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Abstract

The use of interval methods, in particular interval-Newton/generalized-bisection techniques, provides an
approach that is mathematically and computationally guaranteed to reliably solve difficult nonlinear equa-
tion solving and global optimization problems, such as those that arise in chemical process modeling. The
most significant drawback of the currently used interval methods is the potentially high computational cost
that must be paid to obtain the mathematical and computational guarantees of certainty. New methodolo-
gies are described here for improving the efficiency of the interval approach. In particular, a new hybrid
preconditioning strategy, in which a simple pivoting preconditioner is used in combination with the standard
inverse-midpoint method, is presented, as is a new scheme for selection of the real point used in formulating
the interval-Newton equation. These techniques can be implemented with relatively little computational
overhead, and lead to a large reduction in the number of subintervals that must be tested during the interval-
Newton procedure. Tests on a variety of problems arising in chemical process modeling have shown that
the new methodologies lead to substantial reductions in computation time requirements, in many cases by

multiple orders of magnitude.



1 Introduction

The need to solve systems of nonlinear equations is of course an important issue in the field of scientific
and engineering computation. For example, in chemical process modeling there is a frequent need to deal
with nonlinear models of physical phenomena and of the manufacturing processes exploiting these phenom-
ena. Nonlinear equation solving problems may arise directly in solving such models, or indirectly in solving
optimization problems based on the models. Because of the nonlinearity of the systems to be solved, a num-
ber of reliability issues arise. For example, a system may have multiple solutions. In some casesalinding
the solutions may be necessary; in other cases, there may be only one physically correct solution, and some
assurance is needed that that solution is not missed. It may also be that a system has no solution. In this
situation, it is useful to know with certainty that this is in fact the case, and that failure to find a solution is
not due to some numerical or software issue. Furthermore, even if there is only a single solution, it may be
difficult to find using standard Newton or quasi-Newton techniques, since the convergence behavior of these
methods can be highly initialization dependent.

A wide variety of techniques have been introduced to try to address such reliability issues. For example,
trust-region approaches such as the dogleg method (e.g. Powell, 1970; Chen and Stadtherr, 1981; Lucia
and Liu, 1998) can improve convergence behavior. Homotopy-continuation methods (e.g., Wayburn and
Seader, 1987; Kuno and Seader, 1988; Sun and Seider, 1995; Jalali-Farahani and Seader, 2000) often provide
much improved reliability and also the capability for locating multiple solutions. However, all of these
approaches are still initialization dependent, and, except in some special cases, can provide no guarantee
that all solutions of the nonlinear system will be found. One approach to providing such guarantees is to
reformulate the equation solving problem as an optimization problem (e.g. Maranas and Floudas, 1995;
Harding et al., 1997; Harding and Floudas, 2000) and then apply powerful deterministic global optimization
techniques such as alpha-BB (Adjiman et al., 1998a,b), which employs a branch-and-bound methodology
using convex underestimating functions. This provides a mathematical guarantee that all solutions will be
located. However, to use this approach it may be necessary to perform problem reformulations and develop
convex underestimators specific to each new application.

Another approach for reliable nonlinear equation solving is the use of interval methods, in particular,
interval-Newton/generalized-bisection (IN/GB) techniques. This approach is mathemadicadibpmpu-
tationally guaranteed to find (or, more precisely, to enclose within very narrow intervals) any and all so-

lutions to a system of nonlinear equations. The computational guarantee is possible because the interval



methodology deals automatically with rounding error issues, and is emphasized since a purely mathemati-
cal guarantee may be lost once the technique offering it is implemented in floating point arithmetic. Good
introductions to the use of interval methods have been provided by Neumaier (1990), Hansen (1992), and
Kearfott (1996). While the use of interval techniques for nonlinear equation solving in process modeling
problems was originally explored some time ago (Shacham and Kehat, 1973), it has been only in recent
years that the methodology has been more widely studied (e.g., Schnepper and Stadtherr, 1996; Balaji and
Seader, 1995). Among the problems to which it has been successfully applied are phase stability analysis
(e.g., Stadtherr et al., 1995; McKinnon et al., 1996; Hua et al., 1996, 1998; Xu et al., 2000; Tessier et al.,
2000), computation of azeotropes (Maier et al., 1998, 2000), and parameter estimation in vapor/liquid equi-
librium models (Gau and Stadtherr, 2000a). Using the interval approach, these problems can be solved with
complete certainty. The methodology is general purpose and can be applied to a wide variety of equation
solving and optimization problems in process modeling.

The most significant drawback of the currently used interval methods is the potentially high computa-
tional cost (CPU time) that must be paid to obtain the mathematical and computational guarantees of cer-
tainty. In general, this has limited the size of problems that can be addressed using this methodology, though
problems involving over one hundred variables have been successfully solved (Schnepper and Stadtherr,
1996). We describe here new methodologies for improving the efficiency of the interval-Newton approach.
The focus is on the formulation and solution of the interval-Newton equation, a linear interval equation
system whose solution is a key step in the IN/GB algorithm. In particular, we consider the preconditioning
strategy used when solving the interval-Newton equation, and the selection of the real point used in formu-
lating the interval-Newton equation. The new techniques are tested using a variety of problems, leading to
large reductions in computation time requirements, in some cases by factors of two orders of magnitude or

more.

2 Background

2.1 Interval-Newton Method

A real interval X is defined as the set of real numbers lying between (and including) given upper and
lower bounds; that isX = [X,X] = {z € ® | X < x < X}. Here an underline is used to indicate

the lower bound of an interval and an overline is used to indicate the upper bound. A real interval vector



X = (X1,Xs,...,X,)"T hasn real interval components and can be interpreted geometrically as an
dimensional rectangle or box. Note that in this context uppercase quantities are intervals, and lowercase
guantities or uppercase quantities with underline or overline are real numbers.

Of particular interest here is the interval-Newton technique. Given a nonlinear equation system,
f(x) = 0, with a finite number of real roots in some specified initial interval, this technique provides the
capability to find narrow enclosures of all the roots of the system that are within the given initial interval. If
the problem is a global optimization problem, say the unconstrained minimizatiptwof then the equa-
tion system of interest i6(x) = V¢ (x) = 0. The global minimum will be a root of this nonlinear equation
system, but there may be many other roots as well, representing other local minima and maxima and saddle
points. Thus the capability to enclose all the roots of the equation system is needed, and this is provided by
the interval-Newton technique. In practice, by using the objective range test discussed below, the interval-
Newton procedure can be implemented so that roof§f = 0 that cannot be the global minimum need
not be found. If the global optimization problem is a constrained problem, then the interval-Newton method
can be applied to solve the KKT or Fritz-John conditions.

Beginning with some initial intervaK (") specified by the user, the solution algorithm is applied to a
sequence of subintervals. This initial interval can be chosen to be sufficiently large to enclose all physically
feasible behavior. For a subinterv®(®) in the sequence, the first step in the solution algorithm is the
function range test Here aninterval extensiorf(X(¥)) of the functionf(x) is calculated. An interval
extension provides upper and lower bounds on the range of values that a function may have in a given
interval. It is often computed by substituting the given interval into the function and then evaluating the
function using interval arithmetic. The interval extension so determined is often wider than the actual range
of function values, but it always includes the actual range. If there is any component of the interval extension
F(X %)) that does not contain zero, then we may discard the current subind&f¥alsince the range of
the function does not include zero anywhere in this subinterval, and thus no solufibn)cf 0 can exist
in this subinterval. We may then proceed to consider the next subinterval in the sequence. Otherwise, if
0 € F(X®), then testing oX %) continues.

If the problem is a global minimization problem, then the next step isothective range testThe
interval extensionb(X(*)), which contains the range df(x) over X(¥), is computed. If the lower bound
of ®(X™*)) is greater than a known upper bound on the global minimum(a§, thenX(*) cannot contain

the global minimum and need not be further tested. Otherwise, testiX§‘otontinues. In cases for which



it is desired to find all the stationary points (or KKT points) rather than just the global minimum, then this
step can be turned off.

The next step is thmterval-Newton testHere the linear interval equation system
FIXI)N® - 20) = —f(@®) (1)

is set up and solved for a new inter®l*), where F/(X (%)) is an interval extension of the Jacobian of

f(z), andz(*) is a point in the interior oX %), usually taken to be the midpoint. It has been shown that any

root z* contained inX(¥) is also contained in thienageN*). This implies that if there is no intersection
betweerX (*) andN (%) then no root exists iX *), and suggests the iteration schelé&+) = X* N®),

In addition to this iteration step, which can be used to tightly enclose a solution, it has been proven that if
N®*) is contained completely withiX (%), then there is ainiqueroot contained in the current subinterval

X(*). Thus, after computation dN(*) from Eq. (1), there are three possibilities: X®*) N N®*) = ¢,

meaning there is no root in the current subinteX&l) and it can be discarded; N*) ¢ X(*) meaning

that there is a unique root in the current subinteX&l); 3. Neither of the above. In the last case, if the
intersectionX (¥ NN () is sufficiently smaller tha’X(*), one can proceed by reapplying the interval-Newton

test to the intersection. Otherwise, the intersection is bisected, and the resulting two subintervals added to
the sequence of subintervals to be tested. This approach is referred to as an interval-Newton/generalized-
bisection (IN/GB) method. Attermination, meaning after all subintervals in the sequence (and thus the entire
initial search spacé((o)) have been tested, the result is either enclosures for all the real rofits)of= 0,

or the knowledge that no such roots exist. If desired, this technique can also be extended, as demonstrated,
for example, by Balaji and Seader (1995), to locate complex, not just real, zefds )of For additional
mathematical details, the monographs of Neumaier (1990), Hansen (1992), and Kearfott (1996) are very
useful.

When machine computations with interval arithmetic operations are done, the endpoints of an interval
are computed with a directed outward rounding. That is, the lower endpoint is rounded down to the next
machine-representable number and the upper endpoint is rounded up to the next machine-representable
number. In this way, through the use of interval, as opposed to floating point arithmetic, any potential
rounding error problems are eliminated. Overall, the IN/GB method described above provides a procedure
that is both mathematicallgnd computationally guaranteed to find narrow enclosures of all solutions of the
nonlinear equation systefifz) = 0, or to find the global minimum of the nonlinear functigiixz). As a

framework for our implementation of the IN/GB method, we use appropriately modified routines from the
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packages INTBIS (Kearfott et al., 1990) and INTLIB (Kearfott et al., 1994).

It should be emphasized that the enclosure, existence, and uniqueness properties discussed above, which
are the basis of the IN/GB method, can be derived without making any strong assumptions about the function
f(x) for which roots (zeros) are sought. The function must hafieite number of roots over the search
interval of interest; however, no special properties such as convexity or monotonicity are requirgd; jand
may have trancendental terms (e.g., Hua et al., 1998). It is assumef{4hais continuous over each
interval being tested; however, it need not be continuously differentiable. Instead, as shown by Neumaier
(1990), f(x) need only be Lipschitz continuous over the interval of interest; thus, functions with slope
discontinuities can be handled. In order to apply the method, it must be possible to determine an interval
extension of the Jacobian matrix (or of the “Lipschitz matrixf{fc) is not continuously differentiable).

In general, this requires having an analytic expressiof fo)); thus, the interval approach is generally not
suitable iff(x) is some kind of “black box” function. One difficulty with the interval-Newton approach

is that if a solution occurs at a singular point (i.e., where the Jacobidfuofis singular), then it is not
possible to obtain the result that identifies a unique solution. For such a case, the eventual result from the
IN/GB algorithm will be a very narrow interval for which all that can be concluded is that it may contain
one or more solutions. In other words, the algorithm will not miss the solution (so the guarantee to enclose
all solutions remains), but rather, will enclose it within a narrow interval which can then be examined using
an alternative methodology (e.g., Kearfott et al., 2000). This situation does not occur in any of the example
problems considered here.

For improving the efficiency of IN/GB methods, there are various approaches, including: 1. Methods
for dealing with the “dependency” issue in interval arithmetic, which may prevent the computation of inter-
val extensions that tightly bound the function range (e.g. Ratscheck and Rokne, 1984; Makino and Berz,
1999; Jansson, 2000); 2. Techniques that involve changes to the methodology at the level of the nonlinear
equation system (e.g., Alefeld et al., 1998; Granvilliers and Hains, 2000; van Hentenryck et al., 1997; Ratz,
1994; Herbort and Ratz, 1997; Yamamura et al., 1998; Yamamura and Nishizawa, 1999); 3. Methods that
seek to make improvements in solving the linear interval system defined by Eq. (1), the interval-Newton
equation (e.g., Kearfott, 1990; Hu, 1990; Kearfott et al., 1991; Gan et al., 1994; Hansen, 1997); or some
combination of the above (e.g., Madan, 1990; Dinkel et al., 1991; Kearfott, 1991; Kearfott, 1997). A com-
prehensive review or these and other techniques is beyond the scope of this paper. Our initial focus here

is on a methodology for solving the interval-Newton equation through the use of a hybrid preconditioning



technique. This combines a standard inverse-midpoint preconditioner with strategies developed from the
optimal preconditioning concepts of Kearfott and colleagues (Kearfott, 1990; Kearfott et al., 1991; Kearfott,
1996). Thus, we now provide some background on the solution of linear interval equation systems and on

these optimal preconditioning concepts.

2.2 Linear Interval Systems

Consider a linear interval equation systé&m = B, where the coefficient matriA and the right-hand-
side vectorB are intervals. The solution sétof this linear interval system is generally defined to be the
set of all vectorsz that satisfy the real linear systedz = b, where A is any real matrix contained in
A andb is any real vector contained B; that is,S = {z | Az = b,fi € A,b € B}. However, as
discussed and illustrated by Hansen (1992) and Kearfott (1996), this set is in general not an interval, and
may have a very complex polygonal geometry. Thus to “solve” the linear system, one instead seeks an
interval (solution hull)Z containingS. Computing the exact solution hull (tightest interval containt)ds
NP-hard; however, it is generally relatively easy to obtain an intédvillat contains, but may overestimate,
the exact solution hull. As discussed in detail by Kearfott (1996), the most common methods for doing this
are direct elimination methods (e.g., interval Gaussian elimination), interval Gauss-Seidel (e.g., Hansen and
Sengupta, 1981; Hansen and Greenburg, 1983), and the Krawczyk method (e.g., Krawczyk, 1969). For any
of these methods, the use of some preconditioning technique is necessary in practice to obtain reasonably
tight bounds on the solution set.

For the problem of interest, the interval-Newton equation, Eq. (1), the interval coefficient matrix is
A = F'(X®), the interval extension of the Jacobian over the current subinterval, the interval right-hand
side is the degenerate (thin) interBiwhose components afg; = [— fi(x*)), — f;(z(*))], and the solution
vector isN*) — () In the context of the interval-Newton method, the approach for solving the linear
system (i.e. bounding the solution set) that is most attractive (Kearfott, 1996) and widely used is interval

Gauss-Seidel, as described in more detail below.

2.3 Interval Gauss-Seidel

At the core of the interval-Newton method is the interval Gauss-Seidel procedure that is used to solve

Eq. (1) for the imagéN(*). The interval-Newton equation is first preconditioned using a real mtfix.



The preconditioned linear interval equation system can then be expressed as
Y(k)F’(X(’“))(N(’“) —z®)) = _Y(k?)f(w(k)) 2)

The preconditionet” () used here is commonly taken to beiamerse-midpoint preconditiongiHansen,
1965; Hansen and Sengupta, 1981; Hansen and Greenburg, 1983), which may be either the inverse of the
real matrix formed from the midpoints of the elements of the interval JacdBiéX (), or the inverse of
the real matrix determined by evaluating the point Jacolfiém) at the midpointz(*) of X (%),

Definingy; as the the-th row of the preconditioning matrix, andl; as thei-th column of the interval
JacobianF” (X(%)), then, beginning witliX = X*), the interval Gauss-Seidel scheme used in connection

with interval-Newton methods proceeds component by component according to
n
yif(@) + 3 yiA;(X; — )
].:.
N; = =z — = 3)

Vi
Qilyi)
Di(yi)’

wherey; A ; indicates the inner product of the real row vecggrand the interval column vectok ;, and

= xi—

Qi(y;) and D;(y;) are, respectively the numerator and denominator in the final term in Eq. (3), expressed
as functions ofy;, and then

fori = 1,...,n. Note that after componem¥; of the image is calculated from Eqg. (3) that the intersection

in Eq. (4) is immediately performed, and the updafédthen used in the computation of subsequent
components of the image. This means that this procedure actually does not enclose the full solution set of
Eqg. (1), but only the part of the solution set necessary for the interval-Newton iteration. Generally only one
pass is made through Egs. (3—4) and so after allXh@ave been updated the resultis= X*+1 the

next interval-Newton iterate.

2.4 Preconditioners

The inverse-midpoint preconditioner is a good general-purpose preconditioner. However, as demon-
strated by Kearfott (1990), it is not always the most effective approach. Thus, it is possible to seek other

preconditioners that are optimal in some sense. The basic concepts in generating optimal preconditioners



for the interval Gauss-Seidel step were pioneered by Kearfott and colleagues (e.g., Kearfott, 1990; Kearfott
etal., 1991; Hu, 1990) and summarized in some detail by Kearfott (1996).

In these studies, a distinction is first made between contracting (C) and splitting (E) preconditioners. A
preconditioning rowy; is called a C-preconditioner @f ¢ D;. In this case, since the denominator in Eq. (3)
does not contain zero, the resulting is a single connected interval. On the other hand, a preconditioning
row y; is called a E-preconditioner f € D;, 0 # D; and0 ¢ ;. In this case, since the denominator in
Eqg. (3) contains zero, an extended interval arithmetic (Kahan-Novoa-Ratz arithmetic) is needed to compute
N; and the result is the union of two disconnected semi-infinite intervals [see Kearfott (1996) for details and
examples]. When used in the intersection step, Eq. (4), the resltimpnsists of two finite disconnected
intervals, and so an E-preconditioner can serve as a tessellation scheme in addition to the usual tessellation
done in the bisection step of the IN/GB algorithm.

For either C- or E-preconditioners, various optimality criteria can be defined, generally based on some
property of NV;. In the context of interval-Newton, the most useful are typically the width-optimal precon-
ditioner and the endpoint-optimal preconditioners. To determine a width-optimal preconditioner, elements
of y; are sought that minimize the width &f;,. To determine an endpoint-optimal preconditioner, elements
of y; are sought that either maximize the left endpoint (lower bound) or minimize the right endpoint (upper
bound) of N;. Kearfott (1990) showed that, under some mild assumptions, these optimization problems
can be formulated and solved as linear programming (LP) problems. While the underlying optimization
problems have: degrees of freedom (the elements ofy;), the corresponding LP problems have at least
4n + 2 variables, as a number of auxiliary variables must be introduced in order to obtain the LP formu-
lation. Computational experience (Kearfott, 1990) has shown that, on some problems, the use of the LP
preconditioners can provide a significant reduction both in the number of subintervals that must be consid-
ered in the interval-Newton algorithm and in the overall CPU time required. However, in other problems,
the overhead required to implement the LP-based preconditioning scheme outweighed any reduction in the
number of subintervals tested, and overall CPU time actually increased. As one idea to make the optimal
preconditioners more practical, Kearfott (1990) suggested considering a sparse preconditioner, that is, one
in which only a small number of the elementsyqgfare allowed to be nonzero. A special case of this, the
properties of which have been described by Kearfott et al. (1991), is the “pivoting” preconditioner, in which
there is only one nonzero elementyinl In the new hybrid preconditioning approach described below, the

concept of the pivoting preconditioner is adopted.



3 Hybrid Preconditioning Approach

We seek to develop an approach to preconditioning that results in a large reduction in the number of
subintervals that must be tested in the interval-Newton algorithm, but that also can be implemented with
little computational overhead, so that large savings in computation time can be realized. To do this we
adopt a hybrid approach in which a simple pivoting preconditioner is used in combination with the standard
inverse-midpoint scheme.

In a pivoting preconditioner, only one element of the preconditioningyrpi& nonzero, and it is assigned
a value of one. Thus, if elemeritin y; is the “pivot element”, theny;; = 1 and all the other elements of
y; are zero. In applying such a preconditioning row in Eg. (3), the result®’favill obviously depend on

which elemeny of y; is used as the pivot. This can be expressed as

Qi

Ni)j=zi— () 5
vy =i~ (%), ®

where
Qi) = fi(x) + > Ajp(Xy, — a) (6)

o
and

(Di)j = Aji (7)

Here and below, the notatign ); is used to indicate a quantity that has been evaluated using elgroént
y; as the pivot in the pivoting preconditioner. Clearly, the results obtained for the image compgnant
thus the intersectiotV; N X;, can be manipulated by choosing different elemeris be the pivot. Thus,
some optimality criteria are needed to decide which eleménmichoose.

In order to reduce the number of subintervals that must be tested during the interval-Newton algo-
rithm, an obvious goal is to reduce the number of bisections that occur. Bisections do not occur whenever
X®*) 1 N*) = @, meaning there is no root in the current subintei&} and it can be discarded, or when
N®) <« X(*) meaning that there is known to be a unique root in the current subint&a] or if the
intersectionX (*) " IN(*) s sufficiently smaller thaiX *), meaning that another interval-Newton test is tried
on X®*) 0 N(*) rather than bisecting it. An optimality criterion that increases the likelihood of all these
possibilities is to seek to use a preconditioning pywhat minimizes the width ofV; N X;. This is treated

as two separate cases:



1. The rowy; is a “discarding-optimal” preconditioning row provided it resultsNip N X; = 0, indi-

cating thatV; N X; has a minimum width of zero.

2. The rowy; is a “contraction-optimal” preconditioning row provided thst N X; is nonempty, and
that it minimizesw[N; N X;], the width of N; N X;. Note that this is somewhat different than the more

common width-optimal preconditioner that minimizes the widthiNgf

We will seek to find optimal pivoting preconditioners of these types. A pivoting preconditioney yosv
discarding-optimal if there is some pivot elemgrin y; for which (V;); N X; = 0. A pivoting precondi-

tioner rowy; is contraction-optimal when the pivot elemenis the solution to the optimization problem
minw((N;); N X;]. If there exists a discarding-optimal rawy, then there is no contraction-optimal row.

: To look for a discarding-optimal pivoting preconditioner row, and, if none exists, to determine the

contraction-optimal pivoting preconditioner row, it is necessary to compute the endpoifit§)efusing

Eq. (5-7). Since these computations are done only for the purpose of selecting a preconditioning row, they
can be done cheaply using real (not interval) arithmetic. (Once the preconditioning row is chosen it must be
implemented in Eqg. (3) using interval arithmetic.) Two cases must be considered, corresponding to the C-
and E-type preconditioners. 0f¢ A;;, then we refer to elemerjtas a “C-pivot”; the right endpoint (upper

bound) of(N;); is then given by

- @) Q)i @), (@)

R[(Nl)j] = Tj — mln{ A]z ) A]Z ) Ajzj ) Ajzj (8)
and the left endpoint (lower bound) by

L[(Ni);] = @i — max{ (Ajij , (A]zj : (ijzj : (ijzj } (9)

If 0 € Aj; and0 ¢ (Q;);, then we refer to element as an “E-pivot”; for this case, Kahan-Novoa-

Ratz arithmetic is used, ar@V;); = (N;); U (Ni)j, the union of the semi-infinite intervalsV;); =

[—o0, R[(N:); )] and (N;); = [L[(N;)]], 0], where for the caséQ;); < 0, the finite bounds oriV;);

and(N;); are given by

RI(V);) = o — A5 (10
L[(Nz);r] =x; — (%)j ; (11)
i)
and, for(Q;); > 0, by
R[(N:); ] =i — (ii)j (12)



(13)

If 0 € Aj; andO € (Q;);, then there is no pivoting preconditioner corresponding to the eleyjnent

As already noted, use of the inverse-midpoint preconditioner does not always result in good performance
for the interval-Newton algorithm. In our experience, the use of pivoting preconditioners alone also does
not always result in good performance for the interval-Newton algorithm. Thus, we have adopted a hybrid
strategy. The basic idea is that, in determining a preconditioningyiowve first search for a discarding-
optimal pivoting preconditioner (since the vast majority of the subintervals that need to be tested in the
interval-Newton procedure will contain no roots and need to be discarded) and while doing so also deter-
mine the information needed to pick a contraction-optimal pivoting preconditioner if no discarding-optimal
pivoting preconditioner exists. If in fact there is no discarding-optimal pivoting preconditioner, then either
the contraction-optimal pivoting preconditioner or the inverse-midpoint preconditioner is used, depended on
which yields the smaller result for the width V; N X].

This hybrid scheme for determining the preconditioning sgwcan be summarized algorithmically as

follows:

1. Initialize: Setj = 1, j* = 0 andw* to some arbitrarily large numbej*(andw™* will be used to store

information for determining a contraction-optimal pivoting preconditioner).

2. Determine endpoints: Comput€;); and using this and!;; determine whethey is either a C- or
E-type pivot. Ifj is a C-type pivot then determine the endpointg &F); from Eqgs. (8-9). Ifj is
an E-type pivot then determine the finite endpoint$/§f); from Eqgs. (10-13). Ifj is neither C- or
E-type then go to Step 5.

3. Check if discarding-optimal: 1f is C-type and eitheR[(N;);] < X; or L[(N;);] > X;, orif j is
E-type and bottL[(V;);] > X; and R[(N;);] < Xi, then(V;); N X; = (0 and a discarding-optimal
pivoting preconditioner has been found. Stop and return to the interval Gauss-Seidel computation,
Eg. (3), using this as the preconditioning row. This should result in the current subir¥etyaing

discarded. Ifj is not discarding-optimal, then continue.

4. Update minimum intersection width: Computé(N;); N X;], noting that if;j is E-type that this is
the sum of the widths of( V;); N X;] and[(Ni);r N X;]. If w[(V;); N X;] < w*, thenj* — j and

11



5. lterate: Ifj < n, then sey < 5 + 1 and return to Step 2. If = n, continue.

6. Usingyi™, thei-th row of the inverse-midpoint preconditioner, compute from Eq. (3) the corre-
sponding image eleme¥™ and thenw™ = w[N™ N X;]. If w™ < w*, then usey!™ as
the preconditioning row. Ifv* < w™, then use the pivoting precondition with= 5*, since it is

contraction-optimal.

The procedure outlined above can be implemented very efficiently using real (not interval) arithmetic, since
it is used only to select a preconditioning row. When the preconditioning row selected is returned to Eq. (3),
the computation is done rigorously using interval arithmetic. The performance of this hybrid preconditioning

scheme will be demonstrated using the test problems below.

4 Selection of Real Point

In the interval-Newton equation, Eq. (1), the real paifit) is typically chosen to be the midpoint of the
current subintervaX (*). However, in principlez(*) can be any point i (%), and so could be chosen to try
to improve the performance of the interval-Newton procedure. For example, Alefeld et al. (1998) suggest a
scheme for selecting an improved real point in the context of a univariate interval-Newton algorithm. This
scheme is based on use of a local equation solver to make the function value at the real point closer to zero.
We use a different type of scheme here; itis coupled to the preconditioning scheme discussed above and tries
to further reduce the width of the intersectioN;); N X; determined using a pivoting preconditioner row
y; with pivot element;j. This scheme could be applied in connection with both the C- and E-preconditioner
cases, but the implementation for the C-preconditioner case involves less computational overhead than in
the E-preconditioner case, and so we have chosen to apply it only janlkenC-pivot.

In order to reducev[(N;); N X;], we can manipulate the real poimtin Eqgs. (5-6) to try to either
minimize the right end poinf2[(V;);] or maximize the left end poink[(V;);]. In our approach, we try
both of these possibilities and then use the one that provides the largest reduatiVii;, N X;]. To
determine exactly the optimal endpoints(d¥;),; with respect to the real point would require optimizing
an expression involving the possibly nonlinear functigx). Since this could be quite difficult, we will
seek only improved, not optimal, values of the endpoints. For this purpose, we willffraatdepending
only onzx;, the current coordinate in the Gauss-Seidel procedure.

To see how the real point can be adjusted to improve the endpoint§df) ; it is convenient to rewrite
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Eq. (5-7) as

(Qz)j fj(xz) +H
N =a; — 0 — g 14
( Z)j Z; Ajz' T Aji (14)
whereH is the summation
H= § A (X — o). (15)
k=1
k#i

The non-current coordinates,, k& # ¢, appear only in the terni//A;;. Thus to determine how to select
values of the non-current coordinates in the real point, we need only consider the effect of this last term on
the endpoints of V;);. To try to best improve (increasé)|(V;);], the values ofc;, k # 4, that result in
the minimum upper bound faf should be sought if{;; > 0, and the values afy, &k # 1, that result in
the maximum lower bound fal should be sought |.1’4—jZ < 0. Similarly, to try to best improve (decrease)
R[(N;),], the values ofry, k& # 1, that result in the maximum lower bound féf should be sought if
Aj; > 0, and the values af, k # 1, that result in the minimum upper bound f&F should be sought if
Ay <0,

Using Eqg. (15), and remembering that € Xy, it can be determined that the valuesf k& # i, that

minimize H are given by

Xp if Ay >0

T = x;r =9 X if Ay <0 (16)
Aj(Xy) — Ajn(X)
Yk — & if 0¢ Ajk

and that the values afy, k # 4, that maximizeH are given by

Xy if Ap >0

Xy, if Ajp <0 (17)
Ajn(Xe) — Ap(Xx)
Yk — & if 0¢ Ajk-

Tp =T, =

Thus, to try to increasé|(IV;);], then, fork # i, chooser;, = = if Aj; > 0 andxy, = z;; if Aj; <0, and
to try to decreas&[(N;),], then, fork # i, chooser), = z; if A;; > 0andx;, =z if A;; < 0. Note that
these choices will not necessarily have the desired effect, since the depend¢noa of, k # i, has been
neglected. Nevertheless, we have found this to be a useful scheme for many problems.

Selection of a value of the current coordinateéo increasd.[(1V;) ;] or decreasé[(V;),] is less straight-
forward, since, depending on whether the choice is made based ondhthe f;(x;)/A;; termin Eq. (14),

the choice will be different and contradictory. Looking just at theerm, L[(]NV;);] can be increased the
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most by settinge; = X;, andR[(NV;);] can be decreased the most by setting= X;. Looking just at the
fi(z:)/A;j; term, we first note thatl;; is an interval extension dff;/0x;, so that if4;; > 0, then f; is
monotonically increasing with respect 19, and if A;; < 0, then f; is monotonically decreasing with re-
spect tar; (the casd) € A;; is not considered since we are working with C-pivots only). Thus, in either the
case ofd;; > 0 or Aj; < 0, the termf;(z;) /A;; has its maximum lower bound af = X; and its minimum
upper bound at; = X;. So, based on the effect of thfe(x;) /A;; term, L[(N;);] can be increased the most
by settingz; = X;, andR[(NN;);] can be decreased the most by setting= X;, which is just the opposite

of the conclusion based on the term. In order to keep computational overhead low, a simple heuristic is
used to make the choice between these two possibilities. The heuristic is that the chgiig ledised on

the f;(x;)/A;; term whenever it ipossiblethat this will result in0 ¢ (Q;);. Otherwise, the choice af; is
based on the; term.

To understand this heuristic and see how it is implemented, it should first be noted that in order to
demonstrate that the subinterval currently being tested can be discarded, it is necessag thay;. If
this were not the case then, from Eq. (14).c (IV;);, meaning that the intersectigV;); N X; is nonnull
and thus the current interval cannot be discarded. Thus, it is desirable ¢haf););. However, it should
next be noted that, iQ;); = f; + H, the summation ternf/ from Eq. (15) does include zero since
x, € Xj. Thus, the resuld ¢ (Q;); can only be obtained if there is a positive valuefptvhose magnitude
is large enough so thdf + f; > 0, or there is a negative value ¢f whose magnitude is large enough so
that H + f; < 0. Since an interval extensiafy; of f; has already been determined as part of the function
range test, and it is known thate Fj; since otherwise the current subinterval would have already been
discarded, these possibilities can be easily checkefil #E >0orif H+ 5 < 0, then it ispossible
by choosingz; based on the;(x;)/A;; term, that the situatiof ¢ (Q;); could be achieved. Thus, to try
to increaseL[(N;),], setz; = X; if H + F; > 0, but otherwise set; = X;. Similarly, to try to decrease
R[(N;)], setz; = X; if H + Fj <0, but otherwise set; = X;.

Because the strategy for adjusting the real point can result in a significant computational overhead, es-
pecially when function evaluations are expensive, it is only attempted when there is reason to believe that it
might be effective. To make the decision on whether or not to apply the real point selection scheme, we use
two heuristics based on our experience with the approach. The first heuristic comes from the observation
that if the pivoting preconditioner has resulted in some improvement, then the real point selection scheme

is often effective in providing additional improvement. Thus, we apply the real point selection strategy
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whenever, after Step 4 aboviy[X;] — w[(N;); N X;]}/w[X;] > €1, wheree; indicates some minimum

level of improvement. Currently we use = 0, so if there is any improvement we proceed to apply the
real point selection scheme. The second heuristic is based on the observation that,(&yen 1 X,

some improvements may still be possible if the endpoint&\gf; are relatively close to the correspond-

ing endpoints ofX;. Thus, we also apply the real point selection scheme whenever, after Step 4 above,
{[X: — (No)j] + [(No); — Xal}/[Xi = Xi] = {w[(Ni);] — w[Xi]}/w[Xi] < ez, where we currently use

ez = 0.1. This requires that both endpoints @¥;); be relatively close to the corresponding endpoints of

X;. One might also use a heuristic requiring that only one endpoiWgf; be close to the corresponding
endpoint ofX;, but this has not been tried. If neither of these two heuristic conditions is satisfied, then the
real point selection scheme is skipped for the current pivot

The scheme used to select a real patne X is summarized algorithmically below. Note that this
procedure is coupled to the preconditioning scheme, and is implemented immediately after Step 4 in the

scheme outlined above.

4.1 Check for improved real point:

(a) (Check whether to skip) Set ande, (we uses; = 0 andey = 0.1).
i. If 0 € Aj;, thatis ifj is E-type, go to Step 5.
i I {w[X;] — w[(N;); N X;]}/w[X;] > e, go to Step 4.1(b).
ji. If {w[(NV;);] — w[X;]}/w[X;] < e, then continue; otherwise, go to Step 5.

(b) (Check left endpoint) Compute[(NN;); N X;] using a trial real poing, wherei, = z*, k # 1,
if Aji >0,0r&, =a~, k+#i,if A;; <0,and usingt; = X, if H+ F; > 0 or using#; = X;
otherwise. Ifw[(N;); N X;] < w*, thenx — &, j* «— j, andw* «— w[(V;); N X;].

(c) (Check right endpoint) Compute{(N;); N X;] using a trial real poink, wherez;, = 27, k # 1,
if Aji > 0,02, =2,k #1i, if A;; <0, and usingz; :EifFJr& < 0orusings; = X;

otherwise. Ifw[(N;); N X;] < w*, thenx — &, j* «— j, andw* — w[(N;); N X;].

Note that if no change is made in the real pairih either of Steps 4.1(b) or 4.1(c) above, theremains the
midpoint of X. As in the case of the preconditioning scheme, the steps outlined above can be implemented
using real arithmetic. However, once the appropriate real point has been selected, the computation in Eg.
(3) must be done using interval arithmetic. Also note that, if a compangof the real point is selected to

be equal to an endpoint of the current subinterval, then before substitution into Eq. (3), a directed rounding
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is done in order to ensure that € X;,. For example, if we set;, = X, thenz;, is rounded up, and if we
setz, = X}, thenz;, is rounded down.

In the usual interval-Newton approach Nf C X; for all components in the Gauss-Seidel solution of
Eqg. (1), then the conclusion is that there is a unique root in the current subirXeridis same conclusion
is also valid when the preconditioning scheme described above is used, since this just means that a different
preconditioning matrix is used in solving for each different component in the Gauss-Seidel scheme. How-
ever, this conclusion is in general not valid when the real peiistchanged, as suggested above, with each
different component in the Gauss-Seidel procedure, since in this case a different formulation of the interval-
Newton equation is being used to compute each different compadvjeoft the image. Nevertheless, since
eachh; is computed from a valid form of the interval-Newton equation, it is still possible to conclude that if
there is a root whoseth component:} is in X; thenz; must be inN;, and thus the use of the intersection
X; N N; to narrow or discard the current subinterval is still valid. If for some subinterval in which the
real point is changed, and the resilf C X; for all ¢ is obtained, then to try to show that this subinterval
contains a unigue root, we simply re-test this subinterval without use of the real point selection scheme
described here.

We now consider several example problems in which the performance of the interval-Newton method

with and without the new preconditioning and real point selection strategies is tested.

5 Numerical Experiments and Results

In this section, we present the results of numerical experiments done to test the effectiveness of the new
hybrid preconditioning strategy and real point selection scheme described above. The test problems include
a variety of global optimization and nonlinear equation solving problems arising in the context of process
systems engineering. For each case, all problem information, including detailed equation formulations,
equation parameters and other data, and the initial intervals used, are given in the references cited or in the

discussion below. All computations were performed on a Sun Ultra 2/1300 workstation.

5.1 Problem 1: Phase Stability Analysis

This problem involves the determination of phase stability from the UNIQUAC model of excess Gibbs
free energy (Tessier et al., 2000). The determination of phase stability is usually approached by using

tangent plane analysis, which states that a phase (or “feed”) at a specified tempgEraitessure”, and
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composition (mole fractiong is not stable if the molar Gibbs energy vs. composition suriéag ever falls

below a plane tangent to the surfacezal hat is, the feed is not stable if the tangent plane distance

D—Q(«’B)—go—zn:(gi)o(%—zi) (18)

i=1

is negative for any compositian. Here the subscript zero indicates evaluatiom at z andn is the number
of components. To determine whetheris ever negative, an optimization problem is solved in whits
minimized subjectta — 3", x; = 0. The stationary points in this optimization problem can be determined

by solving the nonlinear equation system

Kggf) B (6879)] - Kaaf) B (%)]O—Ov i=1,....n-1 (19)

n

1> a;=0. (20)

i=1

Thisn x n equation system is used here as an example problem to test the new interval methodologies. For
the case in whicly(x) is obtained using UNIQUAC, the details of the problem formulation are given by
Tessier et al. (2000), who solve the problem using an interval-Newton approach.

The specific problems considered are: 1. A four-component system of acetic acid, benzene, furfural
and cyclohexane 2. A five-component system containing the previous four components plus water. 3. A
six-component system of benzene, cyclohexane, 1,2-ethanediol, furfural, heptane, and water. The first two
problems were used by Tessier et al. (2000); the last is a new problem, with UNIQUAC parameters from
Sgrensen and Arlt (1979-1987). For each system, the UNIQUAC model was used and and a number of dif-
ferent feed compositions were considered. For solving these problems we use the methodology described by
Tessier at al. (2000) for computing function extensions. This involves the use of monotonicity information
and the evaluation of functions in the constrained space for which the mole fractions sum to one. Because
this constrained-space extension requires that the components of the real point in the interval-Newton equa-
tions sum to one, we are unable to test the new real point selection scheme on this problem. Only the effect
of the new hybrid preconditioning strategy will be investigated. The initial intervals used in all cases is
z; €10,1,i=1,...,n.

All the problems considered were successfully solved, with the computational performance shown in
Tables 1-3. In these Tables, computational performance is indicated both by the number of subintervals that

needed to be considered in each case, as well as by the CPU time. Here “IMP” refers to the results for the
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inverse-midpoint preconditioner, “HP” refers to the results for the new hybrid preconditioner, and “ImpFac”
refers to the improvement factor by which HP is better than IMP.

Looking first at the results for the four-component problem (Table 1), it is seen that the use of the
hybrid preconditioning scheme has resulted in an order of magnitude reduction in the number of subintervals
that needed to be considered in the interval-Newton algorithm. This is seen in the CPU time results as
well, though these improvement factors are not as large as in the number of subintervals, reflecting the
computational overhead required to implement the hybrid preconditioner. Based on an average over all the
tested feeds, the improvement factor due to use of the hybrid preconditioner is about 10.9 based on number
of subintervals and about 8.1 based on CPU time.

Not unexpectedly, improvement factors on the five- and six-component problems (Tables 2 and 3) are
even more pronounced, since there is increasingly more to gain on the larger problems. For the five-
component problem the average improvement factor is about 16.6 based on number of subintervals and
about 11.3 based on CPU time, while for the six-component problem the average improvement factors are
about 590 based on number of subintervals and about 425 based on CPU time. For the third feed considered
in the six-component problem, an improvement of three orders of magnitude was achieved in CPU time.
A problem that originally took over 40 hours to solve, could be solved in less than two-and-a-half minutes

when the new hybrid preconditioning strategy was used.

5.2 Problem 2: Mixture Critical Points

This problem involves the computation of mixture critical points from cubic equation-of-state models.
Stradi et al. (2001) have recently described how this can be accomplished reliably using an interval-Newton
methodology. In the problem formulation used by Stradi et al. (2001), the nonlinear equation system that

must be solved is

Ma

AijAnj :0, 1= 1,...,0 (21)

j=1
c C C
i1 j=1k=1
C
-3 A2 =0, (23)
=1

where A;; and A;;;, represent the second and third order derivatives of the Helmholtz free eAerih

respect to composition, and are nonlinear functions of temperdtuaed volumeV, both of which are
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unknown. Also,C is the total number of components and the,;, : = 1,...,C, represent unknown
changes in the number of moles of thecomponents. This is @' + 2) x (C + 2) equation system which
when solved fofl", V, andAn;, i = 1,...,C, yields the critical temperature and volume. For the cases
considered hered(T,V) is determined using the Peng-Robinson equation-of-state model. Details of the
problem formulation for this model, as well as model parameters and initial intervals used, are given by
Stradi (1999) and Stradi et al. (2001).

Three specific test problems are considered: 1. A three-component mixture of methane(1), carbon
dioxide(2), and hydrogen sulfide(3) with composition = 0.0700, 2 = 0.6160, andx3 = 0.3140; 2.

A four-component mixture of methane(1), ethane(2), propane(3), and nitrogen(4) with composition
0.4345, x9 = 0.0835, x3 = 0.4330, andz, = 0.0490; 3. A five-component mixture of methane(1),
ethane(2), propane(3j-butane(4) and nitrogen(5) with compositien = 0.9450, x5 = 0.0260, x3 =
0.0081, z4 = 0.0052, andzs = 0.0160. For these problems, the effects of using both the new hybrid
preconditioning strategy and the new real point selection scheme are considered.

All the problems were successfully solved, with the computational performance shown in Table 4. Here
the notation is the same as above, but with the additional notation “HP/RP” to indicate use of both the hybrid
preconditioner and real point selection schemes. From these results, it can be seen first of all that use of
the real point selection scheme does have a beneficial effect, both on the number of subintervals and the
CPU time. The overall improvements, however, are much less dramatic than in the phase stability prob-
lem, and, also in contrast to the phase stability problem, the improvement factors decrease with increased
problem size. This behavior suggests that, for these problems, the dominant factor leading to computational
inefficiency is not in formulating or solving the interval-Newton equation, the factors addressed here, but
instead in obtaining reasonably tight bounds on the function and Jacobian element ranges when their interval
extensions are computed, a factor not addressed here. This overestimation in computing interval extensions
is due to the dependency problem, which may arise when a variable occurs more than once in a function
expression, and the interval extension is computed used interval arithmetic (the “natural” interval extension).
While a variable may take on any value within its interval, it must take orsémeevalue each time it occurs
in an expression. However, this type of dependency is not recognized when the natural interval extension
is computed. In effect, when the natural interval extension is used, the range computed for the function is
the range that would occur if each instance of a particular variable were allowed to take on a different value

in its interval range. The expressions for the functions and Jacobian elements for the critical point problem
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are quite complicated, and grow increasingly so as the number of components increases, and so it is par-
ticularly difficult to get tight interval extensions using interval arithmetic. For the phase stability problem,
tighter interval extensions could be obtained by using the monotonicity and constrained-space extensions
described by Tessier et al. (2000). Similar techniques might be useful in improving the performance of the

interval-Newton algorithm on the mixture critical point problem.

5.3 Problem 3: Parameter Estimation in VLE Modeling

This is a problem that has also been used by Kim et al. (1990) and Esposito and Floudas (1998). Itis a
parameter estimation problem using the error-in-variable (EIV) approach to estimate parameters in the van
Laar equation for activity coefficients used to model vapor-liquid equilibrium (VLE). These two parameters
are estimated from binary VLE data for the binary system of methanol and 1,2-dichloroethane. The ex-
perimental data consist of five experimental data points for four measured state variables, namely pressure,
temperature, liquid-phase mole fraction of methanol, and vapor-phase mole fraction of methanol. Complete
details of the problem are given by Gau and Stadtherr (2000b), who formulate it as an unconstrained global
optimization problem with 12 variables. A maximume-likelihood-based estimator is optimized by applying
the interval-Newton methodology to solve for the stationary points in the optimization problem. The ef-
fects of using both the new hybrid preconditioning strategy and the new real point selection scheme are
considered.

This global optimization problem was solved successfully, with computational performance results
shown in Table 5. When using the standard inverse-midpoint preconditioner, the program was still running
after two CPU days and was terminated at this point. However, when using the new hybrid preconditioner,
the problem was solved in only 1504.2 CPU seconds. When the real point selection scheme was also ap-
plied, the CPU time dropped to 807.9 CPU seconds. This is roughly half the CPU time required by Esposito
and Floudas (1998) to solve the problem on an HP 9000 C160 machine (which, based on the SPECfp95
benchmark, is a slightly faster machine than the Sun Ultra 2/1300 used here). Even if the problem had been
solved using the inverse-midpoint preconditioner after 2 CPU days, the improvement factor due to the use

of the new methodologies described here is over two orders of magnitude.
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5.4 Problem 4: Parameter Estimation in Reactor Modeling

This is another problem from Kim et al. (1990) and Esposito and Floudas (1998). It is a parameter
estimation problem using the EIV approach to estimate kinetic parameters for an irreversible, first-order
reactionA — B, using data from an adiabatic CSTR. There are ten data points for five measured state
variables, namely the CSTR inlet and outlet temperatures, the outlet concentrations of A and B, and the inlet
concentration of A. Complete details of the problem are given by Gau and Stadtherr (2000b), who formulate
it as an unconstrained global optimization problem with 22 variables. Again a maximum-likelihood-based
estimator is optimized by using interval-Newton to determine the stationary points in the optimization prob-
lem, and the effects of using both the new hybrid preconditioning strategy and the new real point selection
scheme are considered.

This global optimization problem was successfully solved, with the results for computational perfor-
mance shown in Table 5. As in the previous problem, when the inverse-midpoint preconditioner alone was
used, the program was still executing after two CPU days and so was terminated without reaching a solu-
tion. However, when the hybrid preconditioning strategy was used the problem was solved in only 255.2
CPU seconds, and with the addition of the real point selection scheme, in only 28.8 CPU seconds. Relative
to the 2 CPU days spent without reaching a solution when the inverse midpoint preconditioner was used,
the improvement factor when using the new methodologies approaches four orders of magnitude. Again,
the solution time (28.8 CPU seconds) compares very favorably with that reported by Esposito and Floudas
(1998), who tried three different problem formulations, with a fastest solution time of 282.2 CPU seconds

on an HP 9000 C160, which, as noted above, is a slightly faster machine than the Sun Ultra 2/1300.

6 Concluding Remarks

We have described here new methodologies for improving the efficiency of the interval-Newton ap-
proach for the reliable solution of difficult global optimization and nonlinear equation solving problems. In
particular, we have presented a new hybrid preconditioning strategy, in which a simple pivoting precondi-
tioner is used in combination with the standard inverse-midpoint method, and a new scheme for selecting
the real point in formulating the interval-Newton equation. These techniques can be implemented with rel-
atively little computational overhead, and lead to a large reduction in the number of subintervals that must

be tested during the interval-Newton procedure. Tests on a variety of problems arising in chemical process
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modeling have shown that the new methodologies lead to substantial reductions in CPU time requirements,
in many cases by multiple orders of magnitude. For each of the two parameter estimation examples, the
interval-Newton solution of the global optimization problem was essentially intractable using the standard
methodology; however, when the new strategies were applied, these problem could be solved easily.

The use of interval-Newton/generalized-bisection methods represents a powerful and general-purpose
approach to the solution of a number of difficult global optimization and nonlinear equation solving prob-
lems, such as arise in chemical process engineering. Continuing improvements in methodology, together
with advances in software (e.g., compilers that treat intervals as a standard data type) and hardware (e.g.,

faster processors and parallel computing) will make this an increasingly attractive problem solving tool.
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Table 1. Computational performance on Problem 1: Phase stability analysis for mixtures of
acetic acid(1), benzene(2), furfural(3), and cyclohexane(4)

Number of Subintervals Tested CPU Time (s)

Feed €1, 2o, 23, 24) IMP HP ImpFac IMP HP ImpFac
(0.25,0.25,0.25,0.25)| 4,209 906 4.6 1.29 0.37 3.5
(0.05, 0.20,0.35,0.40)| 7,095 849 8.4 2.19 0.36 6.1
(0.05,0.21,0.34,0.40)| 8,491 919 9.2 2.61 0.38 6.9
(0.05, 0.22,0.33,0.40) | 10,955 1,016 10.8 3.41 0.42 8.1
(0.05, 0.23,0.32,0.40)| 26,947 1,247 21.6 8.27 0.52 15.9

*CPU time on Sun Ultra 2/1300 workstation



Table 2. Computational performance on Problem 1: Phase stability analysis for mixtures of
acetic acid(1), benzene(2), furfural(3), cyclohexane(4), and water(5)

6¢

Number of Subintervals Tested CPU Time (s)

Feed §1, 2o, 23, 24, 25) IMP HP ImpFac IMP HP ImpFac
(0.20, 0.20,0.20, 0.20, 0.20) 311,745 18,194 17.1 143.68 12.21 11.7
(0.20, 0.25,0.20, 0.15, 0.20) 352,054 19,447 18.1 161.25 13.06 12.3
(0.20, 0.25,0.25, 0.15, 0.15%) 647,875 23,678 27.4 296.40 16.25 18.2
(0.10, 0.25,0.25, 0.15, 0.25) 114,753 14,537 7.9 55.28 9.59 5.8
(0.15, 0.25,0.25, 0.10, 0.25) 214,395 17,280 12.4 100.63 11.55 8.7

*CPU time on Sun Ultra 2/1300 workstation
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Table 3. Computational performance on Problem 1: Phase stability analysis for mixtures of
benzene(1), cyclohexane(2), 1,2-ethanediol(3), furfural(4), heptane(5), and water(6).

Number of Subintervals Tested CPU Time (s)

Feed €1, 29, 23, 24, 25, 26) IMP HP ImpFac IMP HP ImpFac
(0.10, 0.25,0.10, 0.25, 0.10, 0.20)69,567,565 153,876 452.1| 50217.3 152.0 330.4
(0.25, 0.10,0.10, 0.10, 0.25, 0.2p) 9,748,253 122,781 79.4 7077.5 119.9 59.0
(0.10, 0.20,0.10, 0.25, 0.25, 0.1pR05,932,188 148,331 1388 | 146903 147.7 994.6
(0.20, 0.10,0.10, 0.30, 0.10, 0.20)81,081,374 176,206 460.2| 57900.7 176.1 328.8
(0.10, 0.10,0.10, 0.20, 0.25, 0.25)68,597,673 118,569 578.5| 48986.6 116.4 420.8

*CPU time on Sun Ultra 2/1300 workstation




Table 4. Computational performance on Problem 2: Computation of mixture critical points.

Number of Subintervals Tested CPU Time (s)

Mixture IMP HP (ImpFac) HP/RP (ImpFag) IMP  HP (ImpFac) HP/RP (ImpFag

T€

1 405,623 72,157 (5.6) 32,296 (12.6) 154.9  30.8 (5.0) 20.7 (7.5)
2 | 4,068,420 1,084,110 (3.8) 483,227 (8.4)2094.1  658.8 (3.2) 406.5 (5.2)

3 | 7,351,170 3,416,481 (2.2) 2,121,333 (3.40909.1 2539.2 (1.9)  1796.2 (2.7)

*CPU time on Sun Ultra 2/1300 workstation
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Table 5. Computational performance on Problems 3 and 4: Parameter estimation using EIV approach.

CPU Time (s}
Problem IMP HP (ImpFac¢) HP/RP (ImpFat)
3 > 172,80Q 1504.2 ¢ 115) 807.9 ¢ 214)
4 > 172,80Q 255.2 ¢ 677) 28.8 ¢ 6000)

*CPU time on Sun Ultra 2/1300 workstation
TProgram was terminated after 2 CPU days without reaching solution
IRelative to 2 CPU days spent without reaching solution
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