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Abstract

Branch-and-prune (BP) and branch-and-bound (BB) techniques are commonly used for intelligent search

in finding all solutions, or the optimal solution, within a space of interest. The corresponding binary tree

structure provides a natural parallelism allowing concurrent evaluation of subproblems using parallel com-

puting technology. Of special interest here are techniques derived from interval analysis, in particular an

interval-Newton/generalized-bisection procedure. In this context, we discuss issues of load balancing and

work scheduling that arise in the implementation of parallel interval-Newton on a cluster of workstations

using message passing, and describe and analyze techniques for this purpose. Results using an asynchronous

diffusive load balancing strategy show that a consistently high efficiency can be achieved in solving non-

linear equations, providing excellent scalability, especially with the use of a two-dimensional torus virtual

network. The effectiveness of the approach used, especially in connection with a novel stack management

scheme, is also demonstrated in the consistent superlinear speedups observed in performing global opti-

mization.



1 Introduction

Process systems engineering involves the development and application of computer-aided, model-based

techniques for the design, optimization, operation and control of chemical processing systems, as well as for

the associated planning, scheduling and maintenance problems. In this field, two core numerical issues are

the solution of nonlinear equation systems and of nonlinear programming (optimization) problems. How-

ever, neither of these problems can be solved with complete reliability using standard techniques. In this

context, it has been shown (e.g., Vaidyanathan and El-Halwagi, 1994; Balaji and Seader, 1995; Stadtherr et

al., 1995; Schnepper and Stadtherr, 1996; Hua et al., 1996, 1998; McKinnon et al., 1996; Byrne and Bogle,

1996, 2000; Han et al., 1997; Maier et al., 1998, 2000; Berner et al., 1999; Tessier et al., 2000; Gau and

Stadtherr, 2000; Gau et al., 2000; Xu et al., 2000; Stradi et al., 2001; Maier and Stadtherr, 2001) that meth-

ods based on interval mathematics, such as the interval-Newton technique (e.g., Neumaier, 1990; Hansen,

1992; Kearfott, 1996), can be used to solve the nonlinear equation solving and optimization problems with

complete reliability, providing a mathematical and computationalguaranteethat eitherall roots are found in

the nonlinear equation solving problem, or that theglobal optimum is found in the nonlinear programming

problem. Unfortunately, though not unexpectedly, this guarantee of reliability may come at the cost of a high

CPU time requirement, though it is often difficult to predict from problem characteristics, such as number of

variables, when this is going to be the case. Fortunately, the interval-Newton method is implemented using

branch-and-prune (BP) or branch-and-bound (BB) strategies that present a natural parallelism, and which

therefore are particularly amenable to parallel processing. Thus, we seek to make effective use of high per-

formance computing technology (parallel computing) to implement BP and BB strategies for reliably and

efficiently solving problems in chemical process modeling and engineering.

Of particular interest here is the use of distributed parallel computing using a cluster of workstations, in

which multiple workstations on a network are used as a single parallel computing resource by employing

message passing. This sort of parallel computing system has advantages since it is relatively inexpensive,

and is based on widely available hardware. Thus, such an approach to parallel computing has become a

important trend in providing high performance computing resources in science and engineering. In this

paper, we focus specifically on issues of load balancing and scheduling that arise in the implementation of

parallel BB and BP using message passing on a workstation cluster, and describe and analyze techniques

for this purpose. In particular, we will consider load balancing and scheduling in the context of an interval-

Newton/generalized-bisection (IN/GB) algorithm, details of which are given by Schnepper and Stadtherr

(1996). Applications to problems arising in chemical process engineering are used to demonstrated the ef-
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fectiveness of the approach used. These example problems are: 1. Estimation of parameters in the Wilson

equation using a maximum likelihood objective for a mixture of formic acid and water (Gau, 2001); 2. Com-

putation of mixture critical points from cubic equation-of-state models (Stradi et al., 2001); 3. Estimation

of parameters in the Van Laar equation using an error-in-variables approach for a mixture of methanol and

1,2-dichloroethane (Gau and Stadtherr, 2000; Esposito and Floudas, 1998).

2 Background

Branch-and-prune and branch-and-bound algorithms are general-purpose intelligent search techniques

for finding all solutions, or the optimal solution, within a search space of interest, and have a wide range of

applications. These techniques employ successive decomposition (tessellation) of the global problem into

smaller disjoint or independent subproblems that are solved recursively until all solutions, or the optimal

solution, are found. BB and BP methods have many important applications in engineering and science,

especially when a global solution to an optimization problem, or all solutions to a nonlinear equation solving

problem are sought. In chemical engineering, these applications include process synthesis (e.g., Fraga and

McKinnon, 1994, 1995; Acevedo and Pistikopoulos, 1998; Adjiman et al., 2000), process scheduling (e.g.,

Pekny et al., 1990, 1993; Kudva and Pekny, 1995; Subrahmanyam et al., 1996), analysis of phase behavior

(e.g., Stadtherr et al., 1995; McDonald and Floudas, 1997; Hua et al., 1996, 1998; Maier et al., 1998, 2000;

Harding et al., 1997; Harding and Floudas, 2000; Xu et al, 2000), parameter estimation (e.g., Esposito and

Floudas, 1998; Gau et al., 2000; Gau and Stadtherr, 2000), molecular modeling (e.g., Maranas and Floudas,

1993; Klepeis and Floudas, 2000), and many other applications of interest.

In BP, a subproblem is typically processed in some way to verify the existence of a feasible solution.

The subproblem may be examined by a series of tests, and is pruned when it fails specified criteria or if a

unique solution can be found inside this subdomain. If no conclusion is available, and so the subproblem

cannot be pruned, the problem is bisected into two additional subproblems (nodes), generating abinary tree

structure. One of the subproblems is then put in a stack (or work queue) and tests are continued on the

other. This type of BP procedure underlies the application of the interval-Newton approach to equation-

solving problems. In this case, the pruning scheme consists of a function range test and the interval-Newton

existence and uniqueness test. There are three situations in which a node (here an interval or “box”) can be

pruned: (1) there is some component of the function range that does not contain zero; (2) a unique solution

is proven to be enclosed, and (3) it is proven that no solutions exist. With these pruning criteria, a scheme

can be constructed that searches the entire binary tree and finds (or, more precisely, encloses within narrow
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intervals) all solutions of the equation system, or determines that there are none.

In BB, the goal is typically to find a globally optimal solution to some problem. BB may be built on

top of BP schemes by embedding an additional pruning test. In this test, a node is pruned when its optimal

(lower bounding) solution is guaranteed to be worse (greater) than some known current best value (an upper

bound on the global minimum). Thus, one avoids visiting subproblems which are known not to contain

the globally optimal solution. In this context, various heuristic schemes may be of considerable importance

in maintaining search efficiency. For example, when solving global minimization problems using interval

analysis, the best upper bound value may be generated and updated by some heuristic combination of an

interval extension of the objective function, a point objective function evaluation with interval arithmetic,

and a local minimization with a verification by interval analysis. In order to enhance bounding and pruning

efficiency, some approaches also apply a priority list scheme in BB. In this case, all problems in the stack

are rearranged in the order of some importance index, such as a lower bound value. The idea is that the most

important subproblems stored in the stack are examined with higher priority, in the hope that the global

optimum be found early in the search process, thus allowing other later subproblems that do not possess the

global optimum to be quickly pruned before they generate new nodes.

In BB or BP search, the shape and size of the search space typically changes as the search proceeds.

Portions that contain a solution might be highly expanded with many nodes and branches, while portions

that have no solutions might be discarded immediately, thus resulting in an irregularly structured search

tree. It is only through actual program execution that it becomes apparent how much work is associated with

individual subproblems and thus what the actual structure of the search tree is. Since the subproblems to

be solved are independent, execution of both BP and BB on parallel computing systems can clearly provide

improvements in computational efficiency; thus the use of parallel computing to implement BP and BB

has attracted significant attention (e.g., McKeown et al., 1992; Rushmeier, 1993; Gendron and Crainic,

1994; Kumar et al., 1994; Correa and Ferreira, 1996; Mitra et al., 1997; Correa, 2000; Schnepper and

Stadtherr, 1993, 1996; Epperly, 1995; Androulakis et al., 1996; Androulakis and Floudas, 1998; Berner et

al., 1999; Smith and Pantelides, 1999; Sinha et al., 1999). However, because of the irregular structure of the

binary tree, this implementation on distributed systems is often not straightforward. Details concerning the

methodology for implementing BP and BB on distributed parallel systems will be discussed in later sections.

In implementing an interval-Newton algorithm, there are opportunities for the use of parallel computing

at multiple levels. On a fine-grained level, the basic interval arithmetic operations can be parallelized (e.g.,

Rump, 1999). On a larger-grained level, the solution of the linear interval equation system for the image

can be parallelized (e.g., Frommer and Mayer, 1989; Gan et al., 1994; Hu et al., 1995; Hu, 1996). Then,
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as already noted, on a coarse-grained level, each independent subproblem (box) generated in the bisection

process can be tested in parallel (e.g., Schnepper and Stadtherr, 1993, 1996; Berner et al., 1999; Sinha et al.,

1999). It is only this coarsest level of parallelism that will be considered here.

3 Dynamic Load Balancing

As noted above, since the subproblems to be solved are independent, the execution of interval-Newton

techniques, whether BP or BB, on distributed parallel systems can clearly provide improvements in compu-

tational efficiency. And since, for some practical problems, the binary tree that needs to be searched may be

quite large, there may in fact be a strong motivation for trying to exploit the opportunity for parallel com-

puting. However, because of the irregular structure of the binary tree, doing this may not be straightforward.

While executing a program to assign the unprocessed workload (stack boxes) to available processors,

the irregularity of the tree could cause a highly uneven distribution of work among processors and result

in poor utilization of computing resources. Newly generated boxes at some tree nodes, due to bisection,

could cause some processors to become highly loaded while others, if processing tree nodes that can be

pruned, could become idle or lightly loaded. In this context, we need an effective dynamic load balancing

and work scheduling scheme to perform the parallel tree search efficiently. To manage the load balancing

problem, one seeks to apply an optimal work scheduling strategy to transfer workload (boxes to be tested)

automatically from heavily loaded processors to lightly loaded processors or processors approaching an idle

state. The primary goal of dynamic load balancing algorithms is to schedule workload among processors

during program execution and to prevent the appearance of idle processors, while minimizing interprocessor

communication cost and thus maximizing the utilization of the computing resources.

A common load balancing strategy is the “manager-worker” scheme (e.g., Fraga and McKinnon, 1995;

Androulakis et al, 1996; Schnepper and Stadtherr, 1996; Smith and Pantelides, 1999; Sinha et al., 1999),

in which a single “manager” processor centrally conducts a group of “worker” processors to perform a task

concurrently. This scheme has been popular in part because it is relatively easy to implement. It amounts

to using a centralized pool to buffer workloads among processors. However, as the number of processors

becomes large, such a centralized scheme could result in a significant communication overhead expense,

as well as contention on the manager processor. As a result, in many cases, especially in the context of a

tightly coupled cluster, this scheme does not exhibit particularly good scalability. Thus, to avoid bottlenecks

and high communication overhead, we concentrate here on decentralized schemes (without a global stack

manager), and consider three types of load balancing algorithms specifically designed for network-based
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parallel computing using message passing. It should be noted, however, that for loosely coupled systems,

the manager-worker scheme can be quite effective, as demonstrated, for example, in the metaNEOS project

(Anstreicher et al, 2000; Goux, et al., 2000).

The parallel algorithms considered adopt a distributed strategy that allows each processor to locally

make workload placement decisions. This strategy helps a processor maintain for itself a moderate local

workload stack, hopefully preventing itself from becoming idle, and alleviates bottleneck effects when ap-

plied on large-scale multicomputers. Distributed parallel algorithms of this type are basically composed of

five phases: workload measurement, state information exchange, transfer initiation, workload placement,

and global termination. Each of these phases is now discussed in more detail.

3.1 Workload Measurement

As the first stage in a dynamic load balancing operation, workload measurement involves evaluation

of the current local workload using some “work index”. This is a criterion that needs to be calculated

frequently, and so it must be inexpensive to determine. It also needs to be sufficiently precise for purposes

of making good workload placement decisions later. In the context of interval BP and BB, a good approach

is to simply use the stack length (number of boxes) as the work index. This index is effective since: 1. A

long stack represents a heavy workload in a local processor and vise versa; 2. Exhibiting an empty stack

indicates the local processor is approaching an idle state; 3. A more precise representation of workload

by work index may not be needed, since it may not be necessary to maintain an equal workload on all

processors, but merely to prevent the appearance of idle states. Thus, the stack length can serve as a simple,

yet effective, workload index.

3.2 State Information Exchange

After all processors identify their own workload state, the parallel algorithm makes this local informa-

tion available to all other cooperating processors, through interprocessor message passing, to construct a

global work index vector. The cooperating processors are a group of processors participating in load bal-

ancing operations with a local processor, and define the domain of interprocessor communication, thereby

determining avirtual networkfor cooperation. The range of this domain is critical in determining the cost

of communication and the performance of load balancing. One possibility is that the cooperating proces-

sors could include all processors available on the network, and a global all-to-all communication scheme

could then used to update global state information. This provides a very up-to-date global work index vector

but might come at the expense of high communication overhead. Alternatively, the cooperating processors
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might include only a small subset of the available processors, with this small subset defining a local proces-

sor’s nearest “neighbors” in the virtual network. Now one needs only to employ cheap local point-to-point

communication operations. However, without a good load balancing algorithm, these local schemes could

more readily result in workload imbalance and idle states.

3.3 Transfer Initiation

After obtaining an overview of the workload state, at least for the group of cooperating (neighboring)

processors, load balancing algorithms now need to decide if a workload placement is necessary to maintain

balance and prevent an idle state. This is done according to an initiation policy that dictates under what con-

ditions a workload (box) transfer is initiated, and decides which processors will trigger the load balancing

operation. Generally, the migration of boxes from one processor to another processor can be initiated either

periodically or on demand. When triggered on demand, the load balancing operations are event driven ac-

cording to different procedures, such as a sender-initiate scheme (e.g., Vornberger, 1987; Troya and Ortega,

1989; Quinn, 1990), a receiver-initiate scheme (e.g., Vornberger, 1986; Finkel and Manber, 1987; Rao and

Kumar, 1987) and a symmetric scheme (e.g., Luling and Monien, 1989; Clausen and Traff, 1991; Epperly,

1995). In the sender-initiate scheme, when the workload of any processor is too heavy and exceeds an up-

per threshold, the overloaded processor will offload some of its stack boxes to another processor through

the network. The receiver-initiate approach works in the opposite way by having an underloaded processor

request boxes from heavily loaded processors, when the underloaded processor’s workload is less than a

lower threshold. The symmetric scheme combines the previous two strategies and allows both underloaded

and overloaded processors to initiate load balancing operations.

3.4 Workload Placement

The next step in a dynamic load balancing algorithm is to complete a workload placement. Here the

donor processor splits the local stack into two parts, sending one part to another processor and retaining

the other. This operation is done according to a transfer policy consisting of two rules: a work-adjusting

rule and a work-selection rule. The work-adjusting rule determines how to distribute workload among

processors and how many stack boxes are to be transferred. If the receiving processor gets too little work,

it may quickly become idle; if the donor processor offloads too much work, it itself could also become

idle. In either case, the result would eventually intensify the communication needed to perform later load

balancing operations. Many approaches (e.g., Cybenko, 1989; Eager et al., 1986; Willebeek-LeMair and

Reeves, 1993; Franklin and Govindan, 1993) are available for this rule. One simple approach is to transfer
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a constant number of work units (boxes) upon receiving a request, such as in awork stealingstrategy (e.g.,

Blumofe and Leiserson, 1994, 1999). A more sophisticated approach is to adopt adiffusive propagation

strategy (e.g., Cybenko, 1989; Heirich and Taylor, 1995, Heirich and Arvo, 1998), which takes into account

the workload states on both sides and adjusts the workload dynamically with a mechanism analogous to

heat or mass diffusion. Another approach is for a donor processor to place workload at a randomly selected

neighbor processor. Since this simplifies the work placement decision, a random scheme may be attractive

when there are a relatively large number of neighbor processors that are candidates for work placement, or

when global all-to-all communication is used, since this also indicates that there are a large number of work

placement candidates. The relative performance of difference policies for workload adjustment will depend

on a number of factors, including task granularity and the virtual connectivity scheme being used.

In addition to the quantity of workload, as measured by the work index, the “quality” of transferred

boxes is also an important issue. In this context, a work-selection rule is applied to select the most suitable

boxes to transmit in order to supply adequate work to the receiving processor, and thus reduce the demands

for further load balancing operations later. Although it is difficult to precisely estimate the size of the tree

(or total work) rooted at an unexamined node (box), many heuristic rules have been proposed to select the

appropriate boxes. One rule-of-thumb is to transmit boxes near the initial root of the overall binary tree,

because these boxes tend to have more future work associated with the subsequent tree rooted at them (e.g.,

Foster, 1995). While this has been demonstrated to be a good selection rule in many tree search applications,

this and other such selection rules will not necessarily have a strong influence on the performance of a

parallel BP algorithm applied to solve equation-solving problems using interval analysis. However, the

selection rule used can have a strong impact on a parallel BB algorithm when solving global minimization

problems, since, by affecting the evaluation sequence of boxes, it in turn affects the time at which good

upper bounds on the global minimum are identified. In general, the earlier a good upper bound on the global

minimum can be found, the less work that needs to be done to complete the global minimization, since this

means it is more likely that boxes can be pruned using an objective range test. This issue will be addressed

in more detail below.

3.5 Global Termination

Parallel computation will be terminated when the globally optimal solution for BB problems, or all fea-

sible solutions for BP problems, have been found over the entire binary tree, making all processors idle. For

a synchronous parallel algorithm, global termination can be easily detected through global communication

or periodic state information exchange. However, detecting the global termination stage is a more difficult
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task for an asynchronous distributed algorithm, not only because of the lack of global or centralized control,

but also because there is a need to guarantee that upon termination no unexamined workload remains in the

communication network due to message passing. One commonly used approach that provides a reliable and

robust solution to this problem is Dijkstra’s token termination detection algorithm (Dijkstra and Scholten,

1980; Dijkstra et al., 1983; Kumar et al., 1994).

4 Implementation of Dynamic Load Balancing Algorithms

In this section, a sequence of three algorithms (SWS, SDLB and ADLB) is described for load balancing

in a binary tree, with each algorithm in the sequence representing an improvement in principle over the

previous one. The last method (ADLB) represents a synthesis of the most attractive and effective strategies

adapted from previous research studies, and also incorporates some novel strategies in this context. Though

ADLB is expected to be superior, we describe all three approaches, as this provides a basis for comparison,

as well as a context within which to better understand the ADLB approach. Interprocessor communication

is performed using the MPI protocol (Gropp et al., 1994, 1999), a very powerful and popular technique

for message passing operations that provides various communication functions as discussed below. The

performance of the three algorithms described will be compared using both a nonlinear equation solving

test problem and a global optimization test problem.

4.1 Synchronous Work Stealing (SWS)

This first workload balancing algorithm applies a global strategy, and is illustrated in Figure 1. All pro-

cessors are synchronized in the interleaving computation and communication phases. Synchronous block-

ing all-to-all communication is used to periodically (after some number of tests on boxes) update the global

workload state information. Then, every idle processor, if there are any, “steals” one unit of workload

(one box) from the processor with the heaviest workload (the largest number of stack boxes), applying a

receiver-initiate scheme. As the responsibility for the workload placement decision is given to each in-

dividual processor, rather than in a centrally controlling manager processor, but global communication is

maintained, SWS can be regarded as a type ofdistributedmanager/worker scheme.

The global, all-to-all communication used in this approach provides for an easy determination of work-

load dynamics, and may lead to a good global load balancing. However, like the centralized manager/worker

scheme, this convenience also comes at the expense of increased communication cost when using many

processors. Such costs may result in intolerable communication overhead and degradation of overall perfor-
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mance (speedup). It should also be noted that the synchronous and blocking properties of the communication

scheme may cause idle states in addition to those that might arise due to an out-of-work condition. When

using the synchronous scheme, a processor (sender) that has reached the synchronization point and is ready

for communication needs to stay idle and wait for another processor (receiver) to reach the same status,

and then initiate the communication together. Additional waiting states may occur due to the use of block-

ing communication, since a message-passing operation may not complete and return control to the sending

processor until the data has been moved to the receiving processor and a receive posted. Thus, the main

difficulties with the SWS approach are the communication overhead and the likely occurrence of idle states,

which together may result in poor scalability. However, one advantage to this approach is that the global

communication makes it easy to detect global termination.

4.2 Synchronous Diffusive Load Balancing (SDLB)

This second approach for workload balancing follows a localized strategy, by using local, point-to-point

communication and a local cooperation strategy in which load balancing operations are limited to a local do-

main of cooperating processors, i.e., a group of “nearest neighbors” on some predefinedvirtual network. A

diffusive work-adjusting rule is also applied here to dynamically coordinate workload transmission between

processors, thereby achieving a workload balance with a mechanism analogous to heat or mass diffusion, as

illustrated in Figure 2.

Instead of using global communication, point-to-point synchronous blocking communication is used to

exchange workload state information among cooperating (neighbor) processors. The gathered information

allows a given processor to construct its own work index vector indicating the workload distribution in its

neighborhood. Then, the algorithm uses a symmetric initiation scheme to cause the workload (boxes) to

“diffuse” from processors with relatively heavy workloads to processors with relatively light workloads, in

order to maintain a roughly equivalent workload over all processors. The virtual network used initially here

is simply a ring, which gives each processor two nearest neighbors. Each local processor,i, adjusts its local

workload with a neighbor,j, according to the rule

u(j) = C[W (i)�W (j)];

whereu(j) is the workload-adjusting index,C is a “diffusion coefficient” andW is the work index vector.

If u(j) is positive and/or greater than a threshold, the local processor sends out workload (boxes); ifu(j) is

negative and/or less than a threshold, the local processor requests workload (boxes). The diffusion coeffi-

cient,C, is a heuristic parameter determining what fraction of local work to offload, and is set at0:5 in our
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applications. This diffusive scheme has two advantages. First, when applied at an appropriate frequency, it

provides some certainty in preventing the appearance of out-of-work idle states. Also, compacting multiple

units of workload (boxes) together for transmission enlarges thevirtual grain of the transmitted messages.

The use of coarse-grained messages to reduce communication frequency tends to minimize the effect of high

latency in network transmission, especially on Ethernet. For example, less total time is wasted in startup

time of transmission, thus lowering the average transmission cost of a work unit (box), as well as the ratio

of communication time to computation time. It should be noted that in considering message grain there

may also be maximum message size considerations. Use of a random workload adjustment scheme could

also be considered, though in view of the small number of neighbor processors (and thus small number of

candidates for workload placement) there is little incentive in this case for using such a scheme.

Though the use of a local communication scheme will reduce communication costs to some extent, the

use again of synchronous and blocking communication operations are still difficulties in achieving good

scalability. On the other hand, while using local rather than global communication makes the detection of

global termination less efficient, the synchronous and blocking properties make this relatively straightfor-

ward. Since the problem of detecting global termination becomes more difficult as the number of processors

grows, this is another important issue in scalability.

4.3 Asynchronous Diffusive Load Balancing (ADLB)

In this third load balancing approach, a local communication strategy and diffusive work-adjusting

scheme are used, as in SDLB. However, a major difference here is the use of an asynchronous nonblocking

communication scheme, one of the key capabilities of MPI. The combination of asynchronous communi-

cation functionality and nonblocking, persistent communication functionality not only provides for cheaper

communication operations by eliminating communication idle states, but also, by breaking process syn-

chronization, makes the sequence of events in the load balancing scheme flexible by allowingoverlapof

communication and computation. As illustrated in Figure 3, when each processor can perform communica-

tion arbitrarily at any time, and independently of a cooperating processor, all communication operations can

be scattered among computation, with less time consumed in message passing.

In addition to the cheaper and more flexible communication scheme, we incorporate into the ADLB

approach two new strategies to try to reduce the demand for communication and thereby try to achieve

a higher overall performance. First, as noted above, in BP and BB methods, it is not really necessary to

maintain a completely balanced workload across processors. The actual goal is to prevent the occurrence

of idle states by simply maintaining a workload for each processor sufficiently large to keep it busy with
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computation. To achieve balanced workloads may require a very large number of workload transmissions,

resulting in a heavy communication burden. However, in this case, many of the workload transmissions

may be unnecessary, since in BP and BB each processor deals with its stack one work unit (box) at a time

sequentially, leaving all other workload simply standing by. For a processor to avoid an idle state, and thus

have a high efficiency in computation, it is not necessary that its workload be balanced with other processors,

but only that it be able to obtain additional workload from another processor through communication as it

is approaching an out-of-work state. Thus, we use here a receiver-initiate scheme to initiate work transfer

only when the number of boxes in a processor’s stack is lower than some threshold, which should be set

high enough that the processor is not likely to complete the work and become idle during the processing of

the workload request to its neighboring processors.

As a consequence, we can also implement a second strategy, which eliminates the periodic state informa-

tion exchange and combines the load state information of the requesting processor with the workload request

message to the donor processor. Upon receiving the request, the donor follows a diffusive work-adjusting

scheme as described above for the SDLB approach, but with a modification in the response to the workload

adjusting index. Here, ifu(j) is positive and/or greater than a threshold, the donor sends out workload

(boxes) to the requesting processor; otherwise, it responds that there is no extra workload available. Thus,

when approaching idle, a processor sends out a request for work to all its cooperating neighbors, and waits

for any processor’s donation of work. In case of no work being transferred, it means that the neighbor

processors are also starved for work and are making work requests to other neighbors. In this case, the

processor will keep requesting work from the same neighbors until they eventually obtain extra work from

remote processors and are able to donate parts of it. Through such a diffusive mechanism, heavily loaded

processors can propagate workload to lightly loaded processors with a small communication expense. A

variation on this approach, which we have not tested, would be to have each neighbor processor update its

state to record the demanding processor’s request for more work, thus preventing the need for repetitive

identical calls for work from the same processor and reducing communication overhead even further. Then,

when the demanding processor no longer needs work, it can notify neighbor processors again to modify

their states accordingly.

In the solution of global minimization problems by BB, it is also necessary to communicate information

about the upper bound on the global minimum. This is done in two ways. First, whenever a processor

conducts any kind of send operation (e.g., to send workload status, to send workload, etc.), its current

bound value is packed with the communication. Second, whenever the processor obtains a better (smaller)

bound, whether by local computation or by communication from another processor, that new bound is sent
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to neighboring processors. In this way, bound values are propagated across the entire cluster so that all

processors quickly receive the current best bound value.

The last step of the load balancing procedure is to detect global termination. Because the ADLB scheme

is asynchronous, the detection of global termination is a more complex issue than in the synchronous case.

As noted above, a popular and effective technique for dealing with this issue is Dijkstra’s token algorithm;

this is the technique used in the ADLB scheme.

In the next section, we describe tests of the three approaches outlined above for load balancing in parallel

BP and BB.

4.4 Computational Experiments and Results

4.4.1 Test Environment

The performance of an algorithm on a parallel computing system is not only dependent on the prob-

lem characteristics and the number of processors but also on how processors interact with each other, as

determined both by a physical architecture in hardware and a virtual architecture in software. The physical

architecture used in these tests, as illustrated in Figure 4, is a network-based system, comprising 16 Sun

Ultra 1/140e workstations, physically connected by switched 100 MBit Ethernet. (Note that this architec-

ture is used to carry out only the tests described in this section, namely the comparison of the three load

balancing schemes discussed above; in the later sections, involving tests on the effects of virtual network

and stack management, another experimental platform with 32 Sun Ultra 2/2200 machines is used instead.)

As noted above, in comparison to mainframe systems, such a cluster of workstations (COW) has advantages

in its relatively low expense and easy availability of hardware. However, depending on the communication

bandwidth and on the communication demands of the algorithm being executed, network contention can

have a serious impact on the performance of such a system, particularly if the number of processors is large.

Two types of virtual network are used: an all-to-all network, as in Figure 5(a), in the case of SWS,

and a one-dimensional (1-D) torus (ring) network, as in Figure 5(b), in the cases of SDLB and ADLB. In

the SWS algorithm, the all-to-all network is implemented by the use of global, all-to-all communication.

However, in the SDLB and ADLB algorithms, in order to reduce communication demands and alleviate

potential network contention, we only use point-to-point local communication functions and implement

the ring network. The load balancing algorithms and test problems were implemented in FORTRAN-77

using the MPI protocol for interprocessor communication. In particular, we used the popular LAM (Local

Area Multicomputer) implementation of MPI, developed and distributed by the Laboratory for Scientific

Computing at the University of Notre Dame.
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4.4.2 Test Problems

The test problems used are based on a global nonlinear parameter estimation problem involving a vapor-

liquid equilibrium (VLE) model (the Wilson equation). Such models, and the estimation of parameters in

them, are important in chemical process engineering, since they are the basis for the design, simulation

and optimization of widely-used separation processes such as distillation. In this particular problem, we

use as the objective function the maximum likelihood estimator, with two unknown standard deviations, to

determine two model parameters giving the globally optimal fit of the data to the model. Interval analysis,

as described above, is used to guarantee the correct global solution. The problem can be solved in either of

two ways. One approach is to treat it as a nonlinear equation solving problem, and use the parallel interval

BP algorithm to solve for all stationary points of the objective function. The alternative approach is to treat

it directly as a global optimization problem and use the parallel interval BB algorithm. The major difference

between the two approaches is the use of the objective range test in the BB algorithm. The mathematical

details of this problem, including the maximum likelihood objective function, the Wilson equation, and the

experimental data set used, are given by Gau (2001). Additional background on the use of the maximum

likelihood estimator can be found in Bard (1974). The problem used involves the binary system of formic

acid and water. For this system there are many VLE data sets available (Gmehling et al., 1977-1990). A data

set was chosen to make this a particularly difficult problem, in terms of the number of stationary points to

be found (there are five) and the serial computation time requirement (on the order of a few hours for either

the optimization or nonlinear equation solving case).

4.4.3 Computational Results

This parameter estimation problem was solved using the cluster of workstations described above. Dur-

ing the computational experiments, the cluster was dedicated exclusively to solving this problem; that is,

there were no other users either on the workstations or on the network. Both the BP scheme solving for all

stationary points and the BB scheme merely searching for the global optimum were executed on up to 16

processors using each of the three load balancing schemes described above. Both sequential and parallel ex-

ecution times were measured in terms of the MPI wall time function, and the performance of each approach

evaluated in terms of parallel speedup (ratio of the sequential execution time to the parallel execution time)

and parallel efficiency (ratio of the parallel speedup to the number of processors used).

For the interval BP problem of finding all stationary points, the speedups obtained using the three load

balancing algorithms, i.e. SWS, SDLB and ADLB, on various number of processors are shown in Figure 6.

All five stationary points were found in every experiment. All points in Figure 6 are based on an average over
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several runs. Since both the sequential runs and all parallel BP runs explored the same binary tree and treated

an equivalent amount of total work, the computational results are repeatable and consistent with negligible

deviations. As expected, the ADLB approach clearly outperforms SWS and SDLB, exhibiting only slightly

sublinear speedup. This can also be seen in the parallel efficiency curves, as shown in Figure 7. While

efficiency curves tend to decrease as the number of processors increases, as a consequence of Amdahl’s

law, the ADLB procedure maintains a high efficiency of around 95%. Thus, with the only slightly sublinear

speedup and the very high efficiency on up to 16 processors, it seems likely that the ADLB algorithm will

be highly scalable to larger numbers of processors.

SWS exhibits the poorest performance of the three load balancing methods. This is partly due to a poor

global workload distribution, resulting in a relatively large number of out-of-work idle states, and also partly

due to the communication overhead from using the global synchronous blocking communication scheme.

In SDLB, the symmetric diffusive work-adjusting scheme using the local communication scheme substan-

tially reduces out-of-work idle states by achieving an even load balance and thus improving the speedup and

efficiency. However, while a local communication scheme is employed, the synchronous blocking commu-

nication functions used retain a high communication cost and represent a scaling bottleneck. This issue is

addressed in ADLB by using asynchronous nonblocking communication functions, allowing the overlap of

communication and computation. In addition, by working towards a goal of maintaining non-empty local

work stacks instead of an evenly balanced global workload distribution, ADLB provides a large reduction

in network communication requirements, thus greatly reducing communication bottlenecks. The reduction

of such bottlenecks in ADLB allows it to achieve a consistently high, nearly linear speedup.

For solving the parameter estimation problem as a global optimization problem with parallel interval

BB, only the best load balancing scheme, ADLB, was employed. Multiple runs solving the same problem

were made at two, four, eight and 16 processors. The resulting speedups are shown in Figure 8. We first

observe that all speedups are above the linear speedup line, with a speedup over 50 on 16 processors in one

case. Superlinear speedup is possible because of the broadcast of least upper bounds, which may cause tree

nodes (boxes) to be discarded earlier than in the sequential case, i.e. there is less work to do in the parallel

case than in the sequential case. Also, the speedups are not exactly repeatable and may vary significantly

from run to run. This occurs because of slightly different timing in finding and broadcasting improved upper

bounds in each run. Speedup anomalies, such as the superlinear speedups seen here, are not uncommon in

parallel BB search, provided the reduction in the work required in the parallel case (which often happens but

not always) is not outweighed by communication expenses or other overhead in the parallel computation.

The excellent performance of ADLB on the tests described above provides motivation for further im-
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proving the ADLB approach for execution on even larger numbers of processors and applied to different

sizes of problems. Along these lines, one factor we have investigated is the effect of the underlying virtual

network. Another factor of interest is the stack management scheme used to prioritize work. Both of these

factors are considered in the sections below, along with additional test problems.

5 Effect of Virtual Network

The virtual network used in the local coordination of neighbor processors for workload distribution and

message propagation has an important effect on network communication overhead. Since more connections

mean higher communication costs, the number of neighbors on the virtual network affects the message

propagation speed across the set of processors. One on hand, having more connections among processors

can reduce the message diffusion distance and help balance overloaded or underloaded processors. However,

on the other hand, increasing the amount of communication on the network may degrade its performance,

delaying message transmissions and reducing load balancing performance. Thus, an appropriate virtual

network is necessary. In fact, the optimal virtual network depends on various factors, including the hardware

environment, the numerical algorithm being applied, and the size and difficulty of the problems being solved.

Here, with the goal of improving the performance of the ADLB approach, we consider a two-dimensional

(2-D) torus (or 2-D wraparound mesh) virtual network, as shown in Figure 9, and compare its performance

to that of the 1-D torus used for the previous test problems. Relative to a 1-D torus, the 2-D torus has a higher

communication overhead due to more neighbors, but results in a smaller network diameter,d
p

(P )=2e vs.

bP=2c, that decreases message diffusion distance. It is expected that the trade-off between communication

overhead and message diffusion distance may favor the 2-D torus for larger numbers of processors.

To compare the performance of ADLB on the 1-D and 2-D torus virtual networks, some reasonable

and systematic measurement is needed. In the performance analysis done above, the parallel speedup and

efficiency were used as simple performance measures, as is very commonly done. However, it is also

well known that both these measures tend to depend on the size of the problem being solved, with higher

speedups and efficiencies seen on larger problems. To consider the effect of problem size in the comparison

here, we will use anisoefficiencyanalysis (Kumar et al., 1994). The isoefficiency function describes how

much problem size must be increased as a function of the number of processors used in order to maintain

a constant parallel efficiency. For a given machine architecture or virtual network, this function can be

determined experimentally by running the parallel algorithm with different numbers of processors over a

wide range of problem sizes. The smaller the increase in the isoefficiency function with the number of
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processors, the better the scalability.

In choosing a test problem for the isoefficiency analysis, one first must be sure that the amount of work

required to solve the problem will not change with number of processors. Thus, it is not appropriate to use

a global optimization problem solved using BB, since the amount of work needed will depend on the timing

with which improved bounds are found, which in turn depends on the number of processors. Thus, the

test problem used is a nonlinear equation solving problem, solved using the interval-Newton BP approach

described above. It is also desirable to design the test problem so that the problem size can be easily and

precisely varied. One conceivable approach for doing that in this case would be to vary the size of the initial

interval used. However, this is not a precise way to vary the problem size, since, for instance, doubling the

size of the initial interval will not necessarily double the amount of work that is needed to solve the problem.

A more precise way to vary the problem size is to give the algorithm multiple and independent instances of

the same initial interval. If the number of instances of the the initial interval is doubled, then this precisely

doubles the amount of work required.

The test problem chosen involves the computation of mixture critical points from cubic equation-of-state

models. Stradi et al. (2001) have recently described how this can be done reliably using an interval-Newton

methodology to solve the criticality conditions. The specific problem used here is to compute the critical

point of a mixture of methane, carbon dioxide, and hydrogen sulfide using the Peng-Robinson equation-of-

state. Details of the problem formulation, as well as model parameters and initial intervals for all variables,

are given by Stradi et al. (2001). To solve this problem on a single processor requires 48.5 CPU seconds.

This represents one “unit” of problem size, with multiple units of problem size created by using multiple

instances of the same initial interval, as discussed above. The physical hardware used is a cluster of Sun

Ultra 2/2200 workstations connected using switched 100 MBit Ethernet. These machines each have two

processors (200 MHz); however, each processor used in this study was from a different machine, thus

providing a homogeneous cluster.

Isoefficiency curves were determined experimentally by making runs with two, four, eight, 16 and 32

processors, increasing the problem size in each case to maintain a parallel efficiency of 92%. Results are

shown in Figure 10. The lower rate of increase for the 2-D torus curve, especially for larger number of

processors, indicates the superior scalability of the 2-D torus virtual network for this type of problem. For

instance, it can be seen that for 32 processors the problem size required to achieve a 92% parallel efficiency

in the 1-D torus virtual network is approximately 64 (26) times the problem size needed to achieve this level

of efficiency using ADLB in the 2-D torus virtual network. ADLB can also easily be implemented for other

types of virtual networks, for instance a hypercube or a higher dimension torus. Some extensive experiments
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using this test problem were also done on a hypercube virtual network, with the resulting isoefficiency curve

being very similar to that of the 2-D torus. The selection of an optimal virtual network is dependent on

the hardware and software environment and in practice can be determined experimentally using scalability

analysis of the type demonstrated here (Kumar et al., 1994).

6 Stack Management

Another issue of interest is how to improve the parallel search efficiency of interval BB for global

optimization problems. As noted above, when a parallel BB approach is applied to solve global minimization

problems, the amount of work required will typically differ depending on the number of processors used.

This is because the number of processors used affects the timing which with best (least) upper bounds on

the global minimum are found and propagated across the network to the entire cluster. In fact, because

the propagation of bounds on the network is not a deterministic operation, the amount of work required

may vary significantly from run to run in solving the same problem on the same number of processors, as

observed in Figure 8. It is possible that the amount of work needed in the parallel case will be greater than

that in the serial case. This is referred to as a deceleration anomaly and will result in sublinear speedups.

On the other hand, it is also possible that the work needed in the parallel case may be less than that in the

serial case. This is referred to as an acceleration anomaly, and may result in a superlinear speedup, provided

that the decrease in the amount of work is not offset by communication overhead and poor load balancing

performance.

Clearly, from either a serial or parallel standpoint, it is desirable to find a tight upper bound on the

global minimum, or the global minimum itself, as early as possible in the search process. Towards this goal,

various stack management schemes, or work selection rules, have been proposed (e.g., Kanal and Kumar,

1988; Teng, 1990; Pardalos and Rodgers, 1990; McKeown et al., 1992; Kumar et al., 1994; Correa and

Ferreira, 1996; Correa, 2000). Generally these prioritize the stack in some way so that the work (tree nodes)

that are considered most promising from some standpoint are selected for early processing. Such best-first

schemes then replace or supplement the usual depth-first search strategy. For example, Correa (2000) and

Correa and Ferreira (1996) use a heuristic function to generate a priority list based on objective function

lower bound values. In a variety of contexts, prioritization schemes such as these have been demonstrated to

be useful. However, in our experience, at least in the context of interval-based BB, best-first strategies have

performed inconsistently. The difficulty with using lower bound values is that these may not be sufficiently

tight to provide any useful heuristic ordering for the evaluation of stack boxes. This is particularly true if
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the lower bound is obtained by simple interval arithmetic, which often provides only loose bounds when

applied to a complicated function. As an alternative approach to obtain more consistent performance, we

have developed a novel dual-stack management scheme.

In this dual-stack strategy, each processor maintains two stacks, a global stack and a local stack. The

local stack is unprioritized; that is, with workload appearing in the same sequence as it is generated in the

IN/GB algorithm. The local processor draws its work from the local stack as long as it is not empty. This

contributes a depth-first pattern to the overall tree search process. If a new least upper bound is found locally

by a processor in a feasible node or box, then this box and its contiguous boxes are locked into the local

stack to ensure immediate further exploration of this potentially promising region. The global stack is also

unprioritized, and is created by randomly removing unlocked boxes from the local stack. The global stack

provides boxes for workload transmission to other processors. This contributes breadth to the tree search

process. By dynamically incorporating both depth and breadth into the stack management scheme, we are

able to carry out a consistently well-balanced tree search process.

To test the dual-stack management strategy in comparison to the standard single-stack (depth-first)

scheme, we use a global optimization problem that arises in a parameter estimation problem in which the

error-in-variables approach is used. The specific problem is described by Gau and Stadtherr (2000) and

Esposito and Floudas (1998), and involves estimation of parameters in the Van Laar equation for activity

coefficient for a mixture of methanol and 1,2-dichloroethane. Details of the problem formulation, together

with data and initial intervals used are given by Gau and Stadtherr (2000). The single- and dual-stack cases

were compared by measuring speedups on up to 32 processors. The ADLB approach with 2-D torus virtual

network was used, and the physical hardware used is again a cluster of Sun Ultra 2/2200 machines connected

using switched 100 MBit Ethernet, with each processor from a different machine. Since, as explained pre-

viously, execution times can be expected to vary from run to run on the same number of processors, a range

of speedup values was determined based on 20 runs for each case.

Results are shown in Figure 11, which shows the mean speedup for each case as well as the range of

observed values. Also shown here are “ultimate” speedup values. This refers to the case in parallel execution

in which all processors are initially given the global minimum as the best upper bound. Obviously these

results represent an idealized case, since the global minimum will not normally be knowna priori. However,

the ultimate speedup results are useful since they serve to show an upper bound on the parallel speedups.

The results indicate that, on the average, the dual-stack strategy provides for consistently higher speedup

compared to the single-stack case. Furthermore, the range of speedup values observed is significantly tighter

in the dual-stack case, indicating the improved balancing of the search tree. Note that for four and eight

18



processors, sublinear speedups were observed in some runs when the single-stack strategy was used, but

that all runs for the dual-stack case yielded superlinear speedups. When 32 processors were used, the

problem was solved in an average of 56.7 seconds, compared to a serial time of 2164 seconds.

Because of the acceleration anomaly, one cannot tell from the results of Figure 11 the intrinsic perfor-

mance of the load balancing algorithm on this problem. To see this it is necessary to make comparisons to

a simulated best sequential time, obtained from the idealized case in which the global minimum is used ini-

tially as the best upper bound. Speedups calculated on this basis are shown in Figure 12. Now the sequential

case and the ultimate speedup cases reflect the same work requirement, and so a comparison of the ultimate

speedup results to linear speedup can be used to judge load balancing performance. With ADLB achieving

a roughly 96% parallel efficiency on this basis, the effectiveness of this load balancing strategy can be seen.

7 Concluding Remarks

We have described here how load management strategies can be used for effectively solving interval BB

and BP problems in parallel on a network-based cluster of workstations. Of the dynamic load balancing

algorithms considered, the best performance was achieved by the asynchronous diffusive load balancing

(ADLB) approach. This overlaps communication and computation by the use of the asynchronous non-

blocking communication functions provided by MPI, and uses a type of diffusive load-adjusting scheme to

prevents out-of-work idle states while keeping communication needs small. The strategies used here were

designed for the relatively coarse task granularity typically found in application of BB and BP. For load

balancing of finer-grained tasks, other approaches might be more attractive.

The ADLB algorithm was applied in connection with interval analysis, in particular with an interval-

Newton/generalized bisection (IN/GB) procedure for reliable nonlinear equation solving and deterministic

global optimization. IN/GB provides the capability to find (enclose) all solutions in a nonlinear equation

solving problem with mathematical and computational certainty, or the capability to solve global optimiza-

tion problems with complete certainty. The results of applying ADLB in the equation solving context have

shown that the parallel BP algorithm is highly scalable up to 32 processors, especially when using a two-

dimensional torus virtual network. In the context of global optimization, the parallel BB algorithm is capable

of achieving significantly superlinear speedups. By implementing a new dual stack management scheme in

connection with ADLB it appears that consistently high superlinear speedups on optimization problems can

be obtained.

Though the results here are based on specific test problems, it should be emphasized that the parallel
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IN/GB method is general-purpose and can be used in connection with a wide variety of global optimization

problems and nonlinear equation solving problems. Also, the load management schemes described here can

be applied to a wide variety of other parallel tree search problems in chemical process engineering, such as

in process synthesis and process scheduling.
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Figure Captions

Figure 1: The SWS algorithm uses global all-to-all communication to synchronize computation and com-

munication phases.

Figure 2: SDLB uses a diffusive work-adjusting scheme to share workload among neighbors in the virtual

network. It is synchronous like SWS.

Figure 3: ADLB uses an asynchronous, nonblocking communication scheme, providing more flexibility to

each processor and overlapping communication and computation phases.

Figure 4: The physical hardware used is a cluster of workstations connected by switched 100 MBit Ether-

net.

Figure 5: Virtual network in load balancing: (a) all-to-all network using global communication; used for

SWS; (b) One-dimensional (1-D) torus (ring) network using local communication; used for SDLB

and ADLB.

Figure 6: Comparison of load balancing algorithms on equation solving problem: Speedup vs. number of

processors.

Figure 7: Comparison of load balancing algorithms on equation solving Problem: Efficiency vs. number

of processors.

Figure 8: Superlinear speedups are observed in solving the global optimization problem using the parallel

BB algorithm based on ADLB.

Figure 9: Two-dimensional (2-D) torus (2-D wraparound mesh) studied in connection with ADLB for

achieving higher scalability.

Figure 10: Isoefficiency curves for 1-D and 2-D virtual networks using ADLB for an equation solving

problem.

Figure 11: Comparison of stack management schemes in ADLB on a global optimization problem. See

text for discussion of ultimate speedup. For clarity, the data symbols are slightly offset horizontally

for each value of number of processors.

Figure 12: Performance of ADLB on a global optimization problem. Speedups are calculated with respect

to a simulated optimal serial case. For clarity, the data symbols are slightly offset horizontally for

each value of number of processors.
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Figure 3: ADLB uses an asynchronous, nonblocking communication scheme, providing more flexibility to
each processor and overlapping communication and computation phases.
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Figure 5: Virtual network in load balancing: (a) all-to-all network using global communication; used for
SWS; (b) One-dimensional (1-D) torus (ring) network using local communication; used for SDLB and
ADLB.
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Figure 6: Comparison of load balancing algorithms on equation solving problem: Speedup vs. number of
processors.
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Figure 7: Comparison of load balancing algorithms on equation solving Problem: Efficiency vs. number of
processors.
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Figure 8: Superlinear speedups are observed in solving the global optimization problem using the parallel
BB algorithm based on ADLB.
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Figure 11: Comparison of stack management schemes in ADLB on a global optimization problem. See text
for discussion of ultimate speedup. For clarity, the data symbols are slightly offset horizontally for each
value of number of processors.
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Figure 12: Performance of ADLB on a global optimization problem. Speedups are calculated with respect
to a simulated optimal serial case. For clarity, the data symbols are slightly offset horizontally for each value
of number of processors.
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