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High Performance Computing

In chemical engineering and other areas of
engineering and science, high performance
computing is providing the capability to:

� Solve problems faster

� Solve larger problems

� Solve more complex problems

) Solve problems more reliably
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Motivation

� In process modeling and other applications,
chemical engineers frequently need to solve
nonlinear equation systems in which the
variables are constrained physically within upper
and lower bounds; that is, to solve:

f(x) = 0

xL � x � xU

� These problems may:

– Have multiple solutions
– Have no solution
– Be difficult to converge to any solution
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Motivation (cont’d)

� There is also frequent interest in globally
minimizing a nonlinear function subject to
nonlinear equality and/or inequality constraints;
that is, to solve (globally):

min
x

�(x)

subject to
h(x) = 0

g(x) � 0

xL � x � xU

� These problems may:

– Have multiple local minima (in some cases, it
may be desirable to find them all)

– Have no solution (infeasible NLP)
– Be difficult to converge to any local minima
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Interval Newton/Generalized Bisection

� Given initial bounds on each variable, IN/GB can:

– Find (enclose) any and all solutions to
a nonlinear equation system to a desired
tolerance

– Determine that there is no solution of a
nonlinear equation system

– Find the global optimum of a nonlinear
objective function

� This methodology:

– Provides a mathematical guarantee of
reliability

– Deals automatically with rounding error, and
so also provide a computational guarantee
of reliability

– Represents a particular type of branch-and-
prune algorithm (or branch-and-bound for
optimization)
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IN/GB (cont’d)

� For solving a nonlinear equation system f(x) = 0

the interval Newton method provides pruning
conditions; IN/GB is a branch-and-prune scheme
on a binary tree

� No strong assumptions about the function f(x)
need be made

� The problem f(x) = 0 must have a finite number
of real roots in the given initial interval

� The method is not suitable if f(x) is a “black-box”
function

� If there is a solution at a singular point,
then existence and uniqueness cannot be
confirmed—the eventual result of the IN/GB
approach will be a very narrow enclosure that
may contain one or more solutions
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IN/GB (cont’d)

� Can be extended to global optimization problems

� For unconstrained problems, solve for stationary
points

� For constrained problems, solve for KKT points
(or more generally for Fritz-John points)

� Add an additional pruning condition:

– Compute interval extension (bounds on range)
of objective function

– If its lower bound is greater than a known
upper bound on the global minimum, prune
this subinterval since it cannot contain the
global minimum

� This is a branch-and-bound scheme on a binary
tree
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Some Types of Problems Solved

� Fluid phase stability and equilibrium (e.g. Hua et
al., 1998)

� Location of azeotropes (Maier et al., 1998, 1999,
2000)

� Location of mixture critical points (Stradi et al.,
2000)

� Solid-fluid equilibrium (Xu et al., 2000)

� Parameter estimation (Gau and Stadtherr, 1999,
2000)

� Phase behavior in porous materials (Maier and
Stadtherr, 2000)

� General process modeling problems—up to 163
equations (Schnepper and Stadtherr, 1996)
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Parallel Branch-and-Bound Techniques

� BB and BP involve successive subdivision of
the problem domain to create subproblems, thus
requiring a tree search process

– Applications are often computationally intense
– Subproblems (tree nodes) are independent
– A natural opportunity for use of parallel

computing

� For practical problems, the binary tree that needs
to be searched in parallel may be quite large

� The binary trees may be highly irregular, and can
result in highly uneven distribution of work among
processors and thus poor overall performance
(e.g., idle processors)
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Parallel BB (cont’d)

� Need an effective work scheduling and load
balancing scheme to do parallel tree search
efficiently

� Manager-worker schemes (centralized global
stack management) are popular but may scale
poorly due to communication expense and
bottlenecks

� Many implementations of parallel BB have been
studied (Kumar et al., 1994; Gendron and
Crainic, 1994) for various target architectures

� There are various BB and BP schemes; we use
an interval Newton/generalized bisection (IN/GB)
method
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Work Scheduling and Load Balancing

� Objective: Schedule the workload among
processors to minimize communication delays
and execution time, and maximize computing
resource utilization

� Use Dynamic Scheduling

– Redistribute workload concurrently at runtime.
– Transfer workload from a heavily loaded

processor to a lightly loaded one (load
balancing)

� Target architecture: Distributed computing on a
networked cluster using message passing

– Often relatively inexpensive
– Uses widely available hardware

� Use distributed (multiple pool) load balancing
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Distributed Load Balancing

� Each processor locally makes the workload
placement decision to maintain the local interval
stack and prevent itself from becoming idle

� Alleviates bottleneck effects from centralized
load balancing policy (manager/worker)

� Reduction of communication overhead
could provide high scalability for the parallel
computation

� Components of typical schemes

– Workload state measurement
– State information exchange
– Transfer initiation
– Workload placement
– Global termination
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Components

� Workload state measurement

– Evaluate local workload using some “work
index”

– Use stack length: number of intervals (boxes)
remaining to be processed

� State information exchange

– Communicate local workload state to other
“cooperating” processors

– Selection of cooperating processors defines a
virtual network

– Virtual network: Global (all-to-all), 1-D torus,
2-D torus, etc.

� Transfer initiation

– Sender initiate
– Receiver initiate
– Symmetric (sender or receiver initiate)
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Components (cont’d)

� Workload placement

– Work-adjusting rule: How to distribute work
(boxes) among cooperating processors and
how much to transfer

� Work stealing (e.g., Blumofe and Leiserson, 1994)
� Diffusive propagation (e.g., Heirich and Taylor, 1995)
� Etc.

– Work-selection rule: Which boxes should be
transferred

� Breadth first
� Best first (based on the lower bound value)
� Depth first
� Various heuristics

� Global termination

– Easy to detect with synchronous, all-to-all
communication

– For local and/or asynchronous
communication, use Dijkstra’s token algorithm
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Parallel Implementations

� Three types of strategies were implemented.

– Synchronous Work Stealing (SWS)
– Synchronous Diffusive Load Balancing

(SDLB)
– Asynchronous Diffusive Load Balancing

(ADLB)

� These are listed in order of likely effectiveness.

� All were implemented in Fortran-77 using LAM
(Local Area Multicomputer) MPI (Laboratory for
Scientific Computing, University of Notre Dame)
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Synchronous Work Stealing

� Periodically exchange workload information
(workflg) and any improved upper bound value
(for optimization) using synchronous global
(all-to-all) blocking communication

� Once idle, steal one interval (box) from the
processor with the heaviest work load (receiver
initiate)

� Difficulties

– Large network overhead (global, all-to-all)
– Idle time from process synchronism and blocking

communication
P0 P1 P2 P3

After T tests

      MPI_ALLGATHER
workflg = no. of stack boxes

Make placement decision

Transfer workload

Comm.

Comp.

Comp.

box box
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Synchronous Diffusive Load Balancing

� Use local communication: Processors
periodically exchange work state and units
of work with their immediate neighbors to
maintain their workload

� Typical workload adjusting scheme (symmetric
initiation):

u(j) = 0:5[workflg(i)� workflg(j)]

(i: local processor: j: neighbor processor)

– If u(j) is positive and greater than some tolerance:
send intervals (boxes)

– If u(j) is negative and less than some tolerance:
receive intervals (boxes)

� Messages have higher granularity

� Synchronism and blocking communication still
cause inefficiencies
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Synchronous Diffusive Load Balancing

P0 P1 P2 P3

After T tests

Exchange workload 
state information

Make placement decision

Workload transfer

Comp.

Comm.

Comp.

box box

Before balancing
                 
After balancing

Concentration
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Asynchronous Diffusive Load
Balancing

� Use asynchronous nonblocking communication
to send workload information and transfer
workload

� Overlaps communication and computation

� Receiver-initiated diffusive workload transfer
scheme:

– Send out work state information only if it falls
below some threshold

– Donor processor follows diffusive scheme to
determine amount of work to send (if any)

– Recognizes that workload balance is less
important than preventing idle states

� Dijkstra’s token algorithm used to detect global
termination
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Asynchronous Diffusive Load
Balancing

Send out  workflg(i)

Receive  workflg(j)

Send out boxes

 Receive boxes 

Pi

Comp.

Comp.

Comp.

Comp.

Comp.

Comm.

Comm.

Comm.

Comm.

(Flexible sequence)
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Testing Environment

� Physical hardware: Sun Ultra workstations
connected by switched Ethernet (100Mbit)

M
$

M M M

$ $ $P P P P ⋅ ⋅ ⋅⋅ ⋅ ⋅

SWITCHED      ETHERNET

� Virtual Network:

P

P

P

P P

P

P P

All-to-All Network 1-D Torus Network

P

P

P

P P

P

P P

Global Communication Local Communication

Used for SWS Used for SDLB and ADLB
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Test Problem

� Parameter estimation in a vapor-liquid
equilibrium model

� Use the maximum likelihood estimator as
the objective function to determine model
parameters that give the “best” fit

� Problem data and characteristics chosen to
make this a particularly difficult problem

� Can be formulated as a nonlinear equation
solving problem (which has five solutions)

� Or can be formulated as a global optimization
problem
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Comparison of Algorithms on
Equation-Solving Problem

Speedup vs. Number of Processors

ADLB vs. SDLB vs. SWS
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Comparison of Algorithms on
Equation-Solving Problem

Efficiency vs. Number of Processors

ADLB vs. SDLB vs. SWS
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Using ADLB on Optimization Problem

Speedup vs. Number of Processors
(three different runs of same problem)
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Using ADLB on Optimization Problem

� Speedups around 50 on 16 processors–
superlinear speedup

� Superlinear speedup is possible because of
broadcast of least upper bounds, causing
intervals to be discarded earlier than in the serial
case; that is, there is less work to do in the
parallel case than in the serial case

� Results vary from run to run because of different
timing in finding and broadcasting improved
upper bound
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Effect of Virtual Network

� We have also considered performance in a 2-D
torus virtual network

1-D Torus Network
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2-D Torus Network

� 1-D vs. 2-D torus

– 2-D has higher communication overhead (more
neighbors)

– 2-D has smaller network diameter (shorter message
diffusion distance): 2bpP=2c vs. bP=2c

– Trade off may favor 2-D for large number of processors
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Effect of Virtual Network

� ADLB algorithm was tested using both 1-D and
2-D virtual connectivity.

� The test problem is an equation solving problem:
computation of critical points of mixtures

� Comparisons made using isoefficiency analysis:
As number of processors is increased, determine
problem size needed to maintain constant
efficiency relative to best sequential algorithm

� Isoefficiency curves at 92% were determined up
to 32 processors
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Isoefficiency Curves (92%) for
Equation-Solving Problem

2-D Torus vs. 1-D Torus
(Lower is better)
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Stack Management for Workload
Placement

� Especially for optimization problems, the
selection rule for workload transfer can have a
significant effect on performance

� With the goal of maintaining consistently
high (superlinear) speedups on optimization
(BB) problems, we have used a dual stack
management scheme

� Each processor maintains two workload stacks,
a local stack and a global stack

– The processor draws work from the local stack in the
order in which it is generated (depth-first pattern)

– The global stack provides work for transmission to other
processors

– The global stack is created by randomly removing boxes
from the local stack, contributing breadth to the tree
search process
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Workload Placement (cont’d)

� The dual stack strategy was tested using a 2-D
torus virtual network up to 32 processors

� The test problem was an optimization problem:
parameter estimation using an error-in-variable
approach

� For comparisons, an “ultimate speedup” was
determined by initially setting the best upper
bound to the value of the global minimum

� Results indicate that the dual stack strategy
leads to higher speedups and less variability from
run to run (based on 10 runs of each case)
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Workload Placement (cont’d)

Speedup vs. Number of Processors

Dual Stack vs. Single Stack vs. Ultimate
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Concluding Remarks

� IN/GB is a powerful general-purpose and
model-independent approach for solving a
variety of process modeling problems, providing
a mathematical and computational guarantee
of reliability

� Continuing advances in computing hardware
and software (e.g., compiler support for interval
arithmetic, parallel computing) will make this
approach even more attractive

� With effective load management strategies,
parallel BB and BP problems (using IN/GB or
other approaches) can be solved very efficiently
using MPI on a networked cluster of workstations

– Good scalability
– Exploit potential for superlinear speedup in BB

� Parallel computing technology can be used not
only to solve problems faster, but to solve
problems more reliably
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