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ABSTRACT

Standard techniques for solving the optimiza-
tion problem arising in parameter estimation
and data reconciliation by the error-in-variables
(EIV) approach offer no guarantee that the
global optimum has been found. However, an
interval-Newton approach can provide a power-
ful, deterministic global optimization method-
ology for the reliable solution of EIV problems
in chemical process modeling, offering mathe-
matical and computational guarantees that the
global optimum has been found. This method-
ology is demonstrated here by applying it to the
modeling of vapor-liquid equilibrium. An issue
of particular interest is the effect of changing
the standard deviation values appearing in the
objective function.

1. INTRODUCTION

Parameter estimation is a central problem in
the development of mathematical models that
represent the physical phenomena underlying
chemical process operations, and is thus an im-
portant issue in process systems engineering. In
the classical least-squares approach to param-

eter estimation, it is assumed that there are a
set of independent variables not subject to mea-
surement error. The error-in-variables (EIV)
approach differs in that it is assumed that there
are measurement errors inall variables. Ac-
counting for error in all the variables has been
demonstrated (e.g., Duever et al. [1]; Patino-
Leal and Reilly [2]) to lead to unbiased esti-
mates of the parameter values, and thus to more
accurate models. Furthermore, in solving the
EIV problem, not only are parameter estima-
tion results obtained, but also data reconcilia-
tion results.

Consider the problem of estimating the pa-
rametersθ = (θ1, θ2, . . . , θq)

T in a model of the
general formf(θ, z) = 0, wherez is a vector
of n state variables for the system to be mod-
eled, andf is a vector ofp model functions.
When the EIV approach is used, the optimiza-
tion problem that must be solved has the form

min
θ,z̃i

m∑
i=1

n∑
j=1

(z̃ij − zij)
2

σ2
j

(1)

subject to

f(θ, z̃i) = 0, i = 1, . . . , m. (2)



Here zi = (zi1, ..., zin)
T represents measure-

ments of the state variables fromi = 1, . . . , m
experiments,̃zi = (z̃i1, ..., z̃in)

T represents the
unknown “true” values associated with each
measurement, andσj represents the standard
deviation associated with the measurement of
state variablej. Details concerning the formu-
lation of this optimization problem are avail-
able elsewhere (e.g., Kim et al. [3]; Espos-
ito and Floudas [4]), as are good introductions
to the general problem of nonlinear parame-
ter estimation (e.g, Bard [5]; Gallant [6]; Se-
ber [7]), and to applications in chemical engi-
neering (Englezos and Kalogerakis [8]).

The presence of the true valuesz̃i, i =

1, . . . , m, as variables in the optimization prob-
lem has a number of practical implications.
First, as already noted, it means that, in solv-
ing the EIV problem, not only are the parameter
estimation resultsθ obtained, but also the data
reconciliation results̃zi, i = 1, . . . , m. How-
ever, this comes at the expense of a substan-
tial increase in the dimensionality of the opti-
mization problem, which atnm + p is now a
function of the number of experiments. Fur-
thermore, since the optimization is over both
θ and z̃i, this is likely to be a nonlinear opti-
mization problem even for models that are lin-
ear in the parameters. Thus, in general, the op-
timization problem is nonlinear and potentially
nonconvex, indicating the need to be concerned
about the possible existence of multiple local
minima.

Various methods have been used to solve
the optimization problem defined by Eqs. (1)
and (2). These include gradient-based meth-
ods such as Gauss-Newton or Gauss-Marquardt
(e.g., Britt and Luecke [9]; Fabries and
Renon [10]; Anderson et al. [11]; Schwetlick
and Tiller [12]; Valko and Vajda [13]), general-

ized reduced gradient (Kim et al. [3]), and suc-
cessive quadratic programming (e.g., Tjoa and
Biegler [14,15]), as well as direct search meth-
ods, such as the simplex pattern search (e.g.
Vamos and Hass [16]). However, these are all
local methods that offer no assurance that the
global minimum in the optimization problem
has been found. Towards finding the global op-
timum, one approach is to introduce a random-
ized element, either in the selection of multiple
initial guesses (e.g., Vamos and Hass [16]), or
in the search procedure itself (e.g., Luus and
Hernaez [17]). These stochastic methods still
provide no guarantee that the global optimum
has been found. To obtain any such guaran-
tee requires the use ofdeterministicglobal op-
timization procedures.

A powerful deterministic approach is that
suggested by Esposito and Floudas [4], who re-
formulate the optimization problem in terms of
convex underestimating functions and then use
a branch-and-bound procedure. This method
provides a mathematical guarantee of global
optimality. One drawback to this approach
is that in general it may be necessary to per-
form problem reformulations and develop con-
vex underestimators specific to each new ap-
plication. Also, in principle, branch-and-
bound methods implemented in floating point
arithmetic may be vulnerable to rounding er-
ror problems, and thus lose their mathemat-
ical guarantees. Another deterministic ap-
proach is that suggested recently by Gau and
Stadtherr [18,19], who use an interval-Newton
approach. This is a general-purpose method-
ology that provides a mathematical guarantee
of global optimality, as well as a computational
guarantee, since rounding issues are dealt with
through the use of interval arithmetic. In their
initial study, Gau and Stadtherr [18] demon-
strated the potential of the interval method-



ology by applying it to some small prob-
lems (12 to 32 variables) and finding the ap-
proach to compare favorably to the Esposito
and Floudas [4] method in terms of compu-
tational efficiency. In a later feasibility study
(Gau and Stadtherr [19]), they applied the in-
terval technique to a variety of larger problems,
including a heat exchanger network problem in-
volving 264 variables. These earlier studies fo-
cused primarily on the parameter estimation as-
pect of the problem and did not consider the
data reconcilation results. The interval method-
ology is demonstrated here by applying it to the
modeling of vapor-liquid equilibrium, with fo-
cus on the data reconcilation results. An issue
of particular interest is the effect of changing
the standard deviation values appearing in the
objective function.

2. METHODOLOGY

For many practical problems, thep model equa-
tions can be easily solved algebraically forp

of the n state variables. Thus, by substitution
into the objective function, an unconstrained
formulation of the optimization problem can be
obtained. The unconstrained problem can be
stated

min
θ,ṽi

φ(θ, ṽi) (3)

whereṽi, i = 1, . . . , m, refers to then − p in-
dependent state variables not eliminated using
the model equations, andφ(θ, ṽi) is the objec-
tive function in Eq. (1) after thep dependent
state variables have been eliminated by substi-
tution. This unconstrained formulation of the
problem will be used here. However, it should
be noted that the accompanying reduction in the
dimensionality of the problem does not neces-
sarily make it any easier to solve, since the ob-
jective function in the reduced space ofθ and
ṽi may be a much more complicated function
than the objective function in the original space

of θ andz̃i.

For the global minimization ofφ(θ, ṽi),
an approach based on interval analysis is
used. Good introductions to interval analysis,
as well as interval arithmetic and computing
with intervals, include those of Neumaier [20],
Hansen [21] and Kearfott [22]. Of particular
interest here is the interval-Newton technique.
Given a nonlinear equation system with a fi-
nite number of real roots in some initial inter-
val, this technique provides the capability to
find (or, more precisely, to enclose within a
very narrow interval) all the roots of the system
within the given initial interval. To apply this
technique to the optimization problem of inter-
est here, it is used to seek stationary points; that
is, to solve the nonlinear equation system

g(y) = g(θ, ṽi) ≡ ∇φ(θ, ṽi) = 0, (4)

where for convenience the vector of indepen-
dent variables has been denotedy = (θ, ṽi)

T.
The global minimum will be a root of this non-
linear equation system, but there may be many
other roots as well, representing local minima
and maxima and saddle points. To identify
the global minimum, one approach is to sim-
ply find all the stationary points and then iden-
tify the point with the minimum value of the
objective function. Alternatively, by including
an objective range test in the solution proce-
dure, one can effectively combine the interval-
Newton approach with an interval branch-and-
bound technique, so that roots ofg(y) = 0
that cannot be the global minimum need not
be found. If the constrained formulation of
the problem is used, then instead of applying
interval-Newton to solve the stationarity condi-
tions, it is applied to the solve the Kuhn-Tucker
conditions (or, more generally, the Fritz-John
conditions).

The solution algorithm is applied to a se-



quence of intervals, beginning with some user-
specified initial intervalY (0) that provides up-
per and lower bounds on the independent vari-
ables. (In this section, upper case quantities are
intervals, and lower case quantities real num-
bers.) This initial interval can be chosen to be
sufficiently large to enclose all physically fea-
sible behavior. This is in contrast to conven-
tional local solution methods in which an ini-
tial point is needed, often resulting in a highly
initialization-dependent procedure. It is as-
sumed here that the global optimum will occur
at an interior stationary minimum ofφ(y) and
not at the boundaries ofY (0). Since the estima-
tor φ is derived based on a product of Gaussian
distribution functions corresponding to each
data point, this is a very reasonable assump-
tion for regression problems of the type con-
sidered here. Details of the basic solution algo-
rithm used are given by Gau and Stadtherr [18]
and Schnepper and Stadtherr [23]. Only the key
ideas of the methodology are presented here.

For an intervalY (k) in the sequence, the
first step in the solution algorithm is thefunc-
tion range test. Here an interval extension
G(Y (k)) of the functiong(y) is calculated.
An interval extension provides upper and lower
bounds on the range of values that a function
may have in a given interval. It is often com-
puted by substituting the given interval into the
function and then evaluating the function using
interval arithmetic. The interval extension so
determined is often wider than the actual range
of function values, but it always includes the ac-
tual range. If there is any component of the in-
terval extensionG(Y (k)) that does not contain
zero, then we may discard the current interval
Y (k), since the range of the function does not
include zero anywhere in this interval, and thus
no solution ofg(y) = 0 exists in this interval.
We may then proceed to consider the next in-

terval in the sequence, since the current interval
cannot contain a stationary point ofφ(y). Oth-
erwise, if 0 ∈ G(Y (k)), then testing ofY (k)

continues.

The next step is theobjective range test.
The interval extensionΦ(Y (k)), which contains
the range ofφ(y) over Y (k), is computed. If
the lower bound ofΦ(Y (k)) is greater than a
known upper bound on the global minimum of
φ(y), thenY (k) cannot contain the global mini-
mum and need not be further tested. Otherwise,
testing ofY (k) continues.

The next step is theinterval-Newton test.
Here the linear interval equation system

G′(Y (k))(N (k) − y(k)) = −g(y(k)) (5)

is set up and solved for a new intervalN (k),
whereG′(Y (k)) is an interval extension of the
Jacobian ofg(y), andy(k) is a point inY (k),
usually taken to be the midpoint. Compari-
son of the current intervalY (k) and theimage
N (k) provides a powerful existence and unique-
ness test (Kearfott [22]). There are three possi-
ble outcomes of the comparison: 1. IfN (k)

and Y (k) have a null intersection, as shown
schematically in Figure 1 for a two-variable
problem, then this is mathematical proof that
there is no solution ofg(y) = 0 in Y (k). 2.
If N (k) is a proper subset ofY (k), as shown
in Figure 2, then this is mathematical proof
that there is auniquesolution of g(y) = 0
in Y (k). 3. If neither of the first two con-
ditions is true, as shown in Figure 3, then no
conclusions can be made about the number of
solutions in the current interval. However, it
is known (Kearfott [22]) that any solutions that
do exist must lie in the intersection ofN (k) and
Y (k). If this intersection is sufficiently smaller
than the current interval, one can proceed by
reapplying the interval-Newton test to the inter-
section. Otherwise, the intersection is bisected,
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Figure 1. The computed imageN (k) has a null intersec-
tion with the current intervalY (k). This is mathematical
proof that there is no solution of the equation system in
the current interval.

and the resulting two intervals added to the se-
quence of intervals to be tested. These are the
basic ideas of an interval-Newton/generalized-
bisection (IN/GB) method. It should be
noted that recent enhancements (Gau and
Stadtherr [19]) to the methodology, involving
the formulation and solution of the interval-
Newton equation, play an important role in
achieving computational efficiency on the prob-
lems considered here.

When properly implemented, this method
provides a procedure that is mathematically
and computationally guaranteed to find the
global minimum ofφ(y), or, if desired (by turn-
ing off the objective range test), to encloseall
of its stationary points.

3. VLE MODEL

We consider here the modeling of vapor-
liquid equilibrium (VLE) using the Wilson
equation for liquid-phase activity coefficient.
Of interest is the binary system benzene(1)–
hexafluorobenzene(2). Measurements are
available (Gmehling et al. [24], part 7, p. 235)
from m = 16 experiments for the state vari-

y1

y2

Y
(k)

N
(k)

Figure 2. The computed imageN (k) is a subset of the
current intervalY (k). This is mathematical proof that
there is a unique solution of the equation system in the
current interval, and furthermore that this unique solution
is also in the image.

y1

y2

Y
(k)

N
(k)

Figure 3. The computed imageN (k) has a nonnull in-
tersection with the current intervalY (k). Any solutions
of the equation system must lie in the intersection of the
image and the current interval.

able vectorz = (x1, y1, P, T )T, whereP is the
system pressure (mmHg),T is the system tem-
perature (K),x1 is the liquid-phase mole frac-
tion of component 1, andy1 is the vapor-phase
mole fraction of component 1. Each experi-
ment was performed at a measured pressure of
P = 500 mmHg; the remaining measured val-
ues are given in Table 1. No information is



Table 1. Measurement data vectorzi for each experi-
menti.

i x1,i y1,i Pi(mmHg) Ti(◦C)
1 0.0880 0.0840 500.0 67.95
2 0.1330 0.1285 500.0 68.03
3 0.1635 0.1600 500.0 68.08
4 0.1720 0.1690 500.0 68.08
5 0.2200 0.2195 500.0 68.10
6 0.2615 0.2660 500.0 68.08
7 0.3555 0.3680 500.0 67.78
8 0.3640 0.3770 500.0 67.75
9 0.4030 0.4185 500.0 67.73
10 0.5425 0.5640 500.0 67.30
11 0.6400 0.6600 500.0 67.13
12 0.7080 0.7215 500.0 67.00
13 0.8340 0.8350 500.0 66.73
14 0.8600 0.8595 500.0 66.66
15 0.9110 0.9080 500.0 66.73
16 0.9575 0.9545 500.0 66.68

available, either in Gmehling et al. [24] or in the
original source of the measurement data, con-
cerning the standard deviations associated with
the measurements. A standard deviation vec-
tor of σ = (0.001, 0.01, 0.75, 0.1)T is thus as-
sumed for now. That is,σ1 = σx1

= 0.001,
σ2 = σy1

= 0.01, σ3 = σP = 0.75, and
σ4 = σT = 0.1.

The model used to describe the VLE can be
written as

P = γ1x1p
0
1(T ) + γ2(1 − x1)p

0
2(T ) (6)

y1 =
γ1x1p

0
1(T )

γ1x1p
0
1(T ) + γ2(1 − x1)p

0
2(T )

, (7)

where the pure component vapor pressures
p0

1(T ) andp0
2(T ) are given by the Antoine re-

lationships (withT in K andp in mmHg)

p0
1(T ) = exp

[
15.8412− 2755.64

T − 53.99

]
(8)

p0
2(T ) = exp

[
16.1940− 2827.54

T − 57.66

]
(9)

and the activity coefficientsγ1 andγ2 are given
by the Wilson equation

ln γ1 = − ln(x1 + Λ12x2)

+ x2

[
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

]
(10)

ln γ2 = − ln(x2 + Λ21x1)

− x1

[
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

]
. (11)

Here the binary parametersΛ12 and Λ21 are
given by

Λ12 =
v2

v1
exp

[
− θ1

RT

]
(12)

Λ21 =
v1

v2
exp

[
− θ2

RT

]
(13)

wherev1 = 89.41 cm3/mol andv2 = 115.79
cm3/mol are the pure component liquid molar
volumes, andθ1 andθ2 are the energy parame-
ters that need to be estimated.

In order to formulate the EIV parameter
estimation problem as an unconstrained opti-
mization problem, the model, Eqs. (6)–(7),
is used to eliminateP andy1 in the objective
function. Consequently, the vector of indepen-
dent state variables isv = (x1, T )T. In the
unconstrained optimization problem, the inde-
pendent variables areθ = (θ1, θ2)

T andṽi, i =

1, . . . , 16 (16 vectors of two variables each), for
a total of 2(16) + 2 = 34 independent vari-
ables. The initial intervals on the parameters
θ1 andθ2 were both taken as[−10000, 200000]
cal/mol, which covers the range of physical in-
terest as described by Gau and Stadtherr [25].
The initial intervals on the independent state
variables were chosen using plus and minus
three standard deviations; that is,x̃1,i ∈ [x1,i −
3σ1, x1,i+3σ1] andT̃i ∈ [Ti−3σ4, Ti +3σ4] for
i = 1, . . . , 16.



Table 2. Globally optimal data reconcilia-
tion results z̃i for each experiment i when
σ = (0.001, 0.01, 0.75, 0.1)T.

i x̃1,i ỹ1,i P̃i(mmHg) T̃i(◦C)
1 0.087979 0.086223 500.063 67.9310
2 0.132970 0.131651 500.221 67.9619
3 0.163471 0.162903 500.338 67.9756
4 0.171973 0.171674 500.336 67.9762
5 0.219974 0.221641 500.406 67.9748
6 0.261499 0.265390 500.403 67.9561
7 0.355532 0.365645 499.836 67.8326
8 0.364034 0.374752 499.786 67.8180
9 0.403027 0.416519 499.897 67.7638
10 0.542534 0.564259 499.561 67.4374
11 0.639981 0.663301 499.854 67.1768
12 0.707925 0.728999 500.053 66.9859
13 0.833933 0.842084 500.142 66.6883
14 0.859959 0.864268 500.037 66.6499
15 0.911008 0.907830 500.238 66.6585
16 0.957511 0.950549 499.783 66.7455

4. RESULTS AND DISCUSSION

Using the interval methodology discussed
above, with the standard deviation vectorσ =

(0.001, 0.01, 0.75, 0.1)T, the globally optimal
parameter values obtained wereθ1 = −443.616
cal/mol andθ2 = 1090.493 cal/mol, with an ob-
jective function value ofφ = 13.768, and with
the globally optimal values of thẽzi as given
in Table 2. Here the values of the independent
variablesx̃1,i and T̃i were determined during
the optimization procedure, and the values of
the dependent variables̃y1,i and P̃i were com-
puted from the model, Eqs. (6)–(7).

The CPU time required for this 34-variable
global optimization problem was 234 seconds
on a Sun UltraServer2/2200 workstation (one
processor). Given the size of the problem, and
the fact that a rigorous global minimum was
obtained, this degree of computational effort is
quite small. By turning off the objective range
test, thus allowing the technique to encloseall

the stationary points, not just the global mini-
mum, it was also ascertained that, for this prob-
lem, there was only one stationary point (the
global minimum) in the specified initial inter-
val.

We now consider the effect of the choice
of the standard deviation values on the results.
To do this, we focus here on the distribution of
error residuals∆zij = z̃ij − zij. A more rig-
orous quantitative statistical analysis of the re-
sults presented here is also available (Gau [26]).
It is well known that a good data reconciliation
possessing statistical significance should qual-
itatively have the same type of residual distri-
butions for all of the measured variables. In
particular, it is desired that all residuals be well
spread within their respective standard devia-
tions, with relatively few residuals exceeding
±σj. This is indicative that errors in each vari-
able have received roughly equivalent weight-
ing in the optimization problem. To visualize
this, weighted residual plots∆zij/σj are shown
in Figs. 4–7. For example, Figure 4 shows the
distribution of values of∆x1,i = x̃1,i − x1,i rel-
ative toσx1

. Note that the standard deviation is
indicated by the dashed horizontal lines at±1.

Examining Figs. 4–7 shows that the four er-
ror residual distributions are not similar. In par-
ticular, the errors determined forx1 are much
smaller than the assumed standard deviation for
x1. This indicates that in the optimization too
much weight was put on reducing the error in
x1, relative to the other variables. Use of a
larger value ofσx1

will reduce the weight in
the objective function of the term involving er-
rors inx1, and thus should lead to a better data
reconcilation. Following this type of argument,
and adjusting each standard deviation in turn
until similarly good error distributions are seen
for each variable, the standard deviation vec-
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Figure 4. Globally optimal error residuals in
∆x1,i = x̃1,i − x1,i relative to σx1 when σ =
(0.001, 0.01, 0.75, 0.1)T.
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Figure 5. Globally optimal error residuals in
∆y1,i = ỹ1,i − y1,i relative to σy1 when σ =
(0.001, 0.01, 0.75, 0.1)T.

tor σ = (0.0025, 0.0025, 1.2, 0.07)T appears to
provide reasonable results.

With the new standard deviationsσ =

(0.0025, 0.0025, 1.2, 0.07)T, the globally opti-
mal parameter values obtained from the interval
methodology wereθ1 = −431.882 cal/mol and
θ2 = 1038.214 cal/mol, with an objective func-
tion value ofφ = 30.755, and with the globally
optimal values of thẽzi as given in Table 3.
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Figure 6. Globally optimal error residuals in
∆Pi = P̃i − Pi relative to σP when σ =
(0.001, 0.01, 0.75, 0.1)T.
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Figure 7. Globally optimal error residuals in
∆Ti = T̃i − Ti relative to σT when σ =
(0.001, 0.01, 0.75, 0.1)T.

For this 34-variable global optimization
problem, the CPU time required was 1037 sec-
onds on a Sun UltraServer2/2200 workstation
(one processor). By turning off the objective
range test, it was again determined that, for this
problem, there was only one stationary point
(the global minimum) in the specified initial in-
terval. The increase in CPU time caused by
changing the standard deviation values can be



Table 3. Globally optimal data reconcilia-
tion results z̃i for each experiment i when
σ = (0.0025, 0.0025, 1.2, 0.07)T.

i x̃1,i ỹ1,i P̃i(mmHg) T̃i(◦C)
1 0.086729 0.085283 500.294 67.9326
2 0.131223 0.130262 500.833 67.9805
3 0.161832 0.161628 501.223 68.0072
4 0.170444 0.170510 501.222 68.0073
5 0.218706 0.220704 501.469 68.0126
6 0.261610 0.265832 501.481 67.9919
7 0.356678 0.366926 499.726 67.7963
8 0.365150 0.375970 499.569 67.7756
9 0.404081 0.417499 499.915 67.7351
10 0.542899 0.563841 498.773 67.3725
11 0.638978 0.661130 499.552 67.1571
12 0.704858 0.724819 500.030 66.9998
13 0.830847 0.838617 500.156 66.7222
14 0.857900 0.861952 499.823 66.6711
15 0.911077 0.907944 500.432 66.7051
16 0.959050 0.952662 499.017 66.7363

understood by looking at the objective function
in use, namely

φ(θ, x̃1, T̃ ) =
m∑

i=1


(x̃1,i − x1,i)

2

σ2
x1

+
(T̃i − Ti)

2

σ2
T

+
(ỹ1,i(θ, x̃1,i, T̃i) − y1,i)

2

σ2
y1

+
(P̃i(θ, x̃1,i, T̃i) − Pi)

2

σ2
P


. (14)

Note that the first two terms in the summation,
corresponding to the errors in the independent
variables, make contributions that are quadratic
and convex in terms of the independent vari-
ables. However, the remaining two terms, cor-
responding to the errors in the dependent vari-
ables, make contributions that may be highly
nonlinear and nonconvex in terms of the in-
dependent variables. Since the standard devi-
ations are in effect weighting factors on each
term in the summation, changing the standard
deviations can change the character of the ob-
jective function considerably, thus affecting the

difficulty of solving the problem.

The error residual distributions correspond-
ing to the data reconciliation results in Table 3
are shown in Figs. 8–11. Note that with the ad-
justed values of the standard deviations the er-
ror distributions for each variable are now qual-
itatively similar, in that each case the residu-
als are well spread within their respective stan-
dard deviations, with relatively few residuals
exceeding±σj. Thus, these values of the stan-
dard deviations appear to be acceptable. This
can be also verified through a quantitative sta-
tistical analysis (Gau [26]). There may in fact
be a range of standard deviation values that will
yield an acceptable data reconcilation. To see
this, we will consider one additional set of stan-
dard deviation values.

Consider now a slightly differ-
ent standard deviation vector, namely
σ = (0.003, 0.0029, 1.7, 0.083)T. For this
case, the globally optimal parameter values
obtained from the interval methodology were
θ1 = −429.801 cal/mol andθ2 = 1029.207
cal/mol, with an objective function value of
φ = 19.999, and with the globally optimal
values of thẽzi as given in Table 4. For this
34-variable global optimization problem, the
CPU time required was 3535 seconds on a Sun
UltraServer2/2200 workstation (one proces-
sor). By turning off the objective range test,
it was determined that, in this case, there are
actuallytwo local minima (including the global
minimum) in the specified initial interval. In
addition to the local and global minimum
given above, there is also a local, but not
global, minimum atθ1 = 278.518 cal/mol
andθ2 = −279.408 cal/mol, with an objective
function value ofφ = 161.3, and with the
values of thez̃i as given in Table 5. This
stationary point was characterized as a local
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Figure 8. Globally optimal error residuals in
∆x1,i = x̃1,i − x1,i relative to σx1 when σ =
(0.0025, 0.0025, 1.2, 0.07)T.
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Figure 9. Globally optimal error residuals in
∆y1,i = ỹ1,i − y1,i relative to σy1 when σ =
(0.0025, 0.0025, 1.2, 0.07)T.

minimum by using MATLAB to compute the
eigenvalues of the Hessian matrix ofφ(θ, ṽi).

The presence of multiple local minima em-
phasizes the importance of using a determin-
istic global optimization approach to solve the
EIV parameter estimation problem. As noted
by Gau and Stadtherr [25], convergence to a lo-
cal, but not global, optimum in parameter esti-
mation problems for VLE models is not an un-
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Figure 10. Globally optimal error residuals in
∆Pi = P̃i − Pi relative to σP when σ =
(0.0025, 0.0025, 1.2, 0.07)T.
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Figure 11. Globally optimal error residuals in
∆Ti = T̃i − Ti relative to σT when σ =
(0.0025, 0.0025, 1.2, 0.07)T.

common occurrence. This can lead to the dis-
missal of a model as inadequate, when in fact
the model may be fine, provided that the pa-
rameter estimation problem is solved correctly
to a global optimum.

The error residual distributions for the
global optimum are shown in Figs. 12–15.
Again, the error distributions for each vari-
able are qualitatively similar; in each case the



Table 4. Globally optimal data reconcilia-
tion results z̃i for each experiment i when
σ = (0.003, 0.0029, 1.7, 0.083)T.

i x̃1,i ỹ1,i P̃i(mmHg) T̃i(◦C)
1 0.086657 0.085264 500.366 67.9348
2 0.131128 0.130231 501.010 67.9879
3 0.161741 0.161602 501.476 68.0184
4 0.170357 0.170489 501.476 68.0184
5 0.218635 0.220693 501.773 68.0261
6 0.261593 0.265865 501.791 68.0053
7 0.356709 0.366963 499.724 67.7915
8 0.365180 0.376001 499.539 67.7691
9 0.404128 0.417518 499.945 67.7322
10 0.542957 0.563761 498.585 67.3585
11 0.639037 0.660984 499.479 67.1520
12 0.704860 0.724601 500.021 67.0006
13 0.830794 0.838437 500.131 66.7259
14 0.857862 0.861829 499.735 66.6715
15 0.911067 0.907950 500.446 66.7120
16 0.959080 0.952793 498.795 66.7283

residuals are well spread within their respective
standard deviations, with relatively few resid-
uals exceeding±σj. Thus, assuming that one
found the global optimum, one can conclude
that these values of the standard deviations ap-
pear to be acceptable. This can be also ver-
ified through a quantitative statistical analysis
(Gau [26]). Note that this global optimum is
consistent with the global optimum found us-
ing the previous standard deviation vector, both
in terms of the optimal parameter values and the
data reconciliation results. However, the results
at the local, but not global, optimum are quite
different.

The error residual distributions for the lo-
cal but not global optimum are shown in Figs.
16–19. These show that forall the variables
there are a number of errors that are quite large
relative to the standard deviation. Note that
the error residual bounds of plus and minus
three standard deviations imposed in selecting
the initial search interval apply only to the in-

Table 5. Locally (but not globally) optimal data rec-
onciliation results̃zi for each experimenti whenσ =
(0.003, 0.0029, 1.7, 0.083)T.

i x̃1,i ỹ1,i P̃i(mmHg) T̃i(◦C)
1 0.085316 0.086444 501.364 67.8931
2 0.129706 0.131479 502.370 67.9311
3 0.160478 0.162710 503.022 67.9539
4 0.169168 0.171533 503.064 67.9522
5 0.218073 0.221181 503.518 67.9533
6 0.261829 0.265597 503.554 67.9316
7 0.359288 0.364468 501.119 67.7326
8 0.367991 0.373288 500.873 67.7127
9 0.408040 0.413808 500.942 67.6895
10 0.550087 0.557028 497.678 67.3922
11 0.646782 0.653782 496.801 67.2576
12 0.711626 0.718265 496.102 67.1564
13 0.832122 0.837074 494.598 66.9469
14 0.857651 0.862058 494.162 66.8939
15 0.908019 0.911121 495.411 66.9138
16 0.955278 0.956910 495.432 66.8623

dependent variablesx1 andT , as larger errors
can be observed in the dependent variableP .
Based on this local optimum, one might well
conclude that the model being used was inade-
quate. Of course, this conclusion would be in-
correct, since as seen from the globally optimal
solution, this model is capable of providing a
good fit to the data. In evaluating the ability of
a given model to fit a set of data, it is extremely
important that the parameter estimation prob-
lem be correctly solved, to a global and not just
local, optimum.

5. CONCLUDING REMARKS

We have demonstrated here that the interval-
Newton approach is a powerful, determinis-
tic global optimization methodology for the
reliable solution of EIV parameter estimation
problems. The approach provides both mathe-
matical and computationalguaranteesthat the
global optimum in the parameter estimation
problem has been found. Though we have con-
centrated here on a VLE modeling problem, the
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Figure 12. Globally optimal error residuals in
∆x1,i = x̃1,i − x1,i relative to σx1 when σ =
(0.003, 0.0029, 1.7, 0.083)T.
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Figure 13. Globally optimal error residuals in
∆y1,i = ỹ1,i − y1,i relative to σy1 when σ =
(0.003, 0.0029, 1.7, 0.083)T.

interval methodology is a general-purpose ap-
proach that can be applied to a wide variety
of parameter estimation and data reconciliation
problems. However, the guaranteed reliability
of the interval approach comes at the expense of
significantly higher computation time require-
ments in comparison to local methods that pro-
vide no such guarantees. Thus, modelers must
consider this trade-off, and ultimately decide
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Figure 14. Globally optimal error residuals in
∆Pi = P̃i − Pi relative to σP when σ =
(0.003, 0.0029, 1.7, 0.083)T.
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Figure 15. Globally optimal error residuals in
∆Ti = T̃i − Ti relative to σT when σ =
(0.003, 0.0029, 1.7, 0.083)T.

how important it is to know for sure that the
correct answer has been obtained. As seen in
the case of the third standard deviation vector
considered above, in evaluating the ability of a
given model to fit a set of data, it is extremely
important that the parameter estimation prob-
lem be correctly solved, to a global and, not just
local, optimum. Failure to do so may result in
the rejection of a perfectly adequate model.
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Figure 16. Locally (but not globally) optimal error resid-
uals in ∆x1,i = x̃1,i − x1,i relative toσx1 when σ =
(0.003, 0.0029, 1.7, 0.083)T.
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Figure 17. Locally (but not globally) optimal error resid-
uals in ∆y1,i = ỹ1,i − y1,i relative toσy1 when σ =
(0.003, 0.0029, 1.7, 0.083)T.

The interval-Newton methodology de-
scribed here is a powerful approach for non-
linear equation solving and global optimiza-
tion. Here it has been applied to the prob-
lem of nonlinear parameter estimation and data
reconcilation; however, it can also be used in
a wide variety of other applications. These
applications include the determination of fluid
phase stability and equilibrium, using either ac-
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Figure 18. Locally (but not globally) optimal error resid-
uals in ∆Pi = P̃i − Pi relative to σP when σ =
(0.003, 0.0029, 1.7, 0.083)T.
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Figure 19. Locally (but not globally) optimal error
residuals in∆Ti = T̃i − Ti relative toσT whenσ =
(0.003, 0.0029, 1.7, 0.083)T.

tivity coefficient models (Stadtherr et al. [27];
McKinnon et al. [28]; Tessier et al. [29]) or
equation-of-state models (Hua et al. [30-33];
Xu et al. [34]), the computation of azeotropes
(Maier et al. [35,36]) and critical points (Sradi
et al. [37]), the determination of solid-fluid
equilibrium (Xu et al. [38]), and density-
functional-theory calculations of adsorption in
nanoscale pores (Maier and Stadtherr [39]).
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