
Parallel Interval Analysis
for Chemical Process Modeling

Chao-Yang Gau and Mark A. Stadtherr�

Department of Chemical Engineering
University of Notre Dame

Notre Dame, IN 46556 USA

SIAM CSE 2000
Washington, D.C.

September 21–24, 2000

�Fax: (219)631-8366; E-mail: markst@nd.edu

Outline

� Motivation: Reliability in Computing

� Methodology: Interval Newton/Generalized
Bisection

� Parallel Implementation on a Cluster of
Workstations

� Some Performance Results

CSE 2000 2

High Performance Computing

In chemical engineering and other areas of
engineering and science, high performance
computing is providing the capability to:

� Solve problems faster

� Solve larger problems

� Solve more complex problems

) Solve problems more reliably

CSE 2000 3

Motivation

� In process modeling and other applications,
chemical engineers frequently need to solve
nonlinear equation systems in which the
variables are constrained physically within upper
and lower bounds; that is, to solve:

f(x) = 0

xL � x � xU

� These problems may:

– Have multiple solutions
– Have no solution
– Be difficult to converge to any solution

CSE 2000 4

Motivation (cont’d)

� There is also frequent interest in globally
minimizing a nonlinear function subject to
nonlinear equality and/or inequality constraints;
that is, to solve (globally):

min
x

�(x)

subject to
h(x) = 0

g(x) � 0

xL � x � xU

� These problems may:

– Have multiple local minima (in some cases, it
may be desirable to find them all)

– Have no solution (infeasible NLP)
– Be difficult to converge to any local minima

CSE 2000 5

Interval Newton/Generalized Bisection

� Given initial bounds on each variable, IN/GB can:

– Find (enclose) any and all solutions to
a nonlinear equation system to a desired
tolerance

– Determine that there is no solution of a
nonlinear equation system

– Find the global optimum of a nonlinear
objective function

� This methodology:

– Provides a mathematical guarantee of
reliability

– Deals automatically with rounding error, and
so also provide a computational guarantee
of reliability

– Represents a particular type of branch-and-
prune algorithm (or branch-and-bound for
optimization)

CSE 2000 6

IN/GB (cont’d)

� For solving a nonlinear equation system f(x) = 0

the interval Newton method provides pruning
conditions; IN/GB is a branch-and-prune scheme
on a binary tree

� No strong assumptions about the function f(x)
need be made

� The problem f(x) = 0 must have a finite number
of real roots in the given initial interval

� The method is not suitable if f(x) is a “black-box”
function

� If there is a solution at a singular point,
then existence and uniqueness cannot be
confirmed—the eventual result of the IN/GB
approach will be a very narrow enclosure that
may contain one or more solutions

CSE 2000 7

IN/GB (cont’d)

� Can be extended to global optimization problems

� For unconstrained problems, solve for stationary
points

� For constrained problems, solve for KKT points
(or more generally for Fritz-John points)

� Add an additional pruning condition:

– Compute interval extension (bounds on range)
of objective function

– If its lower bound is greater than a known
upper bound on the global minimum, prune
this subinterval since it cannot contain the
global minimum

� This is a branch-and-bound scheme on a binary
tree

CSE 2000 8

Some Types of Problems Solved

� Fluid phase stability and equilibrium (e.g. Hua et
al., 1998)

� Location of azeotropes (Maier et al., 1998, 1999,
2000)

� Location of mixture critical points (Stradi et al.,
2000)

� Solid-fluid equilibrium (Xu et al., 2000)

� Parameter estimation (Gau and Stadtherr, 1999,
2000)

� Phase behavior in porous materials (Maier and
Stadtherr, 2000)

� General process modeling problems—up to 163
equations (Schnepper and Stadtherr, 1996)

CSE 2000 9

Parallel Branch-and-Bound Techniques

� BB and BP involve successive subdivision of
the problem domain to create subproblems, thus
requiring a tree search process

– Applications are often computationally intense
– Subproblems (tree nodes) are independent
– A natural opportunity for use of parallel

computing

� For practical problems, the binary tree that needs
to be searched in parallel may be quite large

� The binary trees may be highly irregular, and can
result in highly uneven distribution of work among
processors and thus poor overall performance
(e.g., idle processors)

CSE 2000 10

Parallel BB (cont’d)

� Need an effective work scheduling and load
balancing scheme to do parallel tree search
efficiently

� Manager-worker schemes (centralized global
stack management) are popular but may scale
poorly due to communication expense and
bottlenecks

� Many implementations of parallel BB have been
studied (Kumar et al., 1994; Gendron and
Crainic, 1994) for various target architectures

� There are various BB and BP schemes; we use
an interval Newton/generalized bisection (IN/GB)
method

CSE 2000 11

Work Scheduling and Load Balancing

� Objective: Schedule the workload among
processors to minimize communication delays
and execution time, and maximize computing
resource utilization

� Use Dynamic Scheduling

– Redistribute workload concurrently at runtime.
– Transfer workload from a heavily loaded

processor to a lightly loaded one (load
balancing)

� Target architecture: Distributed computing on a
networked cluster using message passing

– Often relatively inexpensive
– Uses widely available hardware

� Use distributed (multiple pool) load balancing

CSE 2000 12

Distributed Load Balancing

� Each processor locally makes the workload
placement decision to maintain the local interval
stack and prevent itself from becoming idle

� Alleviates bottleneck effects from centralized
load balancing policy (manager/worker)

� Reduction of communication overhead
could provide high scalability for the parallel
computation

� Components of typical schemes

– Workload state measurement
– State information exchange
– Transfer initiation
– Workload placement
– Global termination

CSE 2000 13

Components

� Workload state measurement

– Evaluate local workload using some “work
index”

– Use stack length: number of intervals (boxes)
remaining to be processed

� State information exchange

– Communicate local workload state to other
“cooperating” processors

– Selection of cooperating processors defines a
virtual network

– Virtual network: Global (all-to-all), 1-D torus,
2-D torus, etc.

� Transfer initiation

– Sender initiate
– Receiver initiate
– Symmetric (sender or receiver initiate)

CSE 2000 14

Components (cont’d)

� Workload placement

– Work-adjusting rule: How to distribute work
(boxes) among cooperating processors and
how much to transfer

� Work stealing (e.g., Blumofe and Leiserson, 1994)
� Diffusive propagation (e.g., Heirich and Taylor, 1995)
� Etc.

– Work-selection rule: Which boxes should be
transferred

� Breadth first
� Best first (based on the lower bound value)
� Depth first
� Various heuristics

� Global termination

– Easy to detect with synchronous, all-to-all
communication

– For local and/or asynchronous
communication, use Dijkstra’s token algorithm

CSE 2000 15

Parallel Implementations

� Three types of strategies were implemented.

– Synchronous Work Stealing (SWS)
– Synchronous Diffusive Load Balancing

(SDLB)
– Asynchronous Diffusive Load Balancing

(ADLB)

� These are listed in order of likely effectiveness.

� All were implemented in Fortran-77 using LAM
(Local Area Multicomputer) MPI (Laboratory for
Scientific Computing, University of Notre Dame)

CSE 2000 16

Synchronous Work Stealing

� Periodically exchange workload information
(workflg) and any improved upper bound value
(for optimization) using synchronous global
(all-to-all) blocking communication

� Once idle, steal one interval (box) from the
processor with the heaviest work load (receiver
initiate)

� Difficulties

– Large network overhead (global, all-to-all)
– Idle time from process synchronism and blocking

communication
P0 P1 P2 P3

After T tests

 MPI_ALLGATHER
workflg = no. of stack boxes

Make placement decision

Transfer workload

Comm.

Comp.

Comp.

box box

CSE 2000 17

Synchronous Diffusive Load Balancing

� Use local communication: Processors
periodically exchange work state and units
of work with their immediate neighbors to
maintain their workload

� Typical workload adjusting scheme (symmetric
initiation):

u(j) = 0:5[workflg(i)� workflg(j)]

(i: local processor: j: neighbor processor)

– If u(j) is positive and greater than some tolerance:
send intervals (boxes)

– If u(j) is negative and less than some tolerance:
receive intervals (boxes)

� Messages have higher granularity

� Synchronism and blocking communication still
cause inefficiencies

CSE 2000 18

Synchronous Diffusive Load Balancing

P0 P1 P2 P3

After T tests

Exchange workload
state information

Make placement decision

Workload transfer

Comp.

Comm.

Comp.

box box

Before balancing

After balancing

Concentration

CSE 2000 19

Asynchronous Diffusive Load
Balancing

� Use asynchronous nonblocking communication
to send workload information and transfer
workload

� Overlaps communication and computation

� Receiver-initiated diffusive workload transfer
scheme:

– Send out work state information only if it falls
below some threshold

– Donor processor follows diffusive scheme to
determine amount of work to send (if any)

– Recognizes that workload balance is less
important than preventing idle states

� Dijkstra’s token algorithm used to detect global
termination

CSE 2000 20

Asynchronous Diffusive Load
Balancing

Send out workflg(i)

Receive workflg(j)

Send out boxes

 Receive boxes

Pi

Comp.

Comp.

Comp.

Comp.

Comp.

Comm.

Comm.

Comm.

Comm.

(Flexible sequence)

CSE 2000 21

Testing Environment

� Physical hardware: Sun Ultra workstations
connected by switched Ethernet (100Mbit)

M
$

M M M

$ $ $P P P P ⋅ ⋅ ⋅⋅ ⋅ ⋅

SWITCHED ETHERNET

� Virtual Network:

P

P

P

P P

P

P P

All-to-All Network 1-D Torus Network

P

P

P

P P

P

P P

Global Communication Local Communication

Used for SWS Used for SDLB and ADLB

CSE 2000 22

Test Problem

� Parameter estimation in a vapor-liquid
equilibrium model

� Use the maximum likelihood estimator as
the objective function to determine model
parameters that give the “best” fit

� Problem data and characteristics chosen to
make this a particularly difficult problem

� Can be formulated as a nonlinear equation
solving problem (which has five solutions)

� Or can be formulated as a global optimization
problem

CSE 2000 23

Comparison of Algorithms on
Equation-Solving Problem

Speedup vs. Number of Processors

ADLB vs. SDLB vs. SWS

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

SWS
SDLB
ADLB
Linear Speedup

CSE 2000 24

Comparison of Algorithms on
Equation-Solving Problem

Efficiency vs. Number of Processors

ADLB vs. SDLB vs. SWS

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy

SWS
SDLB
ADLB

CSE 2000 25

Using ADLB on Optimization Problem

Speedup vs. Number of Processors
(three different runs of same problem)

0 2 4 6 8 10 12 14 16
0

4

8

12

16

20

24

28

32

36

40

44

48

52

Number of Processors

S
pe

ed
up

CSE 2000 26

Using ADLB on Optimization Problem

� Speedups around 50 on 16 processors–
superlinear speedup

� Superlinear speedup is possible because of
broadcast of least upper bounds, causing
intervals to be discarded earlier than in the serial
case; that is, there is less work to do in the
parallel case than in the serial case

� Results vary from run to run because of different
timing in finding and broadcasting improved
upper bound

CSE 2000 27

Effect of Virtual Network

� We have also considered performance in a 2-D
torus virtual network

1-D Torus Network

P

P

P

P P

P

P P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

2-D Torus Network

� 1-D vs. 2-D torus

– 2-D has higher communication overhead (more
neighbors)

– 2-D has smaller network diameter (shorter message
diffusion distance): 2bpP=2c vs. bP=2c

– Trade off may favor 2-D for large number of processors

CSE 2000 28

Effect of Virtual Network

� ADLB algorithm was tested using both 1-D and
2-D virtual connectivity.

� The test problem is an equation solving problem:
computation of critical points of mixtures

� Comparisons made using isoefficiency analysis:
As number of processors is increased, determine
problem size needed to maintain constant
efficiency relative to best sequential algorithm

� Isoefficiency curves at 92% were determined up
to 32 processors

CSE 2000 29

Isoefficiency Curves (92%) for
Equation-Solving Problem

2-D Torus vs. 1-D Torus
(Lower is better)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

log
2
 P

lo
g

2 (
P

ro
bl

em
 S

iz
e)

1−D Torus
2−D Torus

CSE 2000 30

Stack Management for Workload
Placement

� Especially for optimization problems, the
selection rule for workload transfer can have a
significant effect on performance

� With the goal of maintaining consistently
high (superlinear) speedups on optimization
(BB) problems, we have used a dual stack
management scheme

� Each processor maintains two workload stacks,
a local stack and a global stack

– The processor draws work from the local stack in the
order in which it is generated (depth-first pattern)

– The global stack provides work for transmission to other
processors

– The global stack is created by randomly removing boxes
from the local stack, contributing breadth to the tree
search process

CSE 2000 31

Workload Placement (cont’d)

� The dual stack strategy was tested using a 2-D
torus virtual network up to 32 processors

� The test problem was an optimization problem:
parameter estimation using an error-in-variable
approach

� For comparisons, an “ultimate speedup” was
determined by initially setting the best upper
bound to the value of the global minimum

� Results indicate that the dual stack strategy
leads to higher speedups and less variability from
run to run (based on 10 runs of each case)

CSE 2000 32

Workload Placement (cont’d)

Speedup vs. Number of Processors

Dual Stack vs. Single Stack vs. Ultimate

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

36

40

44

P

S
pe

ed
up

Single Stack
Dual Stack
Ultimate Speedup
Linear Speedup

CSE 2000 33

Concluding Remarks

� IN/GB is a powerful general-purpose and
model-independent approach for solving a
variety of process modeling problems, providing
a mathematical and computational guarantee
of reliability

� Continuing advances in computing hardware
and software (e.g., compiler support for interval
arithmetic, parallel computing) will make this
approach even more attractive

� With effective load management strategies,
parallel BB and BP problems (using IN/GB or
other approaches) can be solved very efficiently
using MPI on a networked cluster of workstations

– Good scalability
– Exploit potential for superlinear speedup in BB

� Parallel computing technology can be used not
only to solve problems faster, but to solve
problems more reliably

CSE 2000 34

Acknowledgments

– ACS PRF 30421-AC9 and 35979-AC9
– NSF DMI96-96110 and EEC97-00537-CRCD
– US ARO DAAG55-98-1-0091
– Sun Microsystems, Inc.

For more information:

– Contact Prof. Stadtherr at markst@nd.edu
– See also

http://www.nd.edu/˜markst

CSE 2000 35

