A Systematic Analysis of
Dynamic Load Balancing Strategies
for Parallel Interval Analysis

Chao-Yang Gau and Mark A. Stadtherr?
Department of Chemical Engineering

University of Notre Dame
Notre Dame, IN 46556 USA

AIChE Annual Meeting, Dallas, TX, Oct. 31- Nov. 5, 1999
Session Number 10D02: Application of Parallel Computing
Strategies in Engineering Systems

LAuthor to whom all correspondence should be addressed. Phone:
(219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

Outline

Parallel Branch-and-Prune (and/or Bound)

— Interval Newton/Generalized Bisection (IN/GB)
Asynchronous Diffusive Load Balancing

Analysis

— Virtual Connectivity Analysis
— Scalability Analysis (Equation-Solving Problems)
— Speedup Anomaly Analysis (Global Optimization)

Experiments and Results

Concluding Remarks

Parallel Branch-and-Prune (Bound)

e Branch-and-Prune (and/or Bound)

— A tree search algorithm is often used in intelligent
search.

— Successive decompositions into smaller disjoint
(independent) subproblems.

— Capability of finding all solutions or the globally
optimal solution.

— Many applications: nonlinear mixed-integer and
global optimization, combinatorial problems,
interval analysis etc ...

e Parallel Processing

— An additional source of improvement in search
efficiency.

— Implementation with dynamic load balancing and
work distribution.

Interval Newton Method

e For the system of nonlinear equations f(x) = 0, find
(enclose) with mathematical and computational
certainty all roots in a given initial interval X(©) or
determine that there are none.

e At iteration k, given the interval X(¥) if 0 ¢
F (X (%)) solve the linear interval equation system

F’(X(k))(N(’“) _ w(k)) — _f(w(k))

for the “image” N(¥) where F(X()) is an interval
extension of f(x) and F'(X (%)) an interval extension
of its Jacobian over the current interval X(*) and
(%) is a point inside X (%),

e Any root z* € X*) is also contained in the image
N suggesting the iteration scheme X(+1) —
X*) 1 N (Moore, 1966).

e Interval Newton also provides an existence and
uniqueness test:

Interval Newton Method (continued)

o True: If N(*®) ¢ X(*) then there is a unique zero
of f(x) in X(*), and the point Newton method will
converge quadratically to the root starting from any
point in X (k).

o False: If X*) N N®*) = or 0 ¢ F(X*), then
there is no root in X (%),

e Unknown: Otherwise, then either:

— Continue with the next iterate X1 if it is
sufficiently smaller than N(¥)| or

— Bisect X(**t1 and perform interval Newton on
the resulting intervals.

This is the interval Newton/generalized bisection
(IN/GB) approach.
e Basically, it follows a branch-and-prune scheme :

— If test is true or false, then prune node.
— If test is unknown and bisect, then branch (bisect
node), generating a binary tree structure.

Asynchronous Diffusive Load Balancing

e |rregular parallel search trees need load balancing to
redistribute workload concurrently at runtime.

e Distributed System: coordinate all processors to
maintain distributed interval stacks and prevent idle
states through workload transfer over network.

e Asynchronous Diffusive Load Balancing (ADLB)
[Gau and Stadtherr, 1998]

— Use asynchronous nonblocking and persistent
communication to update workload information
and transfer workload.

— Overlap communication and computation and
reduce idle state.

— Receiver Initiate and Local Communication:
Exchange workload information with their
immediate neighbors, once local workload less
than certain threshold, request neighbors for
stack boxes.

Parallel System
e Physical Architecture:
Network-based system - Sun Ultra Enterprise 2

workstations connected by switched Ethernet

Tis—p 5 P s P s~ P [ITI]

SWITCHED ETHERNET

e Virtual Algorithm

— Software: implemented in Fortran 77 using
message-passing interface (MPI) protocol
— Virtual Network: local communication

1-D Torus Network 2-D Torus Network

Comparison on Virtual Connectivity

e Virtually connectivity dominate propagation of
messages and distribution of workload among
Processors.

e Comparison of 1-D vs. 2-D torus

— Communication overhead:
2 neighbors vs. 4 neighbors

— Message diffusion distance:
P/2 vs. /P/2

— Mechanism for workload diffusion:
uni-directional flow vs. bi-directional flow

e As number of processors increases, 2-D torus might
have an edge over 1-D torus.

e Examined by scalability analysis over instances
with sequential best algorithm (equation-solving
problems)

Scalability Analysis - Definition

Phenomena in parallel computing due to Amdahl’s
law:

— Efficiency declines when problem size is fixed and
processor number increases.

— Efficiency climbs when processor number is fixed
and problem size increases.

Scalable parallel system: maintain constant
performance (efficiency) as problem size and
computer size increase

Isoefficiency function [Kumar, 1994]:

Relate problem size to processor number necessary
for increase in speedup in proportion to processor
number using sequential best algorithm.

Small isoefficiency function represents highly
scalable parallel algorithm.

Applications: select best parallel algorithm and
predict performance of specific parallel algorithm.

Scalability Analysis -
Experiments and Results

Parallel algorithms with 1-D and 2-D virtual
connectivity, respectively, were examined by
scalability analysis.

An equation-solving problem, computation of
critical points in mixtures [Stradi,1999], was selected
as the test example.

Problem size was increased stepwisely by assigning
multiple times of identical initial intervals to an
underlying instance.

For constant efficiency at 92%, 2-D torus averagely
has smaller isoefficiency function, thus more scalable
than 1-D torus.

On four processors, 1-D torus has an advantage with
lower communication cost over 2-D torus. However,
for a larger number of processors this advantage is
overweighted by poor message distribution

10

e N
= N

log 5 (Problem Size)

R N W b O1 O N 00 O

Isoefficiency Curve for
Equation-Solving Problems

(Lower is better)

O 1-D Torus
® 2-D Torus

11

Parallel Global Optimization

A node can also be pruned earlier if the interval
extension ®(X) of the objective ¢(x) has a lower
bound greater than the current best (least) upper
bound. This follows a branch-and-bound scheme.

Best upper bound is determined and updated by:

— Upper bound of ®(X'), and/or

— Point function evaluations with interval
arithmetic in each interval tested, and/or

— Running a local optimizer.

— Verify local methods with interval arithmetic.

Once a better upper bound is generated, the value
is diffusively broadcast to all processors.

The way an interval box is transfered to and
is examined by various processors is determined
dynamically in parallel processing.

The update of best upper bound in sequence and
in parallel is performed in different manner, and can
be considered as a nondeterministic process.

12

Speedup Anomaly and Search Overhead

e Due to nondeterministic process of parallel global
optimization, speedup might vary greatly from run
to run. This is called speedup anomaly.

e Search Overhead (SO) factor [Kumar, 1994]:

work done by parallel formulation

SO =

work done by sequential formulation

e SO > 1 : deceleration anomaly and might result in
sublinear speedup
SO < 1 : acceleration anomaly and might result in
superlinear speedup

e Dual-Stack Management:

— Global random stack and local ordered stack.

— Concentrate parallel search in acceleration
anomaly through proper management of box
stacks.

13

Speedup Analysis -
Experiments and Results

The effect on speedup anomaly was investigated
when using single-stack management as well as
dual-stack managements over 2-D torus.

An optimization type of problem, error-in-variable
parameter estimation [Kim,1990; Esposito,1998],
was used for testing.

Ultimate speedups, which provide speedup upper
bounds, can be obtained by initially setting best
upper bound at globally minimal objective value.

Experiments show that dual-stack management
results in higher as well as more concentrated
speedups, and also prevents deceleration anomaly.

Random process, which finites virtual granuality,

indeed alleviates irregularity of tree search on small
number processors.

14

Speedup Anomaly for
Optimization Problems

Single Stack

Dual Stack
Ultimate Speedup
Linear Speedup

15

Concluding Remarks

We have developed a parallel branch-and-prune
(and/or bound) scheme embedded in IN/GB for
equation-solving and global optimization problems.

— High efficiency in branch-and-prune scheme
— Good speedup in branch-and-bound scheme.

We presented two performance metrics for parallel
algorithm: isoefficiency function and speedup
anomaly.

In terms of underlying parallelism, 2-D torus as
virtual connectivity has higher scalability.

In terms of parallel tree search, dual-stack
management achieves higher search efficiency on
multiprocessor system.

Parallel algorithms can provide some advantages
which are not available by sequential algorithms.

16

Acknowledgments

— ACS PRF 30421-AC9
— NSF CTS595-22835, DMI96-96110
and EEC97-00537-CRCD
— EPA R824731-01-0 and R826734-01-0
— DOE DE-FG07-96ER14691
— US Army Research Office DAAG55-98-1-0091

For more information:

— Contact Prof. Stadtherr at markst@nd.edu
— Copies of slides will be available next week at
http://www.nd.edu/~markst/presentations.html

17

