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ABSTRACT eter estimation, it is assumed that there are &
set of independent variables not subject to mea
Standard techniques for solving the optimiza- surement error. The error-in-variables (EIV)
tion problem arising in parameter estimation approach differs in that it is assumed that there
and data reconciliation by the error-in-variables gre measurement errors &l variables. Ac-
(EIV) approach offer no guarantee that the counting for error in all the variables has been
global optimum has been found. However, an demonstrated (e.g., Duever et al. [1]; Patino-
interval-Newton approach can provide a power- | eal and Reilly [2]) to lead to unbiased esti-
ful, deterministic global optimization method- mates of the parameter values, and thus to mor
ology for the reliable solution of EIV problems accurate models. Furthermore, in solving the
in chemical process modeling, offering mathe- E|v problem, not only are parameter estima-

matical and computational guarantees that thetion results obtained, but also data reconcilia-
global optimum has been found. This method- tion results.

ology is demonstrated here by applying it to the
modeling of vapor-liquid equilibrium. Anissue
of particular interest is the effect of changing
the standard deviation values appearing in the
objective function.

Consider the problem of estimating the pa-
rameter® = (64,0, ...,0,)T inamodel of the
general formf (0, z) = 0, wherez is a vector
of n state variables for the system to be mod-
eled, andf is a vector ofp model functions.

1. INTRODUCTION When the EIV approach is used, the optimiza-
Parameter estimation is a central problem in tion problem that must be solved has the form
the development of mathematical models that ol (B — z)?

represent the physical phenomena underlying Be - 2 (1)
chemical process operations, and is thusanim-

portant issue in process systems engineering. InSUbjeCt o
the classical least-squares approach to param- f(0,z,)=0, i=1,...,m. (2)



Here z; = (zi1,...,zin)" represents measure- ized reduced gradient (Kim et al. [3]), and suc-
ments of the state variables from=1,...,m cessive quadratic programming (e.g., Tjoa anc
experimentsz; = (%, ..., Zi,) ' represents the Biegler [14,15]), as well as direct search meth-
unknown “true” values associated with each ods, such as the simplex pattern search (e.g
measurement, and; represents the standard Vamos and Hass [16]). However, these are all
deviation associated with the measurement oflocal methods that offer no assurance that the
state variablg. Details concerning the formu- global minimum in the optimization problem
lation of this optimization problem are avail- has been found. Towards finding the global op-
able elsewhere (e.g., Kim et al. [3]; Espos- timum, one approach is to introduce a random-
ito and Floudas [4]), as are good introductions ized element, either in the selection of multiple
to the general problem of nonlinear parame- initial guesses (e.g., Vamos and Hass [16]), or
ter estimation (e.g, Bard [5]; Gallant [6]; Se- in the search procedure itself (e.g., Luus and
ber [7]), and to applications in chemical engi- Hernaez [17]). These stochastic methods still
neering (Englezos and Kalogerakis [8]). provide no guarantee that the global optimum
has been found. To obtain any such guaran
tee requires the use deterministicglobal op-
timization procedures.

The presence of the true valués, i =
1,...,m, as variables in the optimization prob-
lem has a number of practical implications.
First, as already noted, it means that, in solv-
ing the EIV problem, not only are the parameter
estimation result® obtained, but also the data
reconciliation resultg;, i« = 1,...,m. How-
ever, this comes at the expense of a substan
tial increase in the dimensionality of the opti-

A powerful deterministic approach is that
suggested by Esposito and Floudas [4], who re-
formulate the optimization problem in terms of
convex underestimating functions and then use
a branch-and-bound procedure. This methoc
provides a mathematical guarantee of global

mization problem, which atm + p is now a .optimal.ity. One Qrawback to this approach
function of the number of experiments. Fur- Is that in general it may be necessary to per-
thermore, since the optimization is over both form problem- reformulatlor)g and devejop con-
6 andz,, this is likely to be a nonlinear opti- vex underestimators specific to each new ap-
mization problem even for models that are lin- plication. Also., N prlnC|pIe., bran_ch-ano!-

ear in the parameters. Thus, in general, the op-bo_und methods implemented in floatlng point
timization problem is nonlinear and potentially anthmekt)llc may bz vtlilnerlable tr? roundlﬁg er
nonconvex, indicating the need to be concerned'©' Probiems, an thus lose their mathemat-

about the possible existence of multiple local ical gua_lrantees. Another deterministic ap-
minima. proach is that suggested recently by Gau anc

Stadtherr [18,19], who use an interval-Newton

Various methods have been used to solveapproach. This is a general-purpose method
the optimization problem defined by Egs. (1) ology that provides a mathematical guarantee
and (2). These include gradient-based meth-of global optimality, as well as a computational
ods such as Gauss-Newton or Gauss-Marquardguarantee, since rounding issues are dealt witl
(e.g., Britt and Luecke [9]; Fabries and through the use of interval arithmetic. In their
Renon [10]; Anderson et al. [11]; Schwetlick initial study, Gau and Stadtherr [18] demon-
and Tiller [12]; Valko and Vajda [13]), general- strated the potential of the interval method-



ology by applying it to some small prob- of 8 andz;.

lems (12 to 32 variables) and finding the ap- For the global minimization ofs(6, %,),
proach to compare favorgbly to the Esposito 4, approach based on interval analysis is
anpl F|0Ud?‘§ [4] method in terms Of COMPU- ysed. Good introductions to interval analysis,
tational efficiency. In a later feaS|b|_I|ty stud_y as well as interval arithmetic and computing
(Gau and Stadtherr [19]), they applied the In- ity intervals, include those of Neumaier [20],
terval technique to a variety of larger problems, 154sen [21] and Kearfott [22]. Of particular
Including a heat exchanger network problemin- jnterest here is the interval-Newton technique.
volving 264 variables. These earlier studies fo- Given a nonlinear equation system with a fi-
cused primarily on the parameter estimation as-jite number of real roots in some initial inter-

pect of the problem and did not consider the y5)  this technique provides the capability to
data reconcilation results. The interval method- find (or, more precisely, to enclose within a

ology is demonstrated here by applying itto the yery narrow interval) all the roots of the system
modeling of vapor-hqwc_l equmbrlum, with fo- within the given initial interval. To apply this
cus on the data reconcilation results. An ISSUB tachnique to the optimization problem of inter-

of particular interest is the effect of changing egt here, it is used to seek stationary points; tha
the standard deviation values appearing in theis’ to solve the nonlinear equation system

objective function. 0.: V(0.5 4

For many practical problems, thpenodel equa- \évhetre fqrg:lonv: nletr: ce t:le vect((;:r o{; '[‘d?pe”'

tions can be easily solved algebraically for Tin ﬁagal €s has egﬂbenotﬁ ¢ E‘t’hq')i) '

of the n state variables. Thus, by substitution . € global minimurm Wil be-a root oT this hon-
linear equation system, but there may be many

into the objective function, an unconstrained _ .
other roots as well, representing local minima

formulation of the optimization problem can be q ) d sadd ints. To identi
obtained. The unconstrained problem can pedhd Mmaxima and saddie points. 10 den Iy
the global minimum, one approach is to sim-

stated
, 0 o 3 ply find all the stationary points and then iden-
I&%? $(0, %) (3) tify the point with the minimum value of the
whered,, i = 1,....m, refers to ther — p in- objective function. Alternatively, by including

dependent state variables not eliminated using2" ©Pjective range test in the solution proce-
the model equations, angl, ;) is the objec- dure, one can effectively combine the interval-

tive function in Eq. (1) after the dependent Newton apprpach with an interval branch-and-
state variables have been eliminated by substi-20und technique, so that roots gfy) = 0

tution. This unconstrained formulation of the that cannot be the global minimum need not
problem will be used here. However, it should be found. If the constrained formulation of

be noted that the accompanying reduction in thethe problem is used, then instead of applying
dimensionality of the problem does not neces- interval-Newton to solve the stationarity condi-

sarily make it any easier to solve, since the ob- tions,_ i_t is applied to the solve the Kuhn_—Tucker
jective function in the reduced space@fand  conditions (or, more generally, the Fritz-John
; may be a much more complicated function conditions).

than the objective function in the original space The solution algorithm is applied to a se-



guence of intervals, beginning with some user- terval in the sequence, since the current interva
specified initial intervaly’ ) that provides up- cannot contain a stationary pointofy). Oth-
per and lower bounds on the independent vari-erwise, if0 € G(Y®), then testing of’ ™
ables. (In this section, upper case quantities arecontinues.

intervals, and lower case quantities real nuUm-  The next step is thebjective range test
bers.) This initial interval can be chosen to be The interval extensiom(Y(k)), which contains
sufficiently large to enclose all physically fea- he range of3(y) over Y™, is computed. If
sible behavior. This is in contrast to conven- ihe [ower bound oﬂ)(Y(k)) is greater than a

tional local solution methods in which an ini- known upper bound on the global minimum of
tial pointis needed, often resulting in a highly é(y), thenY ) cannot contain the global mini-

initialization-dependent procedure. It is as- mym and need not be further tested. Otherwise
sumed here that the global optimum will occur testing ofY *) continues.

at an interior stationary minimum af(y) and
not at the boundaries af (). Since the estima-
tor ¢ is derived based on a product of Gaussian
distribution functions corresponding to each  G'(Y®)(N® — ¢y = _g(y*))  (5)
data point, this is a very reasonable assump-,. ... up and solved for a new intervai®
tion for regression problems of the type con- whereG'(Y')) is an interval extension of t’he
sidered here. Details of the basic solution algo- .. ofg(y), andy® is a point iny®
rithm used are given by Gau and Stadtherr [18] usually taken tc; be the midpoint. Comp;ari-
and Schnepper and Stadtherr [23]. Only the key

'd the methodol od h son of the current intervat’*) and theimage
iaeas ot the methodology are presented Nere. - nr® provides a powerful existence and unique-

For an intervalY ™ in the sequence, the ness test (Kearfott [22]). There are three possi-
first step in the solution algorithm is tHianc- ble outcomes of the comparison: 1. IN*)
tion range test Here aninterval extension and Y have a null intersection, as shown
G(Y'")) of the functiong(y) is calculated. schematically in Figure 1 for a two-variable
An interval extension provides upper and lower problem, then this is mathematical proof that
bounds on the range of values that a function there is no solution of(y) = 0 in y®, 2.
may have in a given interval. It is often com- If N*) is a proper subset o *), as shown
puted by substituting the given interval into the in Figure 2, then this is mathematical proof
function and then evaluating the function using that there is aunique solution ofg(y) = 0
interval arithmetic. The interval extension so in Y*). 3. If neither of the first two con-
determined is often wider than the actual range ditions is true, as shown in Figure 3, then no
of function values, but it always includes the ac- conclusions can be made about the number o
tual range. If there is any component of the in- solutions in the current interval. However, it
terval extensiorG(Y ¥)) that does not contain  is known (Kearfott [22]) that any solutions that
zero, then we may discard the current interval do exist must lie in the intersection & *) and
Y ¥, since the range of the function does not Y'*). If this intersection is sufficiently smaller
include zero anywhere in this interval, and thus than the current interval, one can proceed by
no solution ofg(y) = 0 exists in this interval.  reapplying the interval-Newton test to the inter-
We may then proceed to consider the next in- section. Otherwise, the intersection is bisected

The next step is thanterval-Newton test
Here the linear interval equation system
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Figure 1. The computed imag¥ *) has a null intersec- Figure 2. The computed imag¥'® is a subset of the
tion with the current intervqY(’“). This is mathematical  c\rrent intervaly ®). This is mathematical proof that
proof that there is no solution of the equation system in here js a unique solution of the equation system in the
the current interval. current interval, and furthermore that this unique solution
is also in the image.

and the resulting two intervals added to the se-
guence of intervals to be tested. These are the
basic ideas of an interval-Newton/ lized- (k)
generalize Y
bisection (IN/GB) method. It should be
noted that recent enhancements (Gau and
Stadtherr [19]) to the methodology, involving ¥4
the formulation and solution of the interval-
Newton equation, play an important role in
achieving computational efficiency on the prob-
lems considered here.

NG

When properly implemented, this method y
provides a procedure that is mathematically 2
and computationally guaranteed to find the Figure 3. The computed imady(k)(]gasanonnq” in-
global minimum of(y), or, if desired (by turn- tersection W_lth the current |nt_er\_/aT . _Any soll_Jtlons
; .. of the equation system must lie in the intersection of the
ing off thg objectlv_e range test), to enclosi image and the current interval.
of its stationary points.

3. VLE MODEL able vectorz = (x1,y1, P, T)T, whereP is the
We consider here the modeling of vapor- system pressure (mmHd),is the system tem-
liquid equilibrium (VLE) using the Wilson perature (K),z; is the liquid-phase mole frac-
equation for liquid-phase activity coefficient. tion of component 1, ang is the vapor-phase
Of interest is the binary system benzene(1)-mole fraction of component 1. Each experi-
hexafluorobenzene(2). Measurements arement was performed at a measured pressure c
available (Gmehling et al. [24], part 7, p. 235) P = 500 mmHg; the remaining measured val-
from m = 16 experiments for the state vari- ues are given in Table 1. No information is



Table 1. Measurement data vectarfor each experi-  and the activity coefficients; and~, are given

ment;. by the Wilson equation

{ L1, Y1,i Pz'(mmHg) Ti(oC) In Y11= — 111(561 + A12$2)

1 0.0880  0.0840 500.0 67.95 Ay Ay

2 01330 0.1285 500.0 68.03 + 29 — (10)

3 0.1635 0.1600 500.0 68.08 11+ Agzy Anzn + 22

4 0.1720  0.1690 500.0 68.08

5 0.2200 0.2195 500.0 68.10 Inv, = —In(xy + Ag121)

6 02615 0.2660 500.0 68.08 Ag Aoy

7 03555 0.3680  500.0 67.78 — I — . (11)

8 03640 03770 5000  67.75 r1+ Ay Agry + 29

9 04030 0.4185 500.0 67.73 Here the binary parameters;; and Ay; are

10 0.5425  0.5640 500.0 67.30 given by

11 0.6400  0.6600 500.0 67.13

12 0.7080 0.7215 500.0 67.00 Vs 0, ]

13 0.8340 0.8350  500.0 66.73 Aqg = - XP |~ (12)

14 0.8600  0.8595 500.0 66.66 1 - -

15 0.9110  0.9080 500.0 66.73

16 0.9575  0.9545 500.0 66.68 Ay — vy exp |- by (13)
(%) L RT_

available, either in Gmehling et al. [24] orin the Wherev; = 89.41 cn’/mol andv, = 115.79
original source of the measurement data, con-CM’/mol are the pure component liquid molar
cerning the standard deviations associated withvolumes, and, andd, are the energy parame-
the measurements. A standard deviation vec-ters that need to be estimated.

tor of & = (0.001,0.01,0.75,0.1)T is thus as-
sumed for now. That is3; = o,, = 0.001,
oy = o, = 0.01, 05 = op = 0.75, and
04 — 0T — 0.1.

In order to formulate the EIV parameter
estimation problem as an unconstrained opti-
mization problem, the model, Egs. (6)—(7),
is used to eliminateé® andy; in the objective

The model used to describe the VLE can be function. Consequently, the vector of indepen-
written as dent state variables is = (z1,7)%. In the

. 0 unconstrained optimization problem, the inde-
P =mazipi(T) + (1 —2z)pa(T)  (6)  pendent variables a@ = (6;,6,)" andw;, i =

0T 1,...,16 (16 vectors of two variables each), for
_ o (T) (7)  atotal of2(16) + 2 = 34 independent vari-
F () + (1 — e)p(T) e
TP 2 1Pz ables. The initial intervals on the parameters

where the pure component vapor pressuresd; andf, were both taken as-10000, 200000]
p{(T) andpy(T) are given by the Antoine re- cal/mol, which covers the range of physical in-
lationships (withi" in K andp in mmHQ) terest as described by Gau and Stadtherr [25]
] The initial intervals on the independent state
2755.64 : : .
—|  (8) variables were chosen using plus and minus
I'—53.99] three standard deviations; thatis,; € [z1,; —
2827.54 1 301, $17i+30'1] andTi € [TL — 304, T«L‘—i—30'4] for
T—_sre6l @ i=1,...16

p)(T) = exp |15.8412 —

po(T) = exp |16.1940 —



Table 2. Globally optimal data reconcilia- the stationary points, not just the global mini-

tion results z; for eﬁch experiment: when  mum, it was also ascertained that, for this prob-
= (0.001,0.01,0.75,0.1)" lem, there was only one stationary point (the
; P i B(mmHg) 7,(C) global minimum) in the specified initial inter-
1 0087979 0086223 500063 67.9310 Val.
2 0.132970 0.131651 500.221 67.9619 _ _
3 0163471 0162903 500338 67.9756 We now consider the effect of the choice
4 0.171973 0.171674 500.336 67.9762  of the standard deviation values on the results
g 8-25%3 g-ggéggé 288-282 g;-ggg? To do this, we focus here on the distribution of
7 0355532 0365645 490836 67.8326 C'MOfresidualsiz; = Z; —z;. A more rig-
8 0364034 0374752 499786 67.8180  Orous quantitative statistical analysis of the re-
9 0.403027 0.416519 499.897 67.7638  sults presented here is also available (Gau [26])
1c1) 8-2;13821 8-222;8919 jgg-ggi g;-‘ll%g It is well known that a good data reconciliation
12 0707925 0.728999 500.053 66.9859 Lo>>c>-Nd statistical significance ‘.Q'hOUId .quql-
13 0.833933 0.842084 500142 66.6883 Itatively have the same type of residual distri-
14 0.859959 0.864268 500.037 66.6499  butions for all of the measured variables. In
15 0.911008 0.907830 500.238 66.6585  particular, it is desired that all residuals be well
16 0.957511 0.950549 499.783  66.7455

spread within their respective standard devia-
tions, with relatively few residuals exceeding
+0;. This is indicative that errors in each vari-
able have received roughly equivalent weight-
ing in the optimization problem. To visualize
this, weighted residual plot&z;; /o ; are shown

in Figs. 4—7. For example, Figure 4 shows the
distribution of values oAz, ; = 71 ; — x;; rel-
ative too,,. Note that the standard deviation is
indicated by the dashed horizontal linestat

4. RESULTS AND DISCUSSION

Using the interval methodology discussed
above, with the standard deviation vector=
(0.001,0.01,0.75,0.1)T, the globally optimal
parameter values obtained wéfe= —443.616
cal/mol and?, = 1090.493 cal/mol, with an ob-
jective function value ob = 13.768, and with

the globally optimal values of thg; as given Examining Figs. 4—7 shows that the four er-
in Table 2. Here the values of the independent o residual distributions are not similar. In par-
variablesi, ; and T; were determined during ticular, the errors determined far; are much
the optimization procedure, and the values of gmg|ler than the assumed standard deviation fo
the dependent variables; and F; were com- . Thjs indicates that in the optimization too
puted from the model, Eqs. (6)—(7). much weight was put on reducing the error in
The CPU time required for this 34-variable i, relative to the other variables. Use of a
global optimization problem was 234 seconds larger value ofo,, will reduce the weight in
on a Sun UltraServer2/2200 workstation (one the objective function of the term involving er-
processor). Given the size of the problem, andrors inx;, and thus should lead to a better data
the fact that a rigorous global minimum was reconcilation. Following this type of argument,
obtained, this degree of computational effort is and adjusting each standard deviation in turn
quite small. By turning off the objective range until similarly good error distributions are seen
test, thus allowing the technique to enclade  for each variable, the standard deviation vec-
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Figure 4. Globally optimal error residuals in
Axy; = T1; — x1,; relative to o,, when o =
(0.001,0.01,0.75,0.1)".
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Figure 5. Globally optimal error residuals in
Ayl,i = f&u — Y1 relative to Oy, when ¢ =

(0.001,0.01,0.75,0.1)T.
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tor o = (0.0025,0.0025,1.2,0.07)1 appears to
provide reasonable results.

With the new standard deviations =
(0.0025,0.0025, 1.2,0.07)T, the globally opti-

AP, = P - P

0 0.2 0.4 0.6 0.8 1

X, .

1,

Globally optimal error residuals in
relative to op when o =

(0.001,0.01,0.75,0.1).

Figure 6.
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Figure 7.  Globally optimal error residuals in

AT, = T, — T; relative to o when ¢ =

(0.001,0.01,0.75,0.1).

0 0.2

For this 34-variable global optimization
problem, the CPU time required was 1037 sec-
onds on a Sun UltraServer2/2200 workstation
(one processor). By turning off the objective

mal parameter values obtained from the interval range test, it was again determined that, for this

methodology weré; = —431.882 cal/mol and

0y = 1038.214 cal/mol, with an objective func-
tion value of¢ = 30.755, and with the globally
optimal values of the; as given in Table 3.

problem, there was only one stationary point
(the global minimum) in the specified initial in-

terval. The increase in CPU time caused by
changing the standard deviation values can bg



Table 3. Globally optimal data reconcilia- difficulty of solving the problem.
tion results z; for each experimenti when
o = (0.0025,0.0025,1.2,0.07)". The error residual distributions correspond-
_ B B B(mmHg)  C) ing to the data reconciliation results in Table 3
( T1, Y, i\mmmng i(° : : :
’ ’ are shown in Figs. 8-11. N hat with th -
1 0.086729 0.085283 500.294 67.9326 . 4 val fgsh8 q O;et a_t .t tﬁad
2 0131223 0130262 500.833 67.9805 Justed values of the standard deviations the er
3 0.161832 0.161628 501.223 68.0072 ror distributions for each variable are now qual-
q
4 0.170444 0.170510 501.222 68.0073 itatively similar, in that each case the residu-
5 0218706 0220704  501.469  68.0126 4|5 re well spread within their respective stan-
6 0261610 0265832 501481 67.9919 . . . . . th relatively f dual
7 0.356678 0.366926 499.726 67.7963 ~ Jall GEVIAlions, with relatively tew residuals
8 0.365150 0.375970 499.569 67.7756 exceedingto;. Thus, these values of the stan-
9 0.404081 0.417499 499.915 67.7351  dard deviations appear to be acceptable. Thi:
10 0.542899 0.563841  498.773  67.3725  (an pe also verified through a quantitative sta-
11 0638978 0661130 499552  67.1571 .. ... vsis (Gau [26]). Th i fact
12 0704858 0.724819 500030 66.999g ustical analysis (Gau [26]). There may in fact
13 0.830847 0.838617 500.156 66.7222 be arange of standard deviation values that will
14 0.857900 0.861952 499.823 66.6711  yield an acceptable data reconcilation. To see
12 g-gééggg 8-8?;223 igg-gig gg-;ggé this, we will consider one additional set of stan-
' ' : : dard deviation values.
understood by looking at the objective function ~ Consider now —a  slightly  differ-
in use, namely ent standard deviation vector, namely
i o = (0.003,0.0029,1.7,0.083)T. For this
o(6.5,.7) =" (Z1 — x1,3)? N (T; — T;)? case, the globally optimal parameter values
s Ul . . .
= o2, o7 obtained from the interval methodology were
(51.4(0, %14, T;) — y1.0)? 0, = —425_).801 caI/moI _andeg = 1029.207
T o2 cal/mol, with an objective function value of
(5.0, %1) py? ¢ = 19.999, and with the globally optimal
+ 1’“2 : “_|. (14) values of thez; as given in Table 4. For this
op

34-variable global optimization problem, the
Note that the first two terms in the summation, CPU time required was 3535 seconds on a Sur
corresponding to the errors in the independentUIltraServer2/2200 workstation (one proces-
variables, make contributions that are quadraticsor). By turning off the objective range test,
and convex in terms of the independent vari- it was determined that, in this case, there are
ables. However, the remaining two terms, cor- actuallytwolocal minima (including the global
responding to the errors in the dependent vari-minimum) in the specified initial interval. In
ables, make contributions that may be highly addition to the local and global minimum
nonlinear and nonconvex in terms of the in- given above, there is also a local, but not
dependent variables. Since the standard deviglobal, minimum at6, 278.518 cal/mol
ations are in effect weighting factors on each andf, = —279.408 cal/mol, with an objective
term in the summation, changing the standardfunction value of¢p = 161.3, and with the
deviations can change the character of the ob-values of thez; as given in Table 5. This
jective function considerably, thus affecting the stationary point was characterized as a local
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Figure 8. Globally optimal error residuals in Figure 10.  Globally optimal error residuals in
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Figure 9. Globally optimal error residuals in Figure 11.  Globally optimal error residuals in
Ayi; = U, — yi; relative to o, when o = AT, = T, — T, relative to or when o =
(0.0025,0.0025,1.2,0.07)7. (0.0025,0.0025,1.2,0.07)7.

minimum by using MATLAB to compute the common occurrence. This can lead to the dis-
eigenvalues of the Hessian matrix@({@, v,). missal of a model as inadequate, when in fact
The presence of multiple local minima em- the model may be fine, provided that the pa-

phasizes the importance of using a determin- rameter estimation problem is solved correctly

istic global optimization approach to solve the 0 & global optimum.

EIV parameter estimation problem. As noted The error residual distributions for the
by Gau and Stadtherr [25], convergence to a lo-global optimum are shown in Figs. 12-15.
cal, but not global, optimum in parameter esti- Again, the error distributions for each vari-
mation problems for VLE models is not an un- able are qualitatively similar; in each case the



Table 4. Globally optimal data reconcilia- Table 5. Locally (but not globally) optimal data rec-

tion results z; for each experimenti when onciliation resultsz; for each experiment wheno =

o = (0.003,0.0029, 1.7, O.O83)T. (0.003,0.0029, 1.7, O.O83)T.
0 T1; Y1,i P(mmHg) T;(°C) { T1; Y1,i P(mmHg) T;(°C)
1 0.086657 0.085264 500.366 67.9348 1 0.085316 0.086444 501.364 67.8931
2 0.131128 0.130231 501.010 67.9879 2 0.129706 0.131479 502.370 67.9311
3 0.161741 0.161602 501.476 68.0184 3 0.160478 0.162710 503.022 67.9539
4 0.170357 0.170489 501.476 68.0184 4 0.169168 0.171533 503.064 67.9522
5 0.218635 0.220693 501.773 68.0261 5 0.218073 0.221181 503.518 67.9533
6 0.261593 0.265865 501.791 68.0053 6 0.261829 0.265597 503.554 67.9316
7 0.356709 0.366963 499.724 67.7915 7 0.359288 0.364468 501.119 67.7326
8 0.365180 0.376001 499.539 67.7691 8 0.367991 0.373288 500.873 67.7127
9 0.404128 0.417518 499.945 67.7322 9 0.408040 0.413808 500.942 67.6895
10 0.542957 0.563761 498.585 67.3585 10 0.550087 0.557028 497.678 67.3922
11 0.639037 0.660984 499.479 67.1520 11 0.646782 0.653782 496.801 67.2576
12 0.704860 0.724601 500.021 67.0006 12 0.711626 0.718265 496.102 67.1564
13 0.830794 0.838437 500.131 66.7259 13 0.832122 0.837074 494598 66.9469
14 0.857862 0.861829 499.735 66.6715 14 0.857651 0.862058 494.162 66.8939
15 0.911067 0.907950 500.446 66.7120 15 0.908019 0.911121 495.411 66.9138
16 0.959080 0.952793 498.795 66.7283 16 0.955278 0.956910 495.432 66.8623

residuals are well spread within their respective dependent variables, and ', as larger errors
standard deviations, with relatively few resid- ¢an be observed in the dependent variable
uals exceedingco;. Thus, assuming that one Based on this local optimum, one might well
found the global optimum, one can conclude conclude that the model being used was inade:
that these values of the standard deviations ap-duate. Of course, this conclusion would be in-
pear to be acceptable. This can be also ver-correct, since as seen from the globally optimal
ified through a quantitative statistical analysis Selution, this model is capable of providing a
(Gau [26]). Note that this global optimum is goqd fit to the datg. In evaIuatmg_ the ability of
consistent with the global optimum found us- &9iven modelto fita set of data, it is extremely
ing the previous standard deviation vector, both IMportant that the parameter estimation prob-
in terms of the optimal parameter values and the €M be correctly solved, to a global and not just
data reconciliation results. However, the results 10¢al, optimum.

at the local, but not global, optimum are quite 5. CONCLUDING REMARKS

different. We have demonstrated here that the interval-

The error residual distributions for the lo- Newton approach is a powerful, determinis-
cal but not global optimum are shown in Figs. tic global optimization methodology for the
16-19. These show that fa@il the variables reliable solution of EIV parameter estimation
there are a number of errors that are quite largeproblems. The approach provides both mathe:
relative to the standard deviation. Note that matical and computationguaranteeghat the
the error residual bounds of plus and minus global optimum in the parameter estimation
three standard deviations imposed in selectingproblem has been found. Though we have con
the initial search interval apply only to the in- centrated here on a VLE modeling problem, the
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Figure 12. Globally optimal error residuals in
Axy; = T1; — x1,; relative to o,, when o =
(0.003,0.0029,1.7,0.083)".
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Figure 13. Globally optimal error residuals in
Ayi; = U, — vyi,; relative to oy, when o =
(0.003,0.0029, 1.7,0.083)T.
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Figure 14.  Globally optimal error residuals in
AP, = P, — P, relative to op when ¢ =
(0.003,0.0029,1.7,0.083)".
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Figure 15.  Globally optimal error residuals in
AT, = T, — T; relative to o when ¢ =
(0.003,0.0029,1.7,0.083) ™.

interval methodology is a general-purpose ap- how important it is to know for sure that the
proach that can be applied to a wide variety correct answer has been obtained. As seen ii
of parameter estimation and data reconciliation the case of the third standard deviation vector
problems. However, the guaranteed reliability considered above, in evaluating the ability of a
of the interval approach comes at the expense ofgiven model to fit a set of data, it is extremely
significantly higher computation time require- important that the parameter estimation prob-
ments in comparison to local methods that pro- lem be correctly solved, to a global and, not just
vide no such guarantees. Thus, modelers mustocal, optimum. Failure to do so may result in
consider this trade-off, and ultimately decide the rejection of a perfectly adequate model.
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Figure 16. Locally (but not globally) optimal error resid-
uals inAzy; = 1, — =1, relative too,, wheno =
(0.003,0.0029,1.7,0.083)".
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Figure 17. Locally (but not globally) optimal error resid-
uals inAy,; = 91, — 11, relative too,, wheno =
(0.003,0.0029,1.7,0.083) ™.

The interval-Newton methodology de-
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Figure 18. Locally (but not globally) optimal error resid-
uals in AP, = P, — P, relative toocp wheno =
(0.003,0.0029,1.7,0.083)".
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Figure 19. Locally (but not globally) optimal error

residuals InNAT;, = T, — T, relative toocr wheno =
(0.003,0.0029,1.7,0.083)™.

tivity coefficient models (Stadtherr et al. [27];

scribed here is a powerful approach for non- McKinnon et al. [28]; Tessier et al. [29]) or
linear equation solving and global optimiza- equation-of-state models (Hua et al. [30-33];

tion.

Here it has been applied to the prob- Xu et al. [34]), the computation of azeotropes

lem of nonlinear parameter estimation and data(Maier et al. [35,36]) and critical points (Sradi
reconcilation; however, it can also be used in et al. [37]), the determination of solid-fluid

a wide variety of other applications.

These equilibrium (Xu et al. [38]), and density-

applications include the determination of fluid functional-theory calculations of adsorption in
phase stability and equilibrium, using either ac- nanoscale pores (Maier and Stadtherr [39]).
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