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Motivation

� In process modeling, chemical engineers frequently
need to solve nonlinear equation systems in which
the variables are constrained physically within upper
and lower bounds; that is, to solve:

f(x) = 0

xL � x � xU

� These problems may:

{ Have multiple solutions
{ Have no solution
{ Be diÆcult to converge to any solution
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Motivation (continued)

� There is also frequent interest in globally minimizing
a nonlinear function subject to nonlinear equality
and/or inequality constraints; that is, to solve
(globally):

min
x
�(x)

subject to
h(x) = 0

g(x) � 0

xL � x � xU

� These problems may:

{ Have multiple local minima (in some cases, it
may be desirable to �nd them all)

{ Have no solution (infeasible NLP)
{ Be diÆcult to converge to any local minima
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Motivation (continued)

� One approach for dealing with these issues is
interval analysis.

� Interval analysis can

{ Provide the engineer with tools needed to
solve modeling and optimization problems with
complete certainty.

{ Provide problem-solving reliability not available
when using standard local methods.

{ Deal automatically with rounding error, thus
providing both mathematical and computational
guarantees.
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Motivation (continued)

� We have successfully applied interval Newton/generalized
bisection (IN/GB) methods for

{ General process modeling problems (Schnepper
and Stadtherr, 1996).

{ Phase stability and equilibrium problems
using several di�erent thermodynamic models
(Stadtherr et al., 1994; Hua et al.,
1996,1998,1999; Xu et al., 1998,1999).

{ Computation of azeotropes (homogeneous,
reactive, heterogeneous) of multicomponent
mixtures (Maier et al., 1998,1999).

{ Computation of mixture critical points (Stradi et
al., 1998)

{ Parameter estimation in vapor-liquid equilibrium
models (Gau and Stadtherr, 1998,1999).

� However, the IN/GB algorithm applied to date is
very basic, and its performance is unacceptable on
some problems.
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Interval Method Used

� Interval Newton/Generalized Bisection (IN/GB)

{ Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution
tolerance

{ IN/GB can �nd (enclose) with mathematical and

computational certainty either all solutions or
determine that no solutions exist. (e.g., Kearfott
1987,1996; Neumaier 1990).

{ IN/GB can also be extended and employed as
a deterministic approach for global optimization
problems (e.g., Hansen, 1992).

� A general purpose approach; in general requires no
simplifying assumptions or problem reformulations.

� Current implementation based on modi�cations
of routines from INTBIS and INTLIB packages
(Kearfott and coworkers)
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Interval Method (Cont'd)

Problem: Solve f(x) = 0 for all roots in interval X(0).

Basic iteration scheme: For a particular subinterval
(box), X(k), perform root inclusion test:

� (Range Test) Compute an interval extension of each
function in the system.

{ If 0 is not an element of any interval extension,
delete the box.

{ Otherwise,

� (Interval Newton Test) Compute the image, N(k),
of the box by solving the linear interval equation
system

F 0(X(k))(N(k)
� x(k)) = �f(x(k))

{ x(k) is some point in the interior of X(k).
{ F 0

�
X(k)

�
is an interval extension of the Jacobian

of f(x) over the box X(k).
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x1

x2

X
(k) N

(k)

There was no solution in X
(k)
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x1

x2

X
(k)

N
(k)

Unique solution in X

Point Newton method will converge to it

(k)

This solution is in N
(k)
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x1

x2

X
(k)

N
(k)

Any solutions in X      are in

intersection of X      and N

(k)

(k) (k)

If intersection is suÆciently small, repeat root inclusion
test; otherwise bisect the result of the intersection and
apply root inclusion test to each resulting subinterval.
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Interval Method (Cont'd)

Some areas for potential algorithm improvement

� Tightening interval extensions of functions and
Jacobian elements.

� Use of di�erent tessellation schemes.

� Tighter bounds on the image N(k) that encloses the
solution set of the interval Newton equation.

{ Preconditioning strategies (focus of this
presentation).
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Solving the Interval Newton (IN)

Equation

� Usually done by one iteration of preconditioned
Gauss-Seidel scheme:

{ Solve

Y (k)F 0(X(k))(N(k)
� x

(k)) = �Y (k)f(x(k))

{ The scalar preconditioning matrix Y (k) is often
chosen to be an inverse midpoint preconditioner
Y inv: inverse of the midpoint of the interval
Jacobian matrix, or inverse of the Jacobian matrix
at midpoint of the interval.

� One performance goal: Find smallest possible
enclosure N of the solution set of the IN equation.
The preconditioner used can have a strong e�ect on
performance in this regard.

� Preconditioners that are optimal in some sense have
been proposed by Kearfott (1990,1996) based on
LP strategies
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Preconditioning Strategies

� The preconditioner can be designed row by row
during the Gauss-Seidel process try to achieve
desired goals.

� Consider the i-th step of Gauss-Seidel and the i-th
preconditioner row, yi,

Ni = xi �
Qi(yi)

Di(yi)

= xi �

yif(x) +
Pn

j=1
j 6=i

yiAj(Xj � xj)

yiAi

then take Ni \ Xi. (Ai is the i-th column of the
F 0(X) matrix.)

� Elements of yi can be chosen to try to meet a
desired goal.
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Preconditioning Strategies

� Practical optimality criteria for preconditioner row
yi:

{ Width-optimal preconditioner row :
minimize width of Ni \Xi.

{ Endpoint-optimal preconditioner row:
maximize the lower bound of Ni or minimize the
upper bound of Ni.

� Optimality can be approached by a scheme in
which the preconditioner row contains only one
nonzero element. This can be called a pivoting
preconditioner Y P .

� We use a new hybrid scheme in which one or more of
Y INV , width-optimal Y P , or endpoint-optimal Y P

are used, depending on the situation, and following
heuristic rules.
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Numerical Experiments

� Both equation-solving and global optimization
problems were selected to illustrate the
improvements that can be achieved using the new
hybrid preconditioner.

{ Problem 1: Error-in-variables parameter
estimation.

{ Problem 2 : Phase stability analysis for LLE
system.

{ Problem 3 : Computation of critical points of
mixtures.

{ Problem 4 : Computation of heterogeneous
azeotropes.

� We compared use of Y INV alone to use of the
new hybrid preconditioner on a Sun Ultra 2/1300
workstation.
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Results and Discussion

� Problem 1: Error-in-variables parameter estimation

{ Global optimization with 2 parameter variables
and 10 state variables.

{ Point evaluations of objective function done at
the midpoint of current box used for bounding in
objective range test.

{ Use Van Laar equation to model experimental
vapor-liquid equilibrium data.

{ Using Y inv alone took > 4 CPU days.

{ Using new hybrid preconditioner took 1504 CPU
seconds.
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Results and Discussion (cont.)

� Problem 2 : Phase stability analysis for LLE system

{ Equation-solving problem with 6 independent
variables.

{ Use UNIQUAC model to for computing excess
Gibbs energy.

{ Using Y inv alone took 50217 CPU seconds

{ Using new hybrid preconditioner took 152 CPU
seconds.
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Results and Discussion (cont.)

� Problem 3 : Computation of critical points of
mixtures

{ Equation-solving problem with 6 variables (four
component mixture).

{ Use Peng-Robinson equation of state to model
both the liquid and gas phases.

{ Using Y inv alone took 2094 CPU seconds.

{ Using new hybrid preconditioner took 658 CPU
seconds.
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Results and Discussion (cont.)

� Problem 4 : Computation of heterogeneous
azeotropes

{ Equation-solving problem with 11 variables (3
components).

{ Use NRTL activity coeÆcient model.

{ Using Y inv alone took > 1 CPU days

{ Using new hybrid preconditioner took 270 CPU
seconds.
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Concluding Remarks

� Use of the new hybrid pivoting preconditioner
scheme provides an approach to manipulate the
interval Gauss-Seidel process to achieve greater
eÆciency.

� This has led to large reductions in CPU time for all
problems tested, and in some cases, reductions of 2
or more orders of magnitude.

� For diÆcult problems, the additional work required
to construct the preconditioner is easily overcome
by a large reduction in the number of intervals that
must be processed.

� For more details, please see the Poster 213c in
the High Performance Computing Poster Session,
Wednesday, 7pm, Khmer Pavilion.

� These slides will be available next week at
http://www.nd.edu/~markst/presentations.html
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