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Computing Azeotropes

� Why

{ Identify limitations in distillation operations
{ Construction of residue curve maps for design and
synthesis of distillation operations

{ Evaluation of thermodynamic models

� How

{ Solve system(s) of nonlinear equations derived
from equifugacity condition

{ These equation system(s) have multiple trivial
roots, and an unknown number of actual solutions
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Previous Work

This work is a continuation of previous e�orts in our
group using the Interval Newton Generalized Bisection
(IN/GB) algorithm. Our work on azeotropes includes

� Homogeneous azeotropes

{ 1 liquid phase, no reactions
{ Wilson, NRTL and UNIQUAC activity coeÆcient
models (Maier et al., 1998, 1999)

{ Cubic equations of state

� Reactive homogeneous azeotropes (Maier et al.,
1999)

{ 1 liquid phase, reactions in the liquid phase
{ NRTL and ideal gas
{ NRTL with vapor phase association

� Heterogeneous azeotropes

{ 2 or more liquid phases
{ Total liquid phase composition equal to vapor
phase composition
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Previous Solution Methods

� Heterogeneous azeotropes from unstable homogeneous
azeotropes (Chapman and Goodman, 1993)

� Homotopy algorithms (Eckert and Kubicek, 1997;
Tolsma and Barton, 1998)

� Global optimization based on branch and bound
using convex underestimating functions (Harding et
al., 1998)
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Formulation

yiP � xIi
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yi � xIi � + xIIi (1� �) = 0; 8i 2 CX

i2C

xIi � 1 = 0;
X

i2C

xIIi � 1 = 0

� yi, xi are vapor and liquid phase mole fractions

� � is the number of moles of liquid phase I divided
by the total number of moles of liquid

� P sat
i (T ) are the pure component vapor pressures

(Antoine equation)

� i (x; T ) are the activity coeÆcients (NRTL)

� C is the set of all N components

� Ideal vapor phase

� Need solution method guaranteed to �nd all
solutions
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Computation Issues

� Chosen formulation has 3N + 2 variables,
yi; x

I
i ; x

II
i 8i 2 N;T; �.

� An alternative formulation using 2N +2 variables is
available, but less eÆcient in terms of CPU time.

� Solutions of equifugacity equations may not be
stable phases (liquid may split). Interval analysis
also provides guaranteed method to determine
stability (Stadtherr et al., 1994)

� Trivial solutions

{ Occur at (x�; T �) where a homogeneous
azeotrope (stable or unstable) or a pure
component at its boiling point exists

{ When XI = XII = x�; T = T �, all values of �
satisfy the equations for heterogeneous azeotropy

{ Since IN/GB is not designed to handle non-
discrete solutions, special procedures must be
implemented to remove these areas from the
search space
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Removing Trivial Roots

� We can remove boxes that contain a trivial root
by examining the Hessian of the Gibbs' energy of
mixing.

� If Hessian matrix is not positive de�nite

{ Indicates composition and temperature are
unstable.

{ If an entire region X
I or XII is not positive

de�nite throughout, then it can be deleted.

� If Hessian matrix is positive de�nite

{ Can not determine stability.
{ Only one liquid phase can exist at equilibrium in
a region that is positive de�nite throughout.

{ If a region which contains both X
I and

X
II is positive de�nite throughout, then no

heterogeneous azeotrope can exist since two
liquid phases can not coexist.

6



Constraint Propogation

� First step in the IN/GB algoritm is to determine
whether or not it is possible for each function to
contain zero. If not, the box can be deleted.

� If zero does lie within the possible range of each
function, it may be possible to reduce the domain
of one or more variables. We do this by solving
the equations in our system for the independent
variables. For example

XI
i;calc =

Yi +XII
i

�
� 1

XI
i;new = XI

i;calc \XI
i;old

� In some cases, we can eliminate a particular box
because there is no intersection.

� Since these calculations are extremely fast, as many
permutations as possible are used.
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Interval Approach

� Interval Newton/Generalized Bisection (IN/GB)

{ Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution
tolerance

{ IN/GB can, with mathematical and computational

certainty either provide tight, rigorous enclosures
for all solutions or prove that no solutions exist.
(e.g., Kearfott 1987,1996; Neumaier 1990)

� A general purpose approach : requires no simplifying
assumptions or problem reformulations

� Details of algorithm given by Schnepper and
Stadtherr (1996)

� Implementation based on modi�cations of routines
from INTBIS and INTLIB packages (Kearfott and
coworkers)
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Interval Approach (Cont'd)

Problem: Solve f(x) = 0 for all roots in interval X(0).

Basic iteration scheme: For a particular subinterval
(box), X(k),

� Use constraint propogation algorithm.

� If X(k) contains any trivial root, attempt to delete
by examining Hessian of Gibbs energy of mixing.

� Compute the range of all functions in the system,
and delete if 0 is not an element of all ranges.

� If 0 is an element of each range, then compute the
image, N(k), of the box by solving

F 0(X(k))(N(k)
� x

(k)) = �f(x(k))

� x
(k) is some point in the interior of X(k).

� F 0
�
X

(k)
�
is an interval extension of the Jacobian

of f(x) over the box X(k).
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There was no solution in X
(k)
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X
(k)

N
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Unique solution in X

Point Newton method will converge to it

(k)

This solution is in N
(k)
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x1

x2

X
(k)

N
(k)

Any solutions in X      are in

intersection of X      and N

(k)

(k) (k)

If intersection is suÆciently small, repeat root inclusion
test; otherwise bisect the result of the intersection and
apply root inclusion test to each resulting subinterval.
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Example Problems

� NRTL model, full temperature dependence

� Ideal vapor phase, Antoine equation for vapor
pressures

� CPU times for Ultra 2/1300

� Example 1 - Water + Cyclohexane

� Example 2 - Water + Ethanol + Benzene
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Results - Problem 1

xIi xIIi yi
Water 0.0049 0.9996 0.2996

Cyclohexane 0.9951 0.0004 0.7004
T = 71:5ÆC � = 0:7037

� 1 heterogeneous azeotrope

� 3 trivial solutions

� CPU time - 1.2 sec
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Results - Problem 2

xIi xIIi yi
Ethanol 0.2620 0.4345 0.3082
Water 0.0578 0.5380 0.1864
Benzene 0.6801 0.0275 0.5055

T = 64:3ÆC � = 0:7324

xIi xIIi yi
Ethanol 0.0000 0.0000 0.0000
Water 0.0525 0.9950 0.3069
Benzene 0.9475 0.0050 0.6931

T = 70:1ÆC � = 0:7301

� 2 heterogeneous azeotropes

� 7 trivial solutions

� CPU time - 270 sec
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Concluding Remarks

� Can be used with other activity coeÆcient models
or with equation of state models

� IN/GB provides a mathematical and computational
guarantee of reliability

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of phase behavior and in other process
modeling problems

� Present method can be extended to solve for reactive
heterogeneous azeotropes
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