (0, 1] of a

convex fuzzy set are closed intervals, as defined in Section 3.1, and means that a convex fuzzy set

is unimodal. A fuzzy set is “normal” if the maximum value of its membership function reaches

one at one or more points; that is, if its core is nonempty. Following Kaufmann & Gupta (1985),

we define a “fuzzy number” as a fuzzy set that is convex and normal, with a core that may be

a zero- or nonzero-width interval. Some other authors restrict the term “fuzzy number” to the

case that the core is a unique point (zero-width interval), and use the term “fuzzy interval” for the

case that the core is a nonzero-width interval. A generic fuzzy number Ã is depicted in Fig. 1 by

plotting its membership function µÃ(x). Fig. 1 also identifies the support and core intervals for

Ã, along with an arbitrary α-cut. Some specific types of fuzzy numbers are shown in Fig. 2. These

include triangular fuzzy numbers (symmetric and unsymmetric), a trapezoidal fuzzy number, a

Gaussian fuzzy number, a “stepped” fuzzy number, and an interval, which is a special case of

fuzzy number.

The membership function for a fuzzy uncertainty will depend on the type and amount of

information available about the uncertain quantity. If all that is known is an upper bound, a lower
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bound, and a “best guess” value, then this knowledge can be represented by a triangular fuzzy

number. If the best guess is an interval of values, then this leads to a trapezoidal fuzzy number.

In the case of a probabilistic uncertainty, the membership function may be constructed with an

appropriate probability density function in mind; for example, a Gaussian fuzzy number (based

on a truncated Gaussian probability density function). A stepped (discrete) fuzzy number may

arise in various situations, such as the case in which knowledge is obtained by surveys based on

experience and/or expertise. For example, say six plant operators are surveyed on the length of

time required in their experience to complete a certain maintenance task. Two operators estimate

a duration of [15, 17] minutes, the third reports [14, 17], the fourth [15, 18], the fifth [13, 18], and

the sixth [14, 19]. Based on this knowledge, the maintenance time might be represented by the

fuzzy number M̃ whose membership function is shown in Fig. 3. The range [15, 17] is found in

all responses and so is assigned the maximum membership degree of one. The ranges [14, 15] and

[17, 18] are found in half of the responses and are given a membership degree of 1/2. The ranges

[13, 14] and [18, 19] are found in only one response each, and are given a membership degree of

1/6. Thus, core(M̃) = (M̃)1 = [15, 17], (M̃)1/2 = [14, 18], and (M̃)1/6 = [13, 19] = support(M̃).

Discrete fuzzy numbers also occur when fuzzy numbers with continuous membership functions

are discretized for computational purposes, as discussed in the next section.

3.3 Fuzzy Arithmetic

Operations that can be performed on crisp sets and numbers can be extended to fuzzy sets

and numbers using Zadeh’s (1975a; 1975b; 1975c) extension principle. For a binary operation ⋄ on

the fuzzy sets Ã and B̃ with membership functions µÃ(x) and µB̃(y), respectively, the extension

principle says that the membership function of C̃ = Ã ⋄ B̃ is given by

µC̃(z) = max
z=x⋄y

min{µÃ(x), µB̃(y)}, ∀x, y ∈ R. (8)

This says that to find the membership degree (possibility) of an element z in C̃, one considers

all pairs of x and y for which x ⋄ y = z. The possibility of each such pair cannot exceed that of

its least possible element and so can be expressed as min{µÃ(x), µB̃(y)}. The possibility of z then

corresponds to that of the pair that is most possible. Using such max-min convolutions, arithmetic

operations for general fuzzy sets can be implemented (there are also alternative formulations of
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the extension principle that can be used, e.g., Dubois & Prade, 1980; Kosheleva et al., 1997). How-

ever, this approach is not computationally efficient for the case of fuzzy numbers, as it does not

take advantage of their special properties.

While there are various approaches to arithmetic with fuzzy numbers, including the L-R (left-

right) representation of Dubois & Prade (1978, 1979), an approach that is now standard (Hanss,

2005) is to exploit the interpretation of a fuzzy number as a nested set of intervals (the α-cuts).

Using this approach, it can be shown (Kaufmann & Gupta, 1985) that, for a binary operation with

fuzzy numbers Ã and B̃ having membership functions µÃ(x) and µB̃(y), respectively, the result

C̃ = Ã ⋄ B̃ is a fuzzy number with membership function

µC̃(z) = max
α∈[0,1]

αµ(Ã)α⋄(B̃)α
(z). (9)

This simply says that, for a given value of α, the α-cut of the result C̃ is given by performing the

desired binary operation on the α-cuts of the operands Ã and B̃. That is, (C̃)α = (Ã)α ⋄ (B̃)α,

∀α ∈ (0, 1]. Thus, since the α-cut of a fuzzy number is a closed interval, arithmetic with fuzzy

numbers reduces to arithmetic with intervals, done at each possible α value. This is illustrated in

Fig. 4, which shows two stepped fuzzy numbers Ã and B̃ and their sum C̃. Note, for example, that

(C̃)0.5 = (Ã)0.5 + (B̃)0.5 = [1, 4] + [1, 3] = [2, 7] and (C̃)0.8 = (Ã)0.8 + (B̃)0.8 = [2, 3] + [1, 3] = [3, 6].

If the membership functions for the operands can be expressed analytically in terms of α, then it

may be possible to determine an analytic expression for the resulting fuzzy number. In general,

however, fuzzy arithmetic is implemented numerically, with continuous membership functions

discretized using several α-cuts. For example, in the software package RAMAS Risk Calc (Ferson,

2002), the fuzzy arithmetic engine is based on discretization using 100 equally spaced α-cuts.

Just as one can define interval extensions of real functions, and evaluate these interval ex-

tensions with interval arithmetic to obtain bounds on function values, one can also define fuzzy

extensions of real functions and evaluate them using fuzzy arithmetic to obtain bounds on the

possibilities of function values. For a real function f (x) of n variables x = (x1, . . . , xn)
T, with

fuzzy-valued variables xi ∈ X̃i, i = 1, . . . , n, the “fuzzy extension” F̃(X̃1, . . . , X̃n)will have a mem-

bership function bounding the possibilities of values of f (x). If the inputs X̃i, i = 1, . . . , n are

general fuzzy sets, then the fuzzy extension F̃ can be computed using fuzzy arithmetic based on

the max-min convolutions arising from the extension principle, as expressed by Eq. (8). However,

if X̃i, i = 1, . . . , n are fuzzy numbers, then F̃ can be computed using interval extensions at each
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α level. That is, (F̃)α = F((X̃1)α, . . . , (X̃n)α), ∀α ∈ (0, 1], where F is the interval extension of f ,

here evaluated over the α-cut intervals xi ∈ (X̃i)α, i = 1, . . . , n. If these interval extensions are

computed using interval arithmetic, then the dependency problem discussed in Section 3.1 arises,

and overestimation of the possibility bounds may occur. To avoid, or at least ameliorate, such

overestimation, one can use the same techniques used in the context of interval analysis, such

as centered forms, interval splitting, and Taylor models (Section 3.4). However, in the context of

fuzzy arithmetic, various other approaches have arisen, such as the “vertex method” (Dong &

Shah, 1987) and its various enhancements (e.g., Wood et al., 1992; Otto et al., 1993; Yang et al.,

1993; Anile et al., 1995; Chang & Hung, 2006), and the “transformation method” (Hanss, 2002,

2005), itself an extension and generalization of the vertex method. These methods, some of which

have been compared by Seng et al. (2007) on numerical test problems, attempt to exploit special

properties, such as monotonicity and known extrema, of the function to be bounded over the in-

tervals of interest. By evaluating the function at prescribed points, such as interval vertices and

extremal points, it may be possible to bound the function exactly in such cases, as demonstrated

previously for a specific function in Section 3.1. In the absence of such special properties, which

may be quite difficult to identify a priori, function bounding is attempted by sampling the function

at an arbitrary set of points, typically based on some grid over the intervals of interest. In general,

of course, this will not result in correct function bounds, but in underestimation of the bounds,

as noted by Hanss (2005). In the method described here we will use a fundamentally different

approach, not based on sampling, that provides mathematically and computationally rigorous

possibility bounds in all cases.

3.4 Taylor Models

One approach for addressing the issues of dependency and wrapping that may occur in in-

terval computations, and which may lead to the overestimation of bounds, is the use of Taylor

models (Makino & Berz, 1999, 1996, 2003). In this approach, a function is represented using a

model consisting of a Taylor polynomial and an interval remainder bound.

The basic idea behind this approach follows directly from the Taylor theorem. Consider a real

function f (x) that is (q+ 1) times partially differentiable on the interval X and let x0 ∈ X. The
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Taylor theorem states that for each x ∈ X, there exists a real ζ with 0 < ζ < 1 such that

f (x) = p f (x− x0) + r f (x− x0, ζ), (10)

where p f is a q-th order polynomial (truncated Taylor series) in (x − x0) and r f is a remainder,

which can be quantitatively bounded over 0 < ζ < 1 and x ∈ X using interval arithmetic or

other methods to obtain an interval remainder bound R f . A q-th order Taylor model Tf (x) =

p f (x− x0) + R f for f (x) over X then consists of the real-valued polynomial p f and the interval-

valued remainder bound R f and is denoted by Tf = (p f , R f ). Note that, by the Taylor theorem,

f (x) ∈ Tf (x) for x ∈ X, and thus Tf encloses the range of f (x) over X .

In practice, it is useful to compute Taylor models of functions by performing Taylor model

operations. Arithmetic operations with Taylor models can be done using the operations de-

scribed by Makino & Berz (1996, 1999, 2003), which include addition, multiplication, reciprocal,

and intrinsic functions. Thus, it is possible to start with simple functions such as the constant

function g(x) = k, for which Tg = (k, [0, 0]), and the identity function g(xi) = xi, for which

Tg = (xi0 + (xi − xi0), [0, 0]), and to then compute a Taylor model Tf (x) for a very complicated

function f (x). In determining Tf (x), the dominant terms are computed using real operations on

the coefficients of the Taylor polynomial; thus dependency issues due to interval operations be-

come less significant. The final Taylor model Tf (x) must still be bounded for x ∈ X to bound the

range of f (x) over X, but this can also be done in ways that reduce overestimation (Neumaier,

2003; Lin & Stadtherr, 2007; Makino & Berz, 2004, 2005). It has been reported that, compared

to other rigorous range-bounding techniques, the use of Taylor models often provides tighter

enclosures for functions with modest to complicated dependencies (Makino & Berz, 1999, 1996;

Neumaier, 2003). Since computations with fuzzy numbers can be reduced to computations with

intervals, Taylor models can, in general, also be used to reduce overestimation in fuzzy arithmetic.

We will use Taylor models here to represent bounds on the solutions of interval-valued IVPs, as

described in Section 4.1. Additional applications, as well as limitations, of Taylor models are dis-

cussed in more detail elsewhere (Neumaier, 2003).

4 Solution Method

In this section, we describe a new approach for solving the problem posed in Section 2, namely
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the propagation of fuzzy uncertainties in solving IVPs for nonlinear ODE systems. A key require-

ment in developing this approach is that, unlike other methods for addressing this problem, the

computed possibility bounds be rigorous. Since, as discussed above, computation with fuzzy

numbers can be reduced to computations with intervals, we begin by discussing the propagation

of interval uncertainties in nonlinear dynamic systems, and by outlining the specific approach that

will be used here for the interval computations.

4.1 Interval Uncertainties

Consider the problem stated in Eqs. (1) and (2). This is an IVP for a nonlinear ODE with

interval-valued parameters and initial states. Using interval methods (also called validated meth-

ods or verified methods) for ODEs, it is possible to determine mathematically and computation-

ally guaranteed bounds on the state trajectories. Traditional interval methods use two processes

(phases) at each integration step. In the first process, existence and uniqueness of the solution are

proven, and a rough enclosure of the solution, valid over the entire integration time step, is com-

puted. In the second process, a tighter enclosure of the solution, valid at the endpoint of the time

step, is computed. In general, both processes are implemented by applying interval Taylor series

(ITS) expansions with respect to time, using automatic differentiation to obtain the Taylor coeffi-

cients. A thorough review of the traditional interval methods has been given by Nedialkov (1999),

and more recent work has been reviewed by Neher et al. (2007). For addressing this problem,

there are several packages available, involving a variety of methods; these include VNODE (Ne-

dialkov, 1999; Nedialkov et al., 2001), COSY VI (Berz & Makino, 1998), and ValEncIA-IVP (Rauh

et al., 2009). In this study, we will use the recently developed solver VSPODE (Lin & Stadtherr,

2007). Themethodmakes use, in a novel way, of the Taylor model approach (Makino & Berz, 1996,

1999, 2003) to deal with the dependency and wrapping issues involving the uncertain quantities

(parameters and initial states).

Assuming an interval enclosure Y j of the state variables yj = y(tj), an integration step in

VSPODE determines a time step hj = tj+1 − tj and an interval enclosure Y j+1 of the state variables

at tj+1. In the first phase of the method, a coarse enclosure Ŷ j is determined such that a unique

solution y(t) ∈ Ŷ j is guaranteed to exist over the time interval [tj, tj+1] for every yj ∈ Y j and

every θ ∈ Θ. This is done with a high-order ITS with respect to time, using the Picard-Lindelöf
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operator and Banach fixed-point theorem. The time step used can be specified, butmay be reduced

if necessary, or an automatic step size procedure can be used. This represents an extension, to

parametric ODEs, of the traditional interval approach used in VNODE.

In the second phase of themethod, Taylor models in terms of the uncertain quantities are used.

First, the uncertain quantities (initial values and parameters) are expressed as Taylor model iden-

tity functions Ty0
and Tθ. Then, Taylor models T

f [i]
of the ITS coefficients f [i](yj, θ) are obtained

by using Taylor model operations to compute T
f [i]

= f [i](Tyj
, Tθ). Now using the ITS expansion

for yj+1, with coefficients given by T
f [i]
, and incorporating an approach for using the mean value

theorem on Taylor models, one can obtain Tyj+1
(y0, θ), a Taylor model of yj+1 in terms of the pa-

rameters θ and initial states y0. In this process, the wrapping effect of traditional interval methods

is reduced by using a new type of Taylor model that uses a parallelepiped (as opposed to interval)

remainder bound (Lin & Stadtherr, 2007). The Taylor model Tyj+1
(y0, θ) is an explicit analytical

expression for yj+1 = y(tj+1) in terms of the initial states y0 and parameters θ, which is valid for

all y0 ∈ Y0 and all θ ∈ Θ. The interval state bounds Y j+1 can now be obtaining by bounding

Tyj+1
(y0, θ) over y0 ∈ Y0 and θ ∈ Θ. These bounds are mathematically and computationally guar-

anteed. Complete details of the method outlined briefly here are given by Lin & Stadtherr (2007).

Other interesting ideas for using Taylor models in state bounding have been described recently by

Sahlodin & Chachuat (2011a,b).

4.2 Fuzzy Uncertainties

Consider the problem stated in Eqs. (1) and (3). Now the uncertainties in the ODE parameters

and initial states are represented by the fuzzy set vectors Θ̃ and Ỹ0 rather than the intervals Θ

and Y0. We will consider methods for three cases of this problem: 1. The uncertainties are general

fuzzy sets; 2. The uncertainties are discrete fuzzy numbers represented by a relatively small num-

ber of α-cuts; 3. The uncertainties are discrete fuzzy numbers represented by a relatively large

number of α-cuts. The third case includes the case of membership functions that are continuous

functions of α, since in practice these are discretized using a large number of α-cuts.

4.2.1 Method 1: General fuzzy sets

For this most general case, we apply VSPODE with the interval parameter input Θ =
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support(Θ̃) = (support(Θ̃1), . . . , support(Θ̃p))T and the interval initial state input Y0 =

support(Ỹ0). At the j-th integration time step (beginning with j = 1 and finishing with j = m), a

Taylor model Tyj
(y0, θ) for yj = y(tj) valid for all y0 ∈ Ỹ0 and all θ ∈ Θ̃ is obtained (since all ele-

ments of a fuzzy set are elements of its support interval). Since Tyj
(y0, θ) is an explicit polynomial

function plus an interval remainder bound, a fuzzy set vector Ỹ j characterizing the uncertainty

in yj can now be computed from Ỹ j = Tyj
(Ỹ0, Θ̃) using fuzzy arithmetic. That is, the fuzzy pa-

rameter Θ̃ and fuzzy initial state Ỹ0 are substituted into the Taylor model for the states and fuzzy

arithmetic based on the max-min convolutions arising from the extension principle, as expressed

by Eq. (8), is used to compute the fuzzy state Ỹ j. At completion of all m time steps, this yields the

complete fuzzy trajectory Ỹ(tj) = Ỹ j, j = 1, . . . ,m.

This approach is completely general. However, in most cases of interest, the fuzzy sets used

to represent uncertainties are convex and normal, that is, they are fuzzy numbers. The method

described above does not take advantage of the special properties of fuzzy numbers. We will

concentrate here on methods for uncertainties that are expressed as fuzzy numbers.

4.2.2 Method 2: Fuzzy numbers with small number of α-cuts

For this case, we assume that the components of Θ̃ and Ỹ0 are fuzzy numbers that can be

represented using a relatively small number of α-cuts. Say there are a total of r α-cuts needed to

represent both Θ̃ and Ỹ0. These α-cuts are at α1, α2, . . . , αr−1 and αr, with 0 < α1 < α2 < . . . <

αr−1 < αr = 1. For example, representation of the fuzzy number Ã depicted in Fig. 4 requires

r = 5 with α1 = 0.3, α2 = 0.4, α3 = 0.6, α4 = 0.7 and α5 = 1. Note that the α-cut at α1 corresponds

to the support of the fuzzy number, and the α-cut at αr to the core.

As explained in Section 3.3, arithmetic with fuzzy numbers reduces to arithmetic with inter-

vals, done at each α value used to represent the fuzzy numbers. Thus, we can compute the fuzzy

trajectory Ỹ j, j = 1, . . . ,m one α-cut at a time using VSPODE. Consider the k-th α-cut (at αk).

The corresponding α-cut of Θ̃ is (Θ̃)αk
= ((Θ̃1)αk

, . . . , (Θ̃p)αk
)T, and the corresponding α-cut of

Ỹ0 is (Ỹ0)αk
= ((Ỹ0,1)αk

, . . . , (Ỹ0,n)αk
)T. Now apply VSPODE with interval inputs Θ = (Θ̃)αk

and

Y0 = (Ỹ0)αk
. This will result in rigorous bounds on (Ỹ j)αk

at each time step j = 1, . . . ,m. To obtain

the complete fuzzy trajectory, then requires r calls to VSPODE, one for each α-cut. Examples of

this approach are given below in Sections 5.1 and 5.2. As long as the number of α-cuts is relatively
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small, this will be an efficient approach providing fuzzy trajectories that reflect relatively tight pos-

sibility bounds. However, if the number of α-cuts is relatively large, requiring a large number of

calls to VSPODE, this approach can become very costly computationally. Thus, we consider next

an approach that limits the number of calls to VSPODE when there is a large number of α-cuts.

4.2.3 Method 3: Fuzzy numbers with large number of α-cuts

Again we assume that the components of Θ̃ and Ỹ0 are fuzzy numbers that can be repre-

sented using r α-cuts, as described above. However, now we also assume that r is a relatively

large number. This is the situation encountered when fuzzy numbers with continuous member-

ship functions are discretized for purposes of performing fuzzy arithmetic. Instead of using the

Method 2 approach, we want an approach that will limit the number of calls to VSPODE. To do

this we will make use of the nesting property of α-cuts, which says that (Ã)αk
⊆ (Ã)αi

when

αi < αk. Say we use VSPODE on the α-cut at αi. This will result in the computation of the rigor-

ous state bounds (Ỹ j)αi
at each time step j = 1, . . . ,m. To obtain each such (Ỹ j)αi

, VSPODE first

determines a Taylor model Tyj
(y0, θ) valid for all y0 ∈ (Ỹ0)αi

and all θ ∈ (Θ̃)αi
(see Section 4.1).

We will denote this Taylor model as Tαi
yj
(y0, θ). The state bound (Ỹ j)αi

is then computed using

(Ỹ j)αi
= Tαi

yj
((Ỹ0)αi

, (Θ̃)αi
). Now say we want to determine (Ỹ j)αk

at each time step j = 1, . . . ,m,

with αk > αi. Since (Ỹ0)αk
⊆ (Ỹ0)αi

and (Θ̃)αk
⊆ (Θ̃)αi

the Taylor model computed previously for

αi is still valid. Thus, for αk it is not necessary to use VSPODE to determine a new Taylor model,

and we can get each (Ỹ j)αk
simply from the Taylor model evaluation (Ỹ j)αk

= Tαi
yj
((Ỹ0)αk

, (Θ̃)αk
).

In re-using the Taylor model from αi there is, however, a tradeoff. The resulting state bounds for

the αk-cut will be rigorous, but not quite as tight as if they were calculated from a new run of

VSPODE and thus from a new Taylor model T
αk
yj
.

In the examples shown below, we will consider some possible strategies for dealing with this

tradeoff. On one extreme is the case in which VSPODE is used only once, on the α1-cut, corre-

sponding to the support of the fuzzy number input. The Taylor model Tα1
yj
(y0, θ) can then be

re-used at all other α-cuts. This will involves the least computational work, but also the greatest

overestimation of the state possibility bounds. The other extreme corresponds to Method 2, as

discussed above, which will involve the most computational work, but the least overestimation of

bounds. We will use the numerical examples in Sections 5.3 and 5.4 to look at these two extremes
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and at ways to compromise between them. A systematic procedure for implementing Method 3

will be outlined in Section 5.4.

5 Computational Studies

In this section, we apply the methods outlined above to a number of examples. Each example

involves a nonlinear ODE model that has parameters and/or initial conditions that are uncertain

and represented by fuzzy numbers. The first two examples involve ecological dynamics and fuzzy

numbers with small number of α-cuts. The remaining examples involve bioreactor dynamics and

fuzzy numbers with continuous membership functions. Since our solution methods are designed

to be general-purpose, we will not attempt to exploit any special properties in the example prob-

lems.

The solution methods were implemented using a C++ wrapper around the VSPODE library,

which was set to use the default ITS truncation order (k = 17) and Taylor model order (q = 5).

All the example problems were solved on a dual-core AMD Opteron
TM

Model 1214 processor (2.2

GHz) running Ubuntu 11.04.

5.1 Example 1: Two-Species Competition Model

For this example, we consider a two-species model of competition dynamics over a period of

t ∈ [0, 100] days. The model of interest is given by

dy1
dt

= r1y1

(
1−

y1 + a12y2
K1

)
(11)

dy2
dt

= r2y2

(
1−

y2 + a21y1
K2

)
, (12)

where y1 and y2 represent the populations of the two competing species. Here r1 and r2 are the

intrinsic species growth rates per capita, and K1 and K2 are the carrying capacities for each species

in the absence of competition. The competition parameters a12 and a21 represent the impact of

species 2 on species 1 and the impact of species 1 on species 2, respectively. This model rep-

resents a modification of the logistic population model to account for competition and is com-

monly referred to as the Lotka-Volterra competition model. The initial states are y0,1 = 150 and

y0,2 = 130. Some parameters have known crisp values: K1 = 560, K2 = 202, r1 = 1 day−1
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and a12 = 2.66. The parameters r2 and a21 are uncertain and represented by fuzzy numbers.

For r2 = θ1, the fuzzy number input is given by support(Θ̃1) = (Θ̃1)1/3 = [0.56, 0.64] day−1,

(Θ̃1)2/3 = [0.575, 0.625] day−1, and (Θ̃1)1 = [0.59, 0.61] day−1. For a21 = θ2, the fuzzy num-

ber input is given by support(Θ̃2) = (Θ̃2)1/3 = [0.305, 0.315], (Θ̃2)2/3 = [0.307, 0.313], and

(Θ̃2)1 = [0.309, 0.311]. The membership functions for these fuzzy number inputs are depicted

in Fig. 5. Since the fuzzy inputs are represented by only three α-cuts, we applied Method 2, as

described in Section 4.2.2, with r = 3, α1 = 1/3, α2 = 2/3, and α3 = 1.

Selected results are shown in Fig. 6, which shows the fuzzy trajectories at 4, 20, 40, 60 and

80 days. The fuzzy trajectories are indicated schematically by showing flipped and rotated plots

of the membership functions for the state variables. The correspondence between this schematic

representation and the membership function plot is shown in detail for the case of t = 40 days.

The dotted curves in Fig. 6 show the bounds on the states computed by VSPODE for the case

of a purely interval uncertainty, based on the support intervals for the fuzzy number inputs.

Even though the fuzzy number inputs were symmetric, the fuzzy state outputs can be seen to

be slightly asymmetric, showing a bias towards higher population of species 2 (and lower popu-

lation of species 1) as being more possible. The computation time required to compute the state

membership functions at t = 80 was 3.5 s (less at smaller values of t).

5.2 Example 2: Predator-Prey Model

For this example, we use a two-species model of predator-prey dynamics over a period of

t ∈ [0, 25] days. This system is described by the ODE system

dy1
dt

= θ1y1(1− y2) (13)

dy2
dt

= θ2y2(y1 − 1), (14)

where y1 represents the prey population and y2 the predator population. The parameters θ1 and

θ2 may be regarded as interaction coefficients. This is a version of the Lotka-Volterra predator-

prey model, and is widely used as a numerical test problem in nonlinear dynamics. The state

trajectories can be quite sensitive to small changes in the parameter values. Here the parame-

ters are uncertain and represented by fuzzy numbers. For θ1, the fuzzy number input is given

by support(Θ̃1) = (Θ̃1)1/3 = [2.99, 3.01] day−1, (Θ̃1)2/3 = [2.995, 3.005] day−1, and (Θ̃1)1 =
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[2.999, 3.001] day−1. For θ2, the fuzzy number input is given by support(Θ̃2) = (Θ̃2)1/3 =

[0.99, 1.01] day−1, (Θ̃2)2/3 = [0.995, 1.005] day−1, and (Θ̃2)1 = [0.999, 1.001] day−1. The initial

states are y0,1 = 1.2 and y0,2 = 1.1.

Since again the fuzzy inputs are represented by only three α-cuts, we again applied Method

2. Selected results are shown in Fig. 7, which shows the fuzzy trajectories at 20.5, 21.2, 22.2, 23.5

and 24.2 days. The membership function plot is shown in detail for the case of t = 22.2 days. The

dotted curves in Fig. 7 indicate the state bounds computed by VSPODE for the case of a purely

interval uncertainty, corresponding to the support intervals for the fuzzy number inputs. Even

though the fuzzy number inputs were again symmetric, in this case the fuzzy state outputs can be

seen to be highly asymmetric, with the nature of this asymmetry varying with time. For example,

looking at the membership functions for the predator population (y2) near its extrema, the inter-

val of most possible populations shifts towards relatively larger values near the maximum and

towards relatively smaller values near the minimum. The computation time required to compute

the state membership functions at t = 24.2 days was 0.5 s (less at smaller values of t).

By using VSPODE to integrate the sensitivity equations for this problem, together with the

original ODEs, over the uncertainty intervals of interest, it can be shown that the states do not vary

monotonically with respect to all of the parameters over the entire time span. As discussed above,

this means that an approach based on sampling of the fuzzy inputs will not rigorously bound

the fuzzy trajectories (Hanss, 2005). At best, a sampling approach will yield an inner estimate of

the state bounds for a given α-cut, with the tightness of the bounds determined, in general, by

the effort expended in sampling. On the other hand, for a problem in which the states do vary

monotonically with respect to the parameters (Example 1 can be shown to be such a problem),

it is possible to obtain rigorous and tight bounds by sampling, provided the samples include

the endpoints of the input α-cut intervals. However, the user will not know that the results are

rigorous unless the monotonicity property has been verified a priori. In general, this requires the

integration of the sensitivity equations, together with the original ODE, using an approach that

rigorously bounds the sensitivities over the specified uncertainty intervals (this can be done using

VSPODE). Using the approach described here, which does not involve sampling, we can directly

and confidently obtain rigorous bounds on the fuzzy trajectories for any problem, whether or not

the states vary monotonically with the parameters. In general, these boundsmay overestimate the
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exact bounds. However, if there is a priori knowledge of monotonic sensitivity behavior, this can

be exploited to obtain the best possible bounds.

5.3 Example 3: Two-State Bioreactor Models

The dynamics of a continuous, well-mixed bioreactor (chemostat) in which biomass of a single

organism is produced and there is a single limiting nutrient (substrate) can be described by the

ODE system

dX

dt
= (µ − aD)X, (15)

dS

dt
= D(Sf − S)− kµX, (16)

where X and S are the (real-valued) concentrations of biomass and substrate, respectively. Here

µ is the specific growth rate of biomass, a function of S that will be given below, D is the dilution

rate (space velocity), a is the biomass washout fraction, k is the inverse yield coefficient, and Sf is

the substrate feed concentration. We will consider a time horizon of 20 h.

5.3.1 Monod kinetics

We first consider the case of Monod kinetics, with the specific growth rate given by

µ =
µmaxS

KS + S
. (17)

Here µmax is the maximum specific growth rate and KS is the half-saturation constant. Fixed

parameter values for this problem are a = 0.5, k = 10.53, Sf = 5.7 g/L, and µmax = 1.2 h−1. The

initial states are also fixed, at X0 = 0.829 g/L and S0 = 0.8 g/L. The parameters D and KS will

be treated as uncertain and represented by symmetric trapezoidal fuzzy numbers, as indicated

in Fig. 8. A trapezoidal fuzzy number can be specified by giving its support and core intervals.

For D, support(D̃) = [0.35, 0.37] h−1 and core(D̃) = (D̃)1 = [0.35667, 0.36333] h−1. For KS,

support(K̃S) = [6.8, 7.2] g/L and core(K̃S) = (K̃S)1 = [6.93333, 7.06667] g/L. Since the fuzzy

inputs have continuousmembership functions, theymust be discretized for purposes of numerical

fuzzy arithmetic. We will treat these continuous membership functions by discretizing them into

100 equally-spaced α-cuts (Ferson, 2002); thus, r = 100 with α1 = 0.01, α1 = 0.02, . . ., α100 = 1.0.
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Since there are a large number of α-cuts, we applied Method 3, as described in Section 4.2.3,

and used VSPODE only once, on the support intervals for the fuzzy inputs. Thus, results for all

α-cuts were based on a single Taylor model, computed at α1 = 0.01. Selected results are shown in

Fig. 9, which shows the fuzzy trajectories at 1.8, 4.5, 8.0, 12.5 and 17.4 h. The membership function

plot is shown in detail for the case of t = 8.0 h. The dotted curves in Fig. 9 are the state bounds

computed by VSPODE based on the support intervals for the fuzzy inputs.

For comparison, we also applied Method 2, running VSPODE r = 100 times, thus using 100

different Taylor models, one for each α-cut. This will provide tighter possibility bounds than

Method 3, but at higher computational cost. To quantify the relative difference in bound tightness

between the two methods, and provide a measure of performance for Method 3 in this regard,

we use two quantities: 1) Area Ratio and 2) Maximum Interval Ratio. Both measures are based

on the membership function curve for a particular state variable at a particular time. The Area

Ratio is based on the area under the membership function curve, and is simply the ratio of this

area based on Method 3 to this area based on Method 2. In principle the Area Ratio will always be

greater than one, with values closer to one indicating better performance. The Maximum Interval

Ratio is based on the ratio of the width of the state possibility interval for a particular α-level as

determined by Method 3 to the width of this interval as determined by Method 2 for the same

α-level. The maximum value of this ratio is the Maximum Interval Ratio. Again, this value will

always be greater than one, with values closer to one indicating better performance. The Area

Ratio provides a global measure of overestimation, while the Maximum Interval Ratio provides a

local measure. The tradeoffs between the Methods 2 and 3 for this problem can be seen in Table

1, which shows the computation time for each method and the Area Ratio and Maximum Interval

Ratio based on X and S at t = 20 h. It is clear that, for this problem, Method 3 performs very

well. It is two orders of magnitude faster than Method 2, and provides possibility bounds nearly

as tight as Method 2.

5.3.2 Haldane kinetics

As a second example involving a two-state bioreactor, we will use Haldane kinetics, with the
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specific growth rate given by

µ =
µmaxS

KS + S+ KIS2
. (18)

Here there is an additional kinetic parameter, the inhibition constant KI. Fixed parameter values

for this problem are a = 0.5, k = 10.53, Sf = 5.7 g/L, D = 0.3 h−1, µmax = 1.2 h−1, and KS = 7.0

g/L. The initial substrate concentrate is fixed at S0 = 0.8 g/L, but the initial concentration of

biomass is uncertain. It is given by the trapezoidal fuzzy number specified by support(X̃0) =

[0.825, 0.835] g/L and core(X̃0) = [0.82833, 0.83167] g/L. The inhibition constant is also uncertain,

and it is given by the trapezoidal fuzzy number specified by support(K̃I) = [1.48, 1.52] L/g and

core(K̃I) = [1.49333, 1.50667] L/g.

Again, we applied Method 3. Selected results are shown in Fig. 10, which shows the fuzzy

trajectories at 1.5, 2.9, 6.5, 11.2 and 16.0 h, and state bounds (dotted curves) computed by VSPODE

using the support intervals for the fuzzy inputs. The membership function plot is shown in detail

for the case of t = 11.2 h. The tradeoffs between the Methods 2 and 3 for this problem are given in

Table 1. It is clear that, for this problem also, Method 3 performs very well relative to Method 2.

5.4 Example 4: Three-State Bioreactor Model

In this bioreactor model (Henson& Seborg, 1997), the consumption of substrate (concentration

S) by cells (concentration X) results in the formation of a product (concentration P) that inhibits

the growth of the cells. The ODE system is

dX

dt
= (µ − D)X (19)

dS

dt
= D(Sf − S)−

µX

Y
(20)

dP

dt
= −DP+ (γµ + β)X, (21)

where the specific biomass growth rate is given by

µ =
µmax(1− P/Pm)S

(KS + S)
(22)

Here Y is the biomass yield coefficient, Pm is a normalization factor, γ and β are product yield

parameters, and the other parameters are as defined in the previous section. We will consider a

time horizon of 20 h.
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Fixed parameter values for this example are γ = 0.2, β = 3.0 h−1, Sf = 20 g/L, Pm = 50

g/L, Y = 0.42, and KS = 5.065 g/L. Fixed initial states are S0 = 5.0 g/L and P0 = 15.0 g/L. The

remaining parameters and initial state are uncertain and given by symmetric trapezoidal fuzzy

numbers. For D, support(D̃) = [0.20, 0.22] h−1 and core(D̃) = [0.20667, 0.21333] h−1. For µmax,

support(µ̃max) = [4.64, 4.66] h−1 and core(µ̃max) = [4.64667, 4.65333] h−1. For X0, support(X̃0) =

[6.40, 6.60] g/L and core(X̃0) = [6.46667, 6.53333] g/L. Again we will discretize these continuous

membership functions into 100 equally-spaced α-cuts, so r = 100 with α1 = 0.01, α1 = 0.02, . . .,

α100 = 1.0.

As in the previous example, we computed the fuzzy states usingMethod 2 with r = 100 Taylor

models, one for each α-level, and using Method 3 with only one Taylor model, at α1 = 0.01, and

compared the results in terms of computational performance. The results of this comparison are

shown in the first two rows of Table 2. While, Method 3 is much faster, as expected, it also leads

to a nontrivial overestimation of the possibility bounds relative to Method 2, as indicated by the

Area Ratio of 1.0724 andMaximum Interval Ratio of 1.1976 (both ratios represent the average over

all three state variables at t = 16 h).

To reduce the overestimation by Method 3 we can simply increase the number of Taylor mod-

els used from one to some larger number. We will first concentrate on what happens when the

number of Taylor models used in Method 3 is increased to two. The performance in terms of

overestimation will depend on which α-level is chosen for the second application of VSPODE and

the second Taylor model. We will refer to this α-level as the “reset level”, and will denote this

value as α∗. The effect of the reset level can be seen clearly in Table 2, which shows that the least

overestimation was observed when the second Taylor model was obtained at α-levels in the range

of 0.2 to 0.4. This result is not surprising since, in evaluating interval function extensions using

interval arithmetic, overestimation will be greater when the diameters of the interval inputs are

greater. Thus, there is more to gain by obtaining the more accurate Taylor model at a relatively

small α value, at which the diameter of the input α-cut intervals is still relatively large. The exact

α value that leads to best performance with a second Taylor model will clearly vary from problem

to problem. Based on our experience with this and other problems, however, the use of α = 0.2

for evaluation of the second Taylor model is a good heuristic choice, as it tends to result in the

smallest Area Ratio, a global measure of overestimation.
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We can now consider using three or more Taylor models to further reduce overestimation by

Method 3. For this purpose, we suggest recursive use of the heuristic suggested above. That is, if

α(2) = α∗ = 0.2 denotes the α-level for the second Taylor model, then α(3) = α(2) + α∗(1− α(2)) =

0.36 is the location for the third Taylor model, α(4) = α(3) + α∗(1− α(3)) = 0.488 is (rounded to the

nearest discrete α-level of 0.49) the location for the fourth, etc. In general then, the α-level α(u+1)

for the (u+ 1)-th Taylor model will be given by α(u+1) = α(u) + α∗(1− α(u)) for u ≥ 2.

We can now suggest a systematic procedure for applying Method 3. Convergence of this pro-

cedure will be monitored by considering the relative change, when an additional Taylor model

evaluation is done, in the area under the membership function curves for the state variables (at

a specified time). We will denote by A(u) the area under the state membership functions at the

specified time, averaged over all states, when u Taylor models have been used to obtain the mem-

bership functions. If the “relative area difference” R
(u)
A = (A(u−1) − A(u))/A(u−1)

< ǫ, where ǫ is

a specified tolerance, then we will stop the procedure and use the result obtained using u Taylor

models.

An outline of the algorithm is as follows:

1. Initialize

(a) Assign a value for the reset level α∗.

(b) Assign a value for the stopping tolerance ǫ.

(c) Run VSPODE and obtain a first Taylor model Tα(1)

yj
at α(1) = α1. This is the α-level

corresponding to the support of the fuzzy number inputs. For all k ∈ [1, r], compute

(Ỹ j)αk
at each time step j = 1, . . . ,m using (Ỹ j)αk

= Tα(1)

yj
((Ỹ0)αk

, (Θ̃)αk
). Determine

A(1).

(d) Set u = 2 and α(2) = α∗.

2. Run VSPODE and obtain a Taylor model Tα(u)

yj
at α(u). For all αk ≥ α(u), compute (Ỹ j)αk

at

each time step j = 1, . . . ,m using (Ỹ j)αk
= Tα(u)

yj
((Ỹ0)αk

, (Θ̃)αk
). Determine A(u).

3. If R
(u)
A = (A(u−1) − A(u))/A(u−1)

< ǫ, stop. Otherwise, set α(u+1) = α(u) + α∗(1− α(u)) and

return to Step 2 with u = u+ 1.
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Note that in Step 2 the new Taylor model at α(u) can only be used to compute state possibility in-

tervals for αk ≥ α(u), for reasons explained in Section 4.2.3. For αk < α(u), the previously computed

values of the possibility intervals remain valid and are unchanged in Step 2.

The procedure outlined above was applied to this problem using α∗ = 0.2, with iteration-by-

iteration results shown in Table 3. If a tolerance of ǫ = 0.01 were used, the iteration would stop

after evaluation of three Taylor models (u = 3). Fuzzy trajectories (for biomass and substrate only)

for this case are shown in Fig. 11, with results at t = 5.6 h highlighted. The Area Ratio (relative to

use of 100 Taylor models) is 1.0176 (note that in normal use of the iterative procedure one will not

know this ratio, since the case of 100 Taylor models is never done). If a tolerance of ǫ = 0.001 were

used, the iteration would stop after evaluation of six Taylor models (u = 6). Now the Area Ratio

is 1.0086. Use of Method 3, with the procedure suggested here, reduces computation time by over

an order of magnitude compared to Method 2, with only a very small overestimation of the state

membership functions.

6 Concluding Remarks

Numerical models of nonlinear phenomena often incorporate uncertain parameters and ini-

tial conditions. If this uncertainty arises from lack of knowledge, not from randomness, then it

may appropriate to represent the uncertainty using fuzzy sets or fuzzy numbers. The resulting

fuzzy trajectories represent the propagation of this uncertainty throughout the evolution of such

nonlinear dynamic systems. We have presented here a new, rigorous approach for computing the

fuzzy state trajectories. Current methods for addressing this problem rely on sampling and may

underestimate the true effect of uncertainties. Our approach is fundamentally different from cur-

rent methods. Since it is not based on sampling, it provides mathematically and computationally

rigorous results. Variations of the approach allow one to trade-off computational expense and

degree of overestimation, but in all cases, rigorous enclosures of the state membership functions

are obtained.
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Table 1: Tradeoff between bound tightness and CPU time in comparing Methods 2 and 3 in Exam-

ple 3 (two-state bioreactor models). For Method 2, the Area Ratio and Maximum Interval Ratio

are one by definition

Kinetic

Model
Quantity

Method

Used

Number

of TMs

CPU

Time (s)

Area

Ratio

Maximum

Interval Ratio

Monod

X(20)
2 100 110 1 1

3 1 1 1.0004 1.0010

S(20)
2 100 100 1 1

3 1 1 1.0002 1.0004

Haldane

X(20)
2 100 110 1 1

3 1 1 1.0010 1.0032

S(20)
2 100 100 1 1

3 1 1 1.0013 1.0039
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Table 2: Tradeoff between bound tightness and CPU time in comparing Methods 2 and 3, and

effect of α-level for second Taylor model (reset level) in Method 3, for Example 4 (three-state biore-

actor model). The Area Ratio and Maximum Interval Ratio are based on an average over all three

state variables at t = 16 h.

Method Number of α CPU Area Maximum

Used Taylor Models Value(s) Time (s) Ratio Interval Ratio

2 100 — 785 1 1

3 1 0.01 8 1.0724 1.1976

3 2 0.01, 0.10 15 1.0382 1.1182

0.01, 0.20 15 1.0244 1.0723

0.01, 0.30 15 1.0297 1.0702

0.01, 0.40 15 1.0271 1.0668

0.01, 0.50 15 1.0306 1.0828

0.01, 0.60 15 1.0370 1.0981

0.01, 0.70 15 1.0449 1.1147

0.01, 0.80 15 1.0535 1.1345

0.01, 0.90 15 1.0626 1.1595
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Table 3: Results from algorithm for applying Method 3. The relative area difference is based on

t = 16 h.

Number of α CPU Relative Area

Taylor Models (u) Value(s) Time (s) Difference (R
(u)
A )

1 0.01 8 —

2 0.01, 0.20 15 0.0448

3 0.01, 0.20, 0.36 24 0.00664

4 0.01, 0.20, 0.36, 0.49 33 0.00609

5 0.01, 0.20, 0.36, 0.49, 0.59 41 0.00198

6 0.01, 0.20, 0.36, 0.49, 0.59, 0.67 48 0.00079
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Figure 1: A generic fuzzy number Ã with membership function µÃ, showing its support and core

intervals, and an arbitrary α-cut interval (Ã)α.
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Figure 3: Stepped fuzzy number resulting from expert survey example in text.
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Figure 5: Fuzzy number inputs for the Lotka-Volterra competition model (Example 1): (a) Mem-

bership function for r2 = θ1; (b) Membership function for a21 = θ2.
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Figure 6: VSPODE enclosures and fuzzy trajectories for Example 1 (fuzzy states at 40 days high-

lighted): (a) Species 1; (b) Species 2.
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Figure 7: VSPODE enclosures and fuzzy trajectories for Example 2 (fuzzy states at 22.2 days high-

lighted): (a) Prey species; (b) Predator species.
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Figure 8: Fuzzy number inputs for the Monod bioreactor model (Example 3): (a) Membership

function for D; (b) Membership function for KS.
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Figure 9: VSPODE enclosures and fuzzy trajectories for Example 3 with Monod kinetics (states at

8.0 h highlighted): (a) Biomass concentration; (b) Substrate concentration.45
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Figure 10: VSPODE enclosures and fuzzy trajectories for Example 3 with Haldane kinetics (states

at 11.2 h highlighted): (a) Biomass concentration; (b) Substrate concentration.46
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Figure 11: VSPODE enclosures and fuzzy trajectories for Example 4 (states at 5.6 h highlighted):

(a) Biomass concentration; (b) Substrate concentration.47


