

^aAuthor to whom all correspondence should be addressed. Fax:(219)631-8366; E-mail: markst@nd.edu

Motivation

- Industrial applications of Supercritical Fluids for extraction of solutes from solids are important;
- Challenges remain for the measurement and modeling of phase behavior at supercritical conditions;
- Need methodology for reliably computing Solid-Supercritical
 Fluid Equilibria (SSFE).

Difficulties

- Equifugacity Equation
 - Multiple roots may exist, but this may not be realized by the modeler
- Equifugacity is a necessary <u>but not sufficient</u> condition for **SSFE**
 - Need a global thermodynamic phase stability test that is guaranteed to be reliable : no such method has yet appeared in SSFE research area
- These difficulties have led in some cases to misinterpretation of experimental SSFE data (e.g., CO₂/Naphthalene in McHugh and Paulaitis, 1980)

New <u>Reliable</u> Strategy for Modeling SSFE

- Here we provided a new general-purpose method for reliably computing SSFE at constant T and P.
- Based on this method, a totally clear understanding of SSFE phase behavior can be drawn from a model.
- This understanding may improve the design of processes that use supercritical fluids to selectively extract solid solutes.

Interval Analysis

• Definition of a real interval

$$X = [a, b] = \{ x \in \Re \mid a \le x \le b \}, \qquad a, b \in \Re, \text{ and } a \le b \quad \text{ (1)}$$

• Definition of interval vector

$$\mathbf{X} = (X_i) = (X_1, X_2, \dots, X_n)^T$$
 (2)

Interval Analysis – Continued

- Definition of interval operators (if we have intervals $\mathbf{X} = [a,b]$, $\mathbf{Y} = [c,d]$)

$$\mathbf{X} + \mathbf{Y} = [a + c, b + d]$$
(3)

$$\mathbf{X} - \mathbf{Y} = [a - d, b - c] \tag{4}$$

$$\mathbf{X} \times \mathbf{Y} = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]$$
 (5)

$$\mathbf{X} \div \mathbf{Y} = [a, b] \times [1/d, 1/c], \quad 0 \notin \mathbf{Y}$$
(6)

For other interval operators (\log, \sin, etc), see *Interval Arithmetic Specification*, Chiriaev and Walster, *Sun Microsystems*, **1998**.

Interval Analysis – Continued

• Root inclusion test for solving ${f f}({f x})=0$ by interval Newton/generalized bisection (IN/GB).

$$\mathbf{F}'(\mathbf{X}^{(k)})(\mathbf{N}^{(k)} - \mathbf{x}^{(k)}) = -\mathbf{f}(\mathbf{x}^{(k)})$$
(7)

Given $\mathbf{X}^{(k)}$ solve for $\mathbf{N}^{(k)}$.

- $\mathbf{X}^{(k)}$ is the current box, and $\mathbf{x}^{(k)}$ is a point inside the current box.
- $\mathbf{F}'(\mathbf{X}^{(k)})$ is the interval extension of the Jacobian of $\mathbf{f}(\mathbf{x})$.
- $\mathbf{N}^{(k)}$ is the image of current box, $\mathbf{X}^{(k)}$.
- The relation between $\mathbf{X}^{(k)}$ and $\mathbf{N}^{(k)}$ gives information about the roots of $\mathbf{f}(\mathbf{x}) = \mathbf{0}$.

Results from our method

- Systems studied are CO₂/caffeine, CO₂/anthracene, CO₂/naphthalene, and CO₂/biphenyl;
- Samples like caffeine and anthracene that have <u>melting points far away from UCEP</u> have only one root to the equifugacity equation; if $\psi_2 \rightarrow 1$, this root is stable **SSFE**;
- Samples like naphthalene and biphenyl that have <u>melting points near to UCEP</u> show multiple roots for equifugacity equation near UCEP region. Those roots need to be tested with stability analysis.

Analysis of Fig. 8

- Experimental data of McHugh and Paulaitis (1980) was reported as Solid-Fluid-Equilibrium; Yet, our method finds that their data does not correspond to the stable fluid phase in equilibrium with the solid;
- Later studies by McHugh and Yogan (1984) and Lamb and coworkers (1986) measured the UCEP of CO₂/naphthalene, and realized that the measurements by McHugh and Paulaitis (1980) were VLE without solid phase;
- To replicate computationally the experiments of McHugh and Paulaitis, we performed calculations at 338.05 K with
 - pressure up to 400 bar with $\psi_2 \rightarrow 1$;
 - both $\psi_2=0.05$ and $\psi_2=0.0001$ at 150 bar.
- We found the stable Solid-Fluid-Equilibrium, and explained in which condition the solid phase is absent.

Modeling of Multi-component-solvent

• Multi-component-solvent (1,3,4,...), pure solute (2)

$$\ln f_2^S = \ln f_2^F(y_1, y_2, \dots, y_{nc}, v)$$
(9)

$$\sum_{i=1}^{nc} y_i = 1$$

$$\mathbf{EOS}(y_1, y_2 \dots, y_{nc}, v) = 0$$

$$y_1 = a_j y_j$$
 $j = 3, \dots, nc$

The last equation here is the material balance equation, which refers to the fixed ratio of solvent species.

Pressure values from Fig. 12 at multi-phase region

Assuming 3/4 mole Naphthalene and 1/4 mole mixed solvents in overall mixture

with $\mbox{CO}_2\mbox{/ethane}\ 5:1$ at 328.15 K

Pressure	122.25 bar	122.75 bar	123.5 bar
Fluid Phase Frac.	0.24680	0.15605	0.02641
Naphthalene	0.00708	0.00723	0.00748
Ethane	0.16517	0.15935	0.15112
CO_2	0.82776	0.83342	0.84140
Liquid Phase Frac.	0.00841	0.16134	0.37908
Naphthalene	0.41134	0.41067	0.40966
Ethane	0.10748	0.10414	0.09939
CO_2	0.48117	0.48519	0.49096
Solid Phase Frac.	0.74479	0.68261	0.59451

Summary

- This is the first application of interval analysis to **SSFE** problems.
- Results can be used to correctly interpret the experimental data from previous studies.
- Our new method for computing **SSFE** will be very useful in process design involving solids and supercritical fluids.
- Our methodology is general purpose and can be applied to a wide variety of problems.

the ACS, under Grant 30421-AC9