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Motivation

e In process modeling, chemical engineers frequently
need to solve nonlinear equation systems in which
the variables are constrained physically within upper
and lower bounds; that is, to solve:

e These problems may:

— Have multiple solutions
— Have no solution
— Be difficult to converge to any solution



Motivation (continued)

e There is also frequent interest in globally minimizing
a nonlinear function subject to nonlinear equality
and/or inequality constraints; that is, to solve

(globally):
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e These problems may:

— Have multiple local minima (in some cases, it
may be desirable to find them all)

— Have no solution (infeasible NLP)

— Be difficult to converge to any local minima



Motivation (continued)

One approach for dealing with these issues is
interval analysis.

Interval analysis can

— Provide the engineer with tools needed to
solve modeling and optimization problems with
complete certainty.

— Provide problem-solving reliability not available
when using standard local methods.

— Deal automatically with rounding error, thus
providing both mathematical and computational
guarantees.



Motivation (continued)

e \We have successfully applied interval Newton /generalized
bisection (IN/GB) methods for

— General process modeling problems (Schnepper
and Stadtherr, 1996).

— Phase stability and equilibrium  problems
using several different thermodynamic models
(Stadtherr et al.,, 1994; Hua et al,
1996,1998,1999; Xu et al., 1998,1999).

— Computation of azeotropes (homogeneous,
reactive, heterogeneous) of multicomponent
mixtures (Maier et al., 1998,1999).

— Computation of mixture critical points (Stradi et
al., 1998)

— Parameter estimation in vapor-liquid equilibrium
models (Gau and Stadtherr, 1998,1999).

e However, the IN/GB algorithm applied to date is
very basic, and its performance is unacceptable on
some problems.



Interval Method Used

e Interval Newton/Generalized Bisection (IN/GB)

— Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution
tolerance

— IN/GB can find (enclose) with mathematical and
computational certainty either all solutions or
determine that no solutions exist. (e.g., Kearfott
1987,1996; Neumaier 1990).

— IN/GB can also be extended and employed as
a deterministic approach for global optimization
problems (e.g., Hansen, 1992).

e A general purpose approach; in general requires no
simplifying assumptions or problem reformulations.

e Current implementation based on modifications
of routines from INTBIS and INTLIB packages
(Kearfott and coworkers)



Interval Method (Cont’d)

Problem: Solve f(x) = 0 for all roots in interval X (%),

Basic iteration scheme: For a particular subinterval
(box), X*), perform root inclusion test:

e (Range Test) Compute an interval extension of each
function in the system.

— If 0 is not an element of any interval extension,
delete the box.
— Otherwise,

e (Interval Newton Test) Compute the image, N(*),
of the box by solving the linear interval equation
system

F’(X(k))(N(k) _ X(k)) — _f(X(k))
— x(%) is some point in the interior of X(¥),

— F' (X(k)) is an interval extension of the Jacobian
of £(x) over the box X(*),
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If intersection is sufficiently small, repeat root inclusion
test: otherwise bisect the result of the intersection and
apply root inclusion test to each resulting subinterval.
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Interval Method (Cont’d)

Some areas for potential algorithm improvement

e Tightening interval extensions of functions and
Jacobian elements.

e Use of different tessellation schemes.

e Tighter bounds on the image N(¥) that encloses the
solution set of the interval Newton equation.

— Preconditioning strategies (focus of this
presentation).
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Solving the Interval Newton (IN)
Equation

e Usually done by one iteration of preconditioned
Gauss-Seidel scheme:

— Solve
Y(k)F’(X(k))(N(k) _ m(k)) — _Y(k)f(w(k))

— The scalar preconditioning matrix Y ¥) is often
chosen to be an inverse midpoint preconditioner
Y™ inverse of the midpoint of the interval
Jacobian matrix, or inverse of the Jacobian matrix
at midpoint of the interval.

e One performance goal: Find smallest possible
enclosure N of the solution set of the IN equation.
The preconditioner used can have a strong effect on
performance in this regard.

e Preconditioners that are optimal in some sense have
been proposed by Kearfott (1990,1996) based on
LP strategies
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Preconditioning Strategies

e The preconditioner can be designed row by row
during the Gauss-Seidel process try to achieve
desired goals.

e Consider the ¢-th step of Gauss-Seidel and the i-th
preconditioner row, y;,

N, = - Qi(}’z’)
D;(y:)
yif (x) + > j=1 yiAj(X; — z;)
_ , J#i
= x; —
yiA;

then take N; N X;.  (Aj is the i-th column of the
F'(X) matrix.)

e Elements of y; can be chosen to try to meet a
desired goal.
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Preconditioning Strategies

e Practical optimality criteria for preconditioner row
Yi-

— Width-optimal preconditioner row :
minimize width of N; N X;.

— Endpoint-optimal preconditioner row:
maximize the lower bound of INV; or minimize the
upper bound of NN;.

e Optimality can be approached by a scheme in
which the preconditioner row contains only one
nonzero element. This can be called a pivoting
preconditioner Y ©.

e \We use a new hybrid scheme in which one or more of
YNV width-optimal Y ¥, or endpoint-optimal Y
are used, depending on the situation, and following
heuristic rules.
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Numerical Experiments

e Both equation-solving and global optimization
problems were selected to illustrate the
improvements that can be achieved using the new
hybrid preconditioner.

— Problem 1: Error-in-variables  parameter
estimation.

— Problem 2 : Phase stability analysis for LLE
system.

— Problem 3 : Computation of critical points of
mixtures.

— Problem 4 : Computation of heterogeneous
azeotropes.

e We compared use of Y/VV alone to use of the
new hybrid preconditioner on a Sun Ultra 2/1300
workstation.
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Results and Discussion

Problem 1: Error-in-variables parameter estimation

Global optimization with 2 parameter variables
and 10 state variables.

Point evaluations of objective function done at
the midpoint of current box used for bounding in
objective range test.

Use Van Laar equation to model experimental
vapor-liquid equilibrium data.

Using Y™ alone took > 4 CPU days.

Using new hybrid preconditioner took 1504 CPU
seconds.
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Results and Discussion (cont.)

Problem 2 : Phase stability analysis for LLE system

— Equation-solving problem with 6 independent
variables.

— Use UNIQUAC model to for computing excess
Gibbs energy.

— Using Y™ alone took 50217 CPU seconds

— Using new hybrid preconditioner took 152 CPU
seconds.
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Results and Discussion (cont.)

Problem 3 : Computation of critical points of
mixtures

— Equation-solving problem with 6 variables (four
component mixture).

— Use Peng-Robinson equation of state to model
both the liquid and gas phases.

— Using Y™ alone took 2094 CPU seconds.

— Using new hybrid preconditioner took 658 CPU
seconds.

18



Results and Discussion (cont.)

Problem 4 :  Computation of heterogeneous
azeotropes

— Equation-solving problem with 11 variables (3
components).

— Use NRTL activity coefficient model.
— Using Y*™? alone took > 1 CPU days

— Using new hybrid preconditioner took 270 CPU
seconds.
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Concluding Remarks

Use of the new hybrid pivoting preconditioner
scheme provides an approach to manipulate the
interval Gauss-Seidel process to achieve greater
efficiency.

This has led to large reductions in CPU time for all
problems tested, and in some cases, reductions of 2
or more orders of magnitude.

For difficult problems, the additional work required
to construct the preconditioner is easily overcome
by a large reduction in the number of intervals that
must be processed.

For more details, please see the Poster 213c in
the High Performance Computing Poster Session,

Wednesday, 7pm, Khmer Pavilion.

These slides will be available next week at
http://www.nd.edu/~markst/presentations.html
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