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Abstract 

Food chains and webs in the environment can be modeled by systems of ordinary 

differential equations that approximate species or functional feeding group behavior with 

a variety of functional responses.  We present here a new methodology for computing all 

equilibrium states and bifurcations of equilibria in food chain models.  The methodology 

used is based on interval analysis, in particular an interval-Newton/generalized-bisection 

algorithm that provides a mathematical and computational guarantee that all roots of a 

nonlinear equation system are enclosed.  The procedure is initialization-independent, and 

thus requires no a priori insights concerning the number of equilibrium states and 

bifurcations of equilibria or their approximate locations.  The technique is tested using 

several example problems involving tritrophic food chains. 
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1.  INTRODUCTION 
 
 Food chains and webs in the environment are highly complex and interdependent 

systems.  Seemingly insignificant changes in the parameters of such systems can have drastic 

consequences.  Food chains and webs can be modeled by systems of ordinary differential 

equations that approximate species or functional feeding group behavior with a variety of 

functional responses.  Many simple two-species models have been thoroughly explored, while 

new discoveries continue to be made in examining models with three and four trophic levels 

(e.g., Moghadas and Gumel, 2003).  Ecological systems exhibit complex interdependencies in 

that changes in a single trophic level may have far reaching impacts on the rest of the system.  In 

some cases, this leads to unexpected or counterintuitive behavior.  Use of simple food chain 

models can assist in qualitatively illustrating the complexity and interdependencies in real 

ecological systems. 

Our interest in ecological modeling is motivated by its use as one tool in studying the 

impact on the environment of the industrial use of newly discovered materials.  Clearly it is 

preferable to take a proactive, rather than reactive, approach when considering the safety and 

environmental consequences of using new compounds.  Of particular interest is the potential use 

of room temperature ionic liquid (IL) solvents in place of traditional solvents (Brennecke and 

Maginn, 2001).  IL solvents have no measurable vapor pressure and thus, from a safety and 

environmental viewpoint, have several potential advantages relative to the traditional volatile 

organic compounds (VOCs) used as solvents, including elimination of hazards due to inhalation, 

explosion and air pollution.  However, ILs are, to varying degrees, soluble in water; thus, if they 

are used industrially on a large scale, their entry into the environment via aqueous waste streams 

is of concern.  The effects of trace levels of ILs in the environment are today essentially 

unknown and thus must be studied.  Single species toxicity information is very important as a 

basis for examining the effects that a contaminant will have on an environment.  However, this 

information, when considered by itself, is insufficient to predict impacts on a food chain, food 

web, or an ecosystem.  Ecological modeling provides a means for studying the impact of such 

perturbations on a localized environment by focusing not just on the impact on one species, but 

rather on the larger impacts on the food chain and ecosystem.  Of course, ecological modeling is 

just one part of a much larger suite of tools, including toxicological (Jastorff et al., 2003; 
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Freemantle, 2002), hydrological and microbiological studies, that must be used in addressing this 

issue.  

 In this paper, we concentrate on the computation of equilibrium states (steady states) in 

food chain models, and on the computation of bifurcations of equilibria.  A bifurcation is a 

sudden, macroscopic change in the qualitative behavior of a system as some parameter is varied.  

These changes include the appearance and disappearance of equilibrium states (fold or saddle 

node bifurcation), the exchange of stability of two equilibria (transcritical bifurcation), and the 

change of stability of an equilibrium point (Hopf bifurcation).  van Coller (1997) provides a good 

high-level introduction for dynamical systems and their characteristics, while a more advanced 

and thorough review of bifurcations can be found in Kuznetsov (1998).  For simple systems, or 

specific parts of more complex ones, analytic techniques and isocline analysis are useful for 

analysis of equilibrium states and bifurcations.  However, for more complex problems, 

continuation methods are the predominant computational tools, with packages such as AUTO 

(Doedel et al., 1997) and others (van Coller, 1997) being particularly popular in this context.  

These are applied to solve the systems of nonlinear algebraic equations that represent the 

equilibrium states and bifurcations. 

 Continuation methods can be quite reliable, especially in the hands of an experienced 

user.  However, in general, continuation methods are initialization dependent, and may fail to 

find all solutions to a system of nonlinear equations.  Thus, in this context, these methods may 

fail to find all equilibrium states or all bifurcations of equilibria.  In this paper, we propose a new 

approach for computing equilibrium states and bifurcations of equilibria in food chain models, 

and consider the feasibility of using this approach.  This technique is based on interval 

mathematics, in particular an interval-Newton approach combined with generalized bisection, 

and provides a mathematical and computational guarantee that all equilibrium states and 

bifurcations of equilibria will be located (or, more precisely, enclosed within a very narrow 

interval).  There are other dynamical features of interest, such as limit cycles (and their 

bifurcations); however, our attention here will be limited to equilibrium states and their 

bifurcations.  While the focus here is on food chain models, there are clearly applications of this 

technique in the analysis of other dynamical systems of interest in chemical engineering.   

 In the next section, we describe the development of food chain models and the 

formulation of the nonlinear equation systems that must be solved to determine equilibrium 
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states and bifurcations.  In Section 3, the computational method to be considered is described 

briefly.  Then, in Section 4, we apply this methodology to some relatively simple systems to 

explore its feasibility.   

 

2.  PROBLEM FORMULATION 

2.1 Food Chain Models 

The food chain models studied in this paper are all continuous time models that are 

represented by a set of ordinary differential equations.  These expressions give the rate of change 

of biomass in terms of specific models of growth and mortality at each trophic level.  In food 

chain models, it is common to equate each trophic level with a single species, and that is the 

practice that we will follow here.  However, it should be noted that a trophic level may in fact 

consist of multiple similar (and noncompetitive) species with the same functional feeding 

behavior.  Species biomass can be related to species population by considering the average size 

and mass of individual members of a species.  However, it is convenient to work in terms of 

biomass for many organisms, especially those found in aquatic food chains.  Thus, when the term 

population is used here, it refers to species biomass.   

In general, for a food chain with N trophic levels, the equations giving the rate of change 

of biomass for each trophic level i (species i) can be expressed as: 

,,,1, Nimg
dt

dx
ii

i
K=−=  (1) 

where xi is the species biomass, gi is the species growth rate, and mi is the species removal 

(mortality) rate.  The removal rate of a species may include deaths due to natural causes, 

predation, harvesting, contamination, etc., and also includes the net number of individuals 

leaving the control volume of interest, whether due to drift or washout.  The species growth rate 

may include growth due to consumption of prey, or due to consumption of nutrients.   

 At the lowest level of the food chain (species 1), simple prey species are typically 

modeled as growing either exponentially or logistically in the absence of a predator.  Logistic 

models tend to better represent real systems, as these models account for the effect of prey 

density on growth.  The logistic growth model is: 
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where r is the prey growth rate constant and K is the prey carrying capacity for the system.  In 

this type of model, at small prey populations, prey species grow exponentially.  However, as the 

population gets larger, the rate of growth slows until the population reaches the system carrying 

capacity.  This carrying capacity represents the maximum biomass of a prey species that a 

system can support when the prey lives in absence of a predator.  This growth rate model 

represents the net growth, including both birth and natural death, of prey organisms.  This type of 

model is sufficient to characterize population dynamics of simple organisms at the bottom of a 

food chain.  Predation behavior is quite different, however. 

Predators (species 2, ..., N) grow by consuming prey, and the rate at which predators 

consume prey can modeled by different response types.  Holling (1959) categorized predator 

responses into three classes, as explained in more detail by Turchin (2003).  Type I predators 

exhibit a linear functional response, while Type II and Type III predators exhibit hyperbolic and 

sigmoidal responses, respectively.  The corresponding growth rate models are: 

Linear:   1−= iiiii xxaeg  (3)

Hyperbolic:   
1
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Sigmoidal:   2
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−

+
=
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iii
ii

xb

xxa
eg . (5)

Here xi is the predator species biomass, xi-1 is the prey species biomass, ai is the maximum 

predation rate, bi is a half-saturation constant, and ei is the efficiency with which a predator 

converts prey into biomass.  If the efficiency ei equals one, then gi represents the rate of prey 

consumption.  Note that in a food chain model (as opposed to a food web), a predator species 

preys only on the trophic level immediately below it in the chain.  Because of the amount of time 

required to handle prey (i.e., hunt, kill, consume, digest), predator species cannot consume prey 

at a constant rate as prey population increases.  Thus, linear functional responses do not 

accurately portray behavior in the natural environment.  On the other hand, the hyperbolic and 

sigmoidal functional responses provide a saturation effect based upon the prey species 

population.  One important difference between the hyperbolic response and the sigmoidal 
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response arises as the prey population diminishes towards zero.  As the prey population 

approaches zero, the rate of change in prey consumption rate modeled by the hyperbolic 

response increases, while the rate of change in prey consumption rate modeled by the sigmoidal 

model response passes through an inflection point, and then decreases.  This means that as prey 

population dwindles to a very low level, predators exhibiting a sigmoidal response slow in their 

efforts to consume prey, while hyperbolic predators work harder for their meals.  This reduction 

in effort by sigmoidal predators to catch prey is typical of a generalist predator that switches to 

another food source when prey abundance becomes low.  The hyperbolic response is 

characteristic of specialist predators, which do not alternate food sources.  Specialist predation is 

generally seen as a more accurate representation of many systems, including aquatic systems; 

however, both types of behavior can be used to model natural systems. 

 The species removal rate generally involves two terms, one accounting for death by 

predation, and the other being a density-dependant death rate term accounting for natural death 

and other forms of removal (e.g., harvesting, washout, etc.).  The loss of biomass by predation at 

one trophic level is directly related to the growth by predation at the next highest level in the 

food chain, and differs only by the efficiency factor introduced above.  Thus, for example, the 

removal rate for a species i with a hyperbolic predator (species i+1) would be represented by: 

ii
ii

iii
i xd

xb

xxa
m +

+
=

+

++

1

11  (6) 

where di is the death rate constant.  Note that the form of the first term (removal by predation) 

depends on the form of the predator growth rate.  Expressions such as this for mi, which include 

both the predation term and the density-dependent death rate term, will apply for i = 2, ..., N – 1.  

For the bottom prey species (i = 1), there is no density-dependent death rate term as this is 

accounted for in the logistic growth rate model.  For the top predator species (i = N), there is no 

consumption by predation term, since there is no predator higher in the food chain. 

 Based on the concepts outlined above, one can form a model of a food chain consisting of 

any number of species that exhibit a variety of functional responses.  For example, consider a 

tritrophic (N = 3) chain with a logistic prey (i = 1), and hyperbolic (Holling Type II) predator (i = 

2) and superpredator (i = 3) responses: 
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This model is well-known as a tritrophic Rosenzweig-MacArthur model (also referred to as a 

tritrophic Oksanen model), and is frequently used in theoretical ecology (e.g., Gragnani et al., 

1998; Hastings and Powell, 1991; Klebanoff and Hastings, 1994; Abrams and Roth, 1994; 

Kuznetsov and Rinaldi, 1996; De Feo and Rinaldi, 1997).  Since this model is relatively simple 

and has been widely studied both analytically and numerically, it provides a good initial problem 

for testing the feasibility of the interval-based methodology described below for determining 

equilibrium states and bifurcations of equilibria in food chain models. 

 Two additional tritrophic models, involving different predator functional responses, will 

be used as test problems.  The first of these involves a sigmoidal (Holling Type III) predator and 

superpredator, and is given by: 
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This model appears to have received only limited study (Turchin, 2003; Yodzis, 1989), as the 

Type III functional response is generally only applicable to generalist, not specialist, predators, 

and is thus perhaps less widely applicable in typical natural environments than the Rosenzweig-

MacArthur model. 

The second of the two additional test problems involves a hyperbolic, or specialist, 

predator and a sigmoidal, or generalist, superpredator.  This model is given by: 
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This model has apparently not been widely studied. 

 Note that, since all of the terms typically used to model gi and mi have a common factor 

of xi, food chain models, including all of the models above, can typically be represented by the 

general form 

)(T xhx
x
=

dt

d
, (16) 

where x = [x1, x2, ..., xN]T is the vector of population (biomass) densities, and h = [h1, h2, ..., hN]T 

is the vector of functions hi(x) = [gi(x) – mi(x)]/xi. 

In real systems, the simple food chains discussed above are likely imbedded within larger 

and more complex food webs, but for the purposes of many theoretical ecology studies, the 

tritrophic food chain has proven useful in analyzing both qualitative and quantitative trends in 

population fluctuation. 

2.2  Equilibrium States 

 Equilibrium states are defined by the condition 

0== )(T xhx
x

dt

d
, (17) 

subject to 

0≥x . (18) 

Once values for all of the model parameters have been specified, Eq. (17) represents an N × N 

system of nonlinear equations which can be solved for the equilibrium states.  For food chain 

models as described above, there may be a large number of solutions; however, typically some of 

these solutions will not satisfy Eq. (18) and thus will be infeasible.  Note that the solution of Eq. 
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(17) can be thought of as consisting of 2N subproblems, one for the case of all nonzero xi and 

requiring the solution of h(x) = 0, and 2N –1 subproblems corresponding to different 

combinations of xi set to zero, each combination requiring the solution of a system hi = 0, i ∈ S, 

where S indicates the set of indices corresponding to nonzero xi.  In general, each of the 

subproblems that must be solved (except for the case x = 0) may have multiple solutions or no 

solutions, and so the total number of equilibrium states may be unknown a priori.  For simple 

models, it may be possible to solve for many of the equilibrium states analytically, but for more 

complex models a computational method is needed that is capable of finding, with certainty, all 

the solutions of a nonlinear equation system.  The interval-Newton procedure described below is 

tested here for this purpose.  It is applied directly to the solution of Eq. (17) rather than to any of 

the several subproblems. 

The stability of an equilibrium state can be determined by evaluating the Jacobian matrix 

at this state and then examining its eigenvalues.  From Eq. (17), the Jacobian matrix J of interest 

has the elements 

k

ii
ik x

hx
J

∂

∂
=

)(
. (19) 

According to linear stability analysis, for an equilibrium state to be stable, all of the eigenvalues 

of the Jacobian must have negative real parts. 

 Examining equilibrium states can give us information on how the behavior of the system 

changes with changes in the model parameters.  Since the parameters in the model are 

representative of physical and biological characteristics of the system, the model parameters can 

be altered in order to represent changes in a real system.  Tracking the changes in the equilibrium 

states can give us information on how a real system might behave when undergoing 

perturbations in the system parameters. 

2.3  Codimension-One Bifurcations 

To find bifurcations of codimension one, all model parameters but one are specified, and 

then the values of the remaining parameter at which there is a sudden change in the nature of an 

equilibrium state are found.  Of interest here are fold and transcritical bifurcations of equilibria 

and Hopf bifurcations.  Mathematically, when an equilibrium state undergoes either a fold or a 

transcritical bifurcation, an eigenvalue of its Jacobian becomes zero.  In this case, there are two 
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equilibria that “collide” as the free parameter is varied.  In a fold bifurcation, these equilibria 

mutually annihilate, thus the number of equilibrium states changes by two as the free parameter 

is increased or decreased.  On the other hand, in a transcritical bifurcation, the two colliding 

equilibria do not disappear, but may simply exchange stability.  In a system with a single state 

variable, there will always be an exchange of stability, but if the number of state variables is 

more than one, there may or may not be an exchange of stability, depending on the sign of the 

other eigenvalues.  Mathematically, a Hopf bifurcation occurs when its Jacobian has a pair of 

complex conjugate eigenvalues and the sign of their real part changes; i.e. when this complex 

conjugate pair of eigenvalues is purely imaginary.  In a system with two state variables, this will 

result in a change in the stability of the equilibrium state, but if the number of state variables is 

more than two, there may or may not be stability change, depending on the sign of the other 

eigenvalues.  If the Hopf bifurcation occurs in an independent two-variable subset of state space, 

this is referred to as a planar Hopf bifurcation. 

 The locations of these bifurcations can be computed by solving a nonlinear equation 

system that includes the equilibrium conditions, Eq. (17), together with an augmenting (or test) 

function that represents the mathematical condition for the type of bifurcation sought.  

Kuznetsov (1998) discusses in detail the development of such test functions for the types of 

bifurcations of interest here.  Generally these test functions are designed to avoid the need for 

direct computation of eigenvalues. 

At a fold or transcritical bifurcation, an eigenvalue of J is zero.  Since the determinant of 

a matrix is equal to the product of its eigenvalues, the determinant of J will be zero at a fold or 

transcritical bifurcation, thereby providing a convenient test function.  Thus, to locate a fold or 

transcritical bifurcation of equilibrium, a nonlinear equation system that can be solved is  

0=),(T αxhx  (20) 

0)],(det[ =αxJ  (21) 

This is a system of N + 1 equations in the N + 1 variables x and α, where α is the free model 

parameter. 

At a Hopf bifurcation, J has a complex conjugate pair of purely imaginary eigenvalues.  

This means that there must be a pair of eigenvalues that sums to zero (but note that the converse 

is not true—having a pair of eigenvalues that sums to zero does not necessarily mean that they 
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are a complex conjugate pair with zero real part).  According to Stephanos’s theorem, for an N × 

N matrix J with eigenvalues λ1, λ2, …, λN, the bialternate product J ⊗ J has eigenvalues λiλj and 

the bialternate product 2J ⊗ I has eigenvalues λi + λj.  Thus, to locate a Hopf bifurcation a 

nonlinear equation system that can be solved is  

0=),(T αxhx  (22) 

0]),(2det[ =⊗ IJ αx . (23) 

Again, this is a system of N + 1 equations in the N + 1 variables x and α.  The bialternate product 

of two n × n matrices A and B is an m × m matrix denoted by A ⊗ B whose rows are labeled by 

the multiindex (p, q) where p = 2, 3, …, n and q = 1, 2, …, p – 1, whose columns are labeled by 

the multiindex (r, s) where r = 2, 3, …, n and s = 1, 2, …, r – 1, where m = n(n – 1)/2, and whose 

elements are given by  

( )( )( ) 









+=⊗

qsqr

pspr

qsqr

pspr
srqp aa

bb

bb

aa
BA

2

1
,, . (24) 

Note that solutions to this nonlinear equation system will include all Hopf bifurcations, but that 

there may be other solutions corresponding to the case of two eigenvalues that are real additive 

inverses (and for which there thus is also a pair of eigenvalues that sums to zero).  To identify 

such “false positives” it is thus necessary to compute the eigenvalues of J at each solution to Eqs. 

(22-23). Then any solutions for which the eigenvalues do not include a purely imaginary 

complex conjugate pair can be discarded. 

2.3  Codimension-Two Bifurcations 

To find bifurcations of codimension two, all but two model parameters are specified, and 

then the values of the two free parameters at which there is a sudden change in the nature of an 

equilibrium state are found, much in the same way that codimension-one bifurcations are found.  

On a bifurcation diagram (see examples below), codimension-two bifurcation points may occur 

at the intersections of codimension-one bifurcation curves; thus, these codimension-two 

bifurcations are of interest since they serve as “organizing centers” for the diagram.  

Furthermore, codimension-one bifurcation curves can exhibit qualitative, macroscopic changes 

in number and/or type when passing through codimension-two bifurcation points.  Knowledge of 

the codimension-two bifurcations alone, without determination of an entire bifurcation diagram, 
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can be useful for comparison of models (Gragnani et al., 1998). 

 Corresponding to the types of codimension-one bifurcations considered here, there are 

three basic types of codimension-two bifurcations.  They can be classified mathematically by 

examining the eigenvalues of the unaugmented Jacobian J defined by Eq. (19).  The Jacobian 

can either have a pair of purely zero eigenvalues (double-fold or double-zero bifurcation), two 

pairs of purely imaginary complex conjugate eigenvalues (double-Hopf bifurcation), or a pair of 

purely imaginary complex conjugate eigenvalues and one zero eigenvalue (fold-Hopf 

bifurcation).  Since the examples used in this paper are tritrophic, the double-Hopf case will not 

be considered here, as these cannot occur in a model with less than four equations (the double-

Hopf condition involves four eigenvalues).  There are also other types of codimension-two 

bifurcations (e.g., cusp bifurcation) that are not searched for directly here, but which may be 

encountered (see Section 4.2). 

Both double-fold and fold-Hopf bifurcations can be found be solving the doubly 

augmented nonlinear system 

0=),,(T βαxhx  (25) 

0)],,(det[ =βαxJ  (26) 

0]),,(2det[ =⊗ IJ βαx . (27) 

This is a system of N + 2 equations in the N + 2 variables x, α, and β, where α and β are the free 

model parameters.  Eq. (26) applies since, at either a double-fold or fold-Hopf bifurcation, J 

must have an eigenvalue of zero.  Eq. (27) applies since, whether it is the pair of zero 

eigenvalues at a double-fold bifurcation or the pair of purely imaginary complex conjugate 

eigenvalues at a fold-Hopf bifurcation, J must have a pair of eigenvalues that sums to zero.   

Once found, solutions to Eqs. (25-27) must be screened for points that have a pair of (nonzero) 

eigenvalues that are purely real additive inverses, and the points must be further sorted and 

classified by type.  Whether one is looking for fold and transcritical bifurcations and solving Eqs. 

(20-21), looking for Hopf bifurcations and solving Eqs. (22-23), or looking for codimension-two 

bifurcations by solving Eqs. (25-27), the equation system that must be solved may have multiple 

solutions, or no solutions, and the number of solutions may be unknown a priori.  A 

computational method is needed that is capable of finding, with certainty, all the solutions of 
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these nonlinear equation systems.  The interval-Newton procedure described below is tested here 

for this purpose. 

 

3.  COMPUTATIONAL METHODOLOGY 

Recent monographs that introduce interval mathematics, as well as computations with 

intervals, include those of Neumaier (1990), Hansen (1992) and Kearfott (1996).  Of particular 

interest here is the use of an interval-Newton/generalized-bisection (IN/GB) technique.  Properly 

implemented, this technique provides the power to find, with mathematical and computational 

certainty, narrow enclosures of all solutions of a system of nonlinear equations, or to determine 

with certainty that there are none, provided that initial upper and lower bounds are available for 

all variables (Neumaier, 1990; Hansen, 1992, Kearfott, 1996).  This is made possible through the 

use of the powerful existence and uniqueness test provided by the interval-Newton method.  The 

key ideas of the methodology used are summarized briefly here. 

 Consider an n × n nonlinear equation system f(x) = 0 with a finite number of real roots in 

some initial interval X(0).  The interval Newton methodology is applied to a sequence of 

subintervals of X(0).  For a subinterval X(k) in the sequence, the first step is the function range 

test.  An interval extension F(X(k)) of the function f(x) is calculated, which provides upper and 

lower bounds on the range of values of f(x) in X(k).  Interval extensions are computed here by 

substituting the given interval into the function and then evaluating the function using interval 

arithmetic.  If there is any component of the interval extension F(X(k)) that does not include zero, 

then the interval can be discarded, since no solution of f(x) = 0 can exist in this interval.  The 

next subinterval in the sequence may then be considered.  Otherwise, testing of X(k) continues. 

The next step is the interval-Newton test.  The linear interval equation system 

)())(( )()()()( kkkkF xfxNX −=−′  (28) 

is solved for a new interval N(k), where F′(X(k)) is an interval extension of the Jacobian of f(x), 

and x(k) is an arbitrary point in X(k).  It can be shown (Moore, 1966) that any root contained in X(k) 

is also contained in the image N(k).  This implies that when X(k) ∩ N(k) is empty, then no root 

exists in X(k), and also suggests the iteration scheme X(k+1) = X(k) ∩ N(k).  In addition, if N(k) ⊂ 

X(k), it can been shown (e.g., Kearfoot, 1996) that there is a unique root contained in X(k) and thus 

in N(k).  Thus, after computation of N(k), there are three possibilities:  1. X(k) ∩ N(k) = ∅, meaning 
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there is no root in the current interval X(k) and it can be discarded;  2. N(k) ⊂ X(k), meaning that 

there is exactly one root in the current interval X(k).  3. Neither of the above, meaning that no 

conclusion can be drawn.  In the last case, if X(k) ∩ N(k) is sufficiently smaller than X(k), then the 

interval-Newton test can be reapplied to the resulting intersection.  Otherwise, the intersection is 

bisected, and the resulting two subintervals are added to the sequence of subintervals to be 

tested.  If an interval containing a unique root has been identified, then this root can be tightly 

enclosed by continuing the interval-Newton iteration, which will converge quadratically to a 

desired tolerance (on the enclosure diameter).  Alternatively, a point approximation of the root 

can be found by using a routine point-Newton method, starting from any point in the interval 

containing the unique root.  This approach is referred to as an interval-Newton/generalized-

bisection (IN/GB) method.  At termination, when the subintervals in the sequence have all been 

tested, either all the real roots of f(x) = 0 have been tightly enclosed or it is determined 

rigorously that no roots exist.  Additional details of the IN/GB algorithm used are summarized by 

Schnepper and Stadtherr (1996). 

 An important feature of this approach is that, unlike standard methods for nonlinear 

equation solving that require a point initialization, the IN/GB methodology requires only an 

initial interval, and this interval can be sufficiently large to enclose all feasible results.  In recent 

years, the IN/GB technique has been successfully applied to a variety of problems in chemical 

engineering, including phase equilibrium (Hua et al., 1998; Maier et al., 1998; Stradi et al., 

2001; Xu et al., 2002), parameter estimation (Gau and Stadtherr, 2000, 2002a,b; Gau et al., 

2000) and density functional theory (Maier and Stadtherr, 2001). 

 

4.  RESULTS AND DISCUSSION 

In this section, we use the three tritrophic food chain models introduced in section 2.1 as 

test problems to explore the use of the IN/GB methodology for computing equilibrium states and 

bifurcations of equilibria.  It should be noted that, since these are relatively simple models, it is 

possible to perform some of these computations analytically.  However, since this may not be 

possible for more complex models, all the results presented below were computed numerically 

using the IN/GB technique, without any analytical short cuts. 
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4.1 Rosenzweig-MacArthur Model 

The Rosenzweig-MacArthur model used here is tritrophic, featuring a logistic prey species 

and hyperbolic (Holling Type II) predator and superpredator, and defined by Eqs. (7-9).  Much 

of the literature work on the Rosenzweig-MacArthur model has focused on the enrichment 

paradox and chaos associated with alterations of the food chain carrying capacity (e.g., Gragnani 

et al., 1998).  To conform to these studies and to thus provide a body of work with which to 

compare our results, the growth rate constant r and carrying capacity K were chosen as the initial 

set of adjustable parameters to study.  Following Gragnani et al. (1998), the remaining 

parameters values were fixed at a2 = 5/3, b2 = 1/3, e2 = 1, d2 = 0.4, a3 = 0.05, b3 = 0.5, e3 = 1, and 

d3 = 0.01.  Except as noted otherwise, these parameter values were used for all of the 

computations done here with the Rosenzweig-MacArthur model, as well as with the other two 

tritrophic models used.  

4.1.1  Equilibrium States 

As an initial test of the IN/GB methodology, we used it to compute equilibrium states for 

several sets of K and r values.  For example consider the case of K = 1.0 and r = 1.0.  With these 

values of K and r, together with the other parameter values given above, the IN/GB method was 

used to solve Eq. (17) for all equilibrium states.  The initial interval used for each variable was 

[0, 5000]; here the upper bound is simply an arbitrarily large number.  The results are shown in 

Table 1, along with results of stability analysis for each point.  Four feasible steady states were 

found, all of which are unstable.  Note that the values of x reported in Table 1 (as well as in 

Table 2 below) are rounded point representations of the interval enclosures determined by the 

IN/GB algorithm.  For instance, the actual results computed for the first equilibrium state are the 

enclosures x1 ∈ [0.819245918, 0.819246099], x2 ∈ [0.124999908, 0.125000008] and x3 ∈ 

[9.808198838, 9.808199175].  Tighter enclosures can be determined if desired by setting a 

smaller tolerance for the enclosure diameter.   

As another example, consider the case of K = 0.5 and r = 1.0.  Results for this case are 

listed in Table 2.  Again there are four feasible equilibrium states, with one stable state in this 

case.  Both cases considered feature a steady-state with all species coexisting, along with a state 

including the prey and predator only, a state including the prey only, and a state for which all 

populations are zero.  A zero population solution (solution 4) is always unstable.  Physically, this 
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means that the populations in any closed system whose initial populations are zero will remain 

zero.  However, if the system is open and there is a small perturbation (increase) in the prey 

population, then the prey population will grow according to the logistic growth rate term until a 

new steady state is reached (solution 3).  Such perturbations are common in aquatic 

environments due to flow and drift.   

For a given set of K and r values, the computation of the equilibrium states using IN/GB 

is quite fast.  Computation times are on the order of 0.05 sec.  All computation times given here 

and below are for a Dell workstation running a 1.7 GHz Intel Xeon processor and using the Intel 

Fortran Compiler 7.1 for Linux. 

4.1.2  Solution Branch Diagrams 

By comparing the two cases considered above, it can be seen that an effect of increasing 

K from 0.5 to 1.0 is that the coexistence equilibrium state goes from stable to unstable.  To see 

the changes in the equilibrium states as one parameter is varied, solution branch diagrams can be 

used.  These are plots of both the stable and unstable steady states versus one of the parameters.  

Figure 1 shows the solution branch diagrams for the Rosenzweig-MacArthur model as K is 

varied with r = 1.0.  These diagrams were generated by using the IN/GB method to repeatedly 

solve Eq. (17) for slightly different values of K, going from K = 0 to K = 2 in steps of ∆K = 

0.001, then analyzing the stability of each solution and plotting the results (thick lines represent 

stable equilibria, while thin lines represent unstable equilibria).  One should note that such 

diagrams do not give the user any information on the transient behavior of the system beyond 

knowledge of the stability of the equilibrium states. 

Examination of Figure 1 shows that as K increases there are three values of K at which 

macroscopic changes in the system behavior (bifurcations) occur.  The first of these is at K ≈ 

0.105.  Here a new steady state appears (this is evident in the x1 and x2 diagrams only, as the new 

steady state has x3 = 0).  This is a transcritical bifurcation.  In general, at a transcritical 

bifurcation there will be two equilibrium states that collide.  However, in this case, one of the 

colliding states is infeasible and so does not appear on the solution branch diagram.  There is 

another similar transcritical bifurcation at K ≈ 0.201.  Finally at K ≈ 0.768, one of the 

equilibrium states (the one with all species coexisting) changes from stable to unstable.  This is a 

Hopf bifurcation. 
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Figure 1 also illustrates the paradox of enrichment as discussed by Gragnani et al. (1998), 

among others.  This paradox states that enriching the bottom level of a food chain in order to 

increase the population of the top level species may, in fact, result in the decimation of the 

species that are wanted in greater abundance.  In this case, enrichment of the food chain is 

modeled by increasing the prey carrying capacity K.  The plot of superpredator population x3 in 

Figure 1 illustrates that enriching the food chain results an increase in superpredator population, 

but this is stable only to a point.  By increasing the carrying capacity beyond this critical point, 

the stable steady-state becomes unstable and enrichment may become counterproductive.  

Solution branch diagrams such as Figure 1 can be very easily and automatically generated using 

the IN/GB methodology, with certainty that all equilibrium states (solution branches) have been 

found.  Two other solution branch diagrams were computed.  Figure 2 shows the case for r = 0.5, 

and Figure 3 for r = 0.4. 

Figure 2 illustrates some bifurcation behavior similar to Figure 1, but with distinct 

differences.  Here as K is increased, the system undergoes a transcritical bifurcation in which a 

previously infeasible equilibrium state becomes feasible, colliding with another equilibrium state 

and exchanging stabilities.  This is followed by a Hopf bifurcation, which occurs for an 

equilibrium state with a positive prey and predator population, but with a zero superpredator 

population.  Therefore, this is a planar Hopf bifurcation, as the bifurcation is occurring in a 

subset of the state space of the model.  At K ≈ 0.872, a fold bifurcation occurs and two new 

steady states appear (this is evident only in the plots of x1 and x3, as the new steady states have 

the same value of x2).  Finally there are two Hopf bifurcations.  One can observe that there is no 

continuity between the equilibrium that undergoes the first (planar) Hopf bifurcation and the 

equilibrium that undergoes the second two (non-planar) Hopf bifurcations.  From the plot of x3, it 

is evident that the region of stable coexistence of all three populations at equilibrium is in the 

narrow interval of K values between the second two Hopf bifurcation points.  However, in this 

region, the trend of the enrichment paradox is apparent.  

 Looking at Figure 3, one can see that the slight change made in the prey growth rate 

constant r leads to a significant change in system behavior.  The narrow band of stability in 

Figure 2 that allows all three species to coexist no longer exists in Figure 3.  Thus, at a 

sufficiently low prey growth rate, no superpredators can thrive in a stable population.  It is also 

very interesting to note that in Figure 3 the fold bifurcation results in two equilibrium states 
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(solution branches) that do not intersect other branches (this is true even for larger values of K 

than shown on the plot).  Such isolated solution branches (isola) can be very difficult to find 

using continuation methods, especially for more complex models in which their existence may 

not be suspected.  However, using the IN/GB approach, isolated branches are easily found.  In 

fact, there is a mathematical and computational guarantee that they will be found. 

4.1.3  K vs. r Bifurcation Diagram 

For fixed r, the values of K and x at which the bifurcations of equilibria observed above 

occur can be computed directly by solving the appropriate augmented systems, namely Eqs. (20-

21) for fold and transcritical bifurcations and Eqs. (22-23) for Hopf bifurcations.  In a K vs. r 

bifurcation diagram the values of K at which the bifurcations occur are plotted as a function of r.  

Such a diagram was generated here by using the IN/GB method to repeatedly solve the 

augmented systems for K and x for slightly different values of r, going from r = 0 to r = 2 in 

steps of ∆r = 0.005.  There may be some values of r for which one of the augmented systems has 

an infinite number of solutions for K (i.e., a vertical line on the K vs. r diagram).  This case 

cannot be handled directly by the IN/GB technique, or could be missed entirely by the stepping 

in r.  Thus, to ensure that all of the bifurcations are found, it is necessary to also scan in the K 

direction.  That is, the IN/GB method was also used to repeatedly solve the augmented systems 

for r and x for slightly different values of K, in this case going from K = 0 to K = 2 in steps of ∆K 

= 0.005.  To locate codimension-two bifurcations (double-fold and fold-Hopf), the IN/GB 

method was used to solve the doubly augmented system given by Eqs. (25-27) for K, r and x.  

The initial intervals used for the components of x were again [0, 5000] and for the parameters K 

and r were [0, 2].  The average CPU time for each solution of Eqs. (20-21) for fold and 

transcritical bifurcations was about 0.6 seconds, and for each solution of Eqs. (22-23) for Hopf 

bifurcations was about 1.4 seconds.  Solving Eqs. (25-27) for codimension-two bifurcations 

required about 39 seconds. 

Figure 4 shows the K vs. r bifurcation diagram generated for the Rosenzweig-MacArthur 

tritrophic food chain model using the IN/GB method.  Fold and transcritical of equilibria curves 

were both found, and are labeled FE and TE respectively.  Hopf bifurcation curves were also 

found, and are labeled H or Hp (for planar Hopf).  A single fold-Hopf bifurcation was located; 

this point is represented as an open diamond and labeled FH (no double-fold bifurcations were 
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found).  This bifurcation diagram corresponds exactly with the known K vs. r bifurcation 

diagram for this model, as reported by Gragnani et al. (1998).  This confirms the utility and 

accuracy of the IN/GB algorithm for computing bifurcation of equilibria diagrams.  Bifurcation 

diagrams such as Figure 4 can be very easily and automatically generated using the IN/GB 

methodology, with complete certainty that all bifurcation curves have been found.  Two other 

bifurcation diagrams were computed, d2 vs. K and r vs. d2.   

4.1.4  d2 vs. K Bifurcation Diagram 

Using the same procedure as described above, a d2 vs. K bifurcation diagram for the 

Rosenzweig-MacArthur model was generated.  The predator death rate constant d2 is now a free 

parameter, and r is now a fixed parameter set at r = 1.  The average CPU time for each solution 

of Eqs. (20-21) for fold and transcritical bifurcations was about 0.8 seconds, and for each 

solution of Eqs. (22-23) for Hopf bifurcations was about 2.1 seconds.  Solving Eqs. (25-27) for 

codimension-two bifurcations required about 31 seconds.  The resulting bifurcation diagram is 

shown in Figure 5.  This diagram illustrates that at a constant prey carrying capacity and growth 

rate constant (r = 1), increasing or decreasing the predator death rate will cause macroscopic 

changes in system behavior.  For relatively small values of K, there are two transcritical 

bifurcations that occur as d2 is changed, and for larger values of K there are also two Hopf 

bifurcations.  No double-fold or fold-Hopf codimension-two bifurcations were found.  In order to 

more closely observe these changes in behavior, solution branch diagrams were generated using 

IN/GB for the case of K = 1.  Figure 6 gives the solution branch diagrams for x as d2 is varied 

from 0 to 2.   

Based on the bifurcation diagram at K = 1, we would expect that as d2 is increased from 0 

to 2, there should be observed first a Hopf bifurcation (the planar Hopf is not observed in this 

case, due to the sign of the third eigenvalue) and then two transcritical bifurcations.  This is what 

is in fact seen in Figure 6.  These diagrams illustrate that there is a minimum predator death rate 

constant d2 that results in stable system behavior.  At low predator death rates, the system is 

unstable and likely exhibits cycles of population booms and busts.  As the predator death rate 

increases, enough predators are dying off at any given time to prevent the cycles from occurring, 

and the cycles collapse to a stable steady-state in a Hopf bifurcation. 

These results also give a sense of the effects of releasing a toxin that specifically targets 

the predator trophic level, and increases the predator death rate constant.  Prior to examining 
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these diagrams, one would expect that such a release would have an impact on both the predator 

and the superpredator populations.  The plot of x3 in Figure 6 shows that increasing the predator 

death rate constant causes a linear decrease in the stable superpredator biomass.  However, 

according to the plot of x2 in Figure 6, the stable predator population is not affected until the 

superpredator population reaches zero.  Though these results may seem somewhat 

counterintuitive, they are indicative of the complex interactions that may occur in food chains.  

An ecotoxin released at a very low concentration could affect organisms at different trophic 

levels to varying degrees.  For the case considered here, one might observe an impact on the 

superpredator population and thus assume that the effect of the ecotoxin was at that level, even 

though the actual impact is on the predator level.  Using models such as this one can obtain 

insights into the impacts of an ecotoxin that might not otherwise be apparent.    

4.1.5  r vs. d2 Bifurcation Diagram 

Again using the IN/GB methodology, an r vs. d2 bifurcation diagram for the Rosenzweig-

MacArthur model was generated, with K fixed at K = 1.  This set of free parameters is of interest 

since both could be affected by an ecotoxin.  Since the prey growth rate constant represents the 

net growth (accounting for both birth and natural death), an ecotoxin affecting the prey trophic 

level could decrease the prey growth rate.  For this problem, the average CPU time for each 

solution of Eqs. (20-21) for fold and transcritical bifurcations was about 2.4 seconds, and for 

each solution of Eqs. (22-23) for Hopf bifurcations was about 2.2 seconds.  Solving Eqs. (25-27) 

for codimension-two bifurcations required about 220 seconds.  The resulting bifurcation diagram 

is shown in Figure 7. 

Figure 7 displays a wide variety of bifurcation behavior, including a codimension-two 

fold-Hopf bifurcation.  This diagram illustrates that changing either the prey growth rate constant 

or the predator death rate constant can cause macroscopic changes in system behavior.  Two 

solution branch diagrams were generated in IN/GB to more closely examine the changes in 

species biomass as the parameter variables are changed.  Figure 8 is the solution branch diagram 

as d2 is changed at a constant r = 0.5, and Figure 9 is the solution branch diagram as r is changed 

at a constant d2 = 0.4. 

The solution branch diagrams in Figure 8 (r = 0.5; K = 1.0) illustrate behavior somewhat 

similar to the solution branch diagrams illustrated in Figure 6 (r = 1.0; K = 1.0), with important 

differences.  First, in Figure 8 a third transcritical bifurcation is observed, at a value of d2 very 
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close to the Hopf bifurcation.  Also, compared to Figure 6, the Hopf bifurcation now occurs at a 

lower value of d2, as does the point where the system can no longer support superpredators and 

they become extinct.  However, the point at which the predator population becomes extinct does 

not change, nor does the rate of superpredator decline.  Therefore, with a decrease in the prey 

growth rate constant from r = 1.0 to r = 0.5, the system actually has a wider range of d2 that 

results in a stable system, and a wider range of d2 in which all three species can coexist.   

 Figure 9 illustrates the effect of increasing the prey growth rate constant on a system with 

constant carrying capacity K = 1.0 and constant predator death rate constant d2 = 0.4.  These 

solution branch diagrams tie together Figure 4 (K vs. r at constant d2 = 0.4) and Figure 7 (r vs. d2 

at constant K =1.0) in that they are evaluated at a parameter set (K = 1.0; d2 = 0.4) common to 

both diagrams.  As r increases, the solution branch diagrams illustrated in Figure 9 exhibit a fold 

bifurcation, then a Hopf bifurcation, followed very closely by a transcritical bifurcation, and 

finally another Hopf bifurcation.  The location of these bifurcations can be verified by both 

Figure 4 (following the line K = 1 upwards) and Figure 7 (following the line d2 = 0.4 upwards).  

This example and those above are useful in confirming that the IN/GB methodology is indeed 

successfully computing all equilibrium states and bifurcations of equilibria for this model.  The 

solution branch diagrams of Figure 9 show a single region of stability for the model, and in this 

region all three species coexist.  In this region, increasing the prey growth rate constant causes an 

increase in prey and superpredator population, but this occurs only to a point.  This type of 

phenomenon is similar to the paradox of enrichment.  As the prey species replaces its population 

more quickly, more organisms are able to thrive within the food chain, but eventually if the prey 

population grows too quickly, the system becomes unstable. 

4.2  Tritrophic Model with Sigmoidal Predator and Superpredator Responses 

In view of the success in applying the IN/GB methodology to generate bifurcation 

diagrams and solution branch diagrams for the Rosenzweig-MacArthur model, the methodology 

was tested on two other food chain models.  The first of these is the tritrophic model with 

sigmoidal (Holling Type III) predator and superpredator functional responses, as given by Eqs 

(10-12).   
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4.2.1  Bifurcation Diagram 

The dynamics of this system have received only limited study (Turchin, 2003; Yodzis, 

1989), and there are apparently no published bifurcation diagrams for it.  Following the 

procedures outlined above, the IN/GB methodology was applied to compute the bifurcation 

diagram for the case of r and K as free parameters.  The average CPU time for each solution of 

Eqs. (20-21) for fold and transcritical bifurcations was about 3.6 seconds, and for each solution 

of Eqs. (22-23) for Hopf bifurcations was about 7.9 seconds.  Solving Eqs. (25-27) for 

codimension-two bifurcations (double-fold or fold-Hold) required about 71 seconds.  The 

resulting bifurcation diagram is shown in Figure 10. 

 At least for the range of parameters studied, no Hopf bifurcations were found, and no 

double-fold or fold-Hopf codimension-two bifurcations were found.  Note that the range of prey 

carrying capacity values studied was increased to [0, 4] in order to more closely examine the pair 

of fold of equilibria curves discovered.  These curves are isolated from the transcritical of 

equilibria bifurcation curves in the parameter-state space in which Eqs. (20-21) are solved, and 

so could be difficult to detect using continuation methods.  The intersection of the two fold of 

equilibria bifurcation curves without the occurrence of a double-fold bifurcation suggests that 

this point is a cusp bifurcation.  Note that this type of codimension-two bifurcation cannot be 

found by solving Eqs. (25-27).  In order to investigate the behavior of the system near the cusp, 

solution branch diagrams were generated for the case r = 0.7 using the IN/GB methodology. 

4.2.2  Solution Branch Diagrams 

 A set of solution branch diagrams was generated for this model that examines the effect 

of increasing the prey carrying capacity K on the biomasses of the three trophic levels while 

holding r constant at a value of 0.7.  This value was chosen to intersect with the fold bifurcation 

curves close to the cusp.  Figure 11 gives the solution branch diagrams.  These illustrate the 

crossing of two transcritical bifurcations followed by two fold bifurcations.  One equilibrium 

created by the first fold bifurcation collides with the equilibrium that appears in the second 

transcritical bifurcation and the two mutually annihilate in the second fold bifurcation, forming 

an S shaped curve typical of behavior near a cusp bifurcation.  Note that there is a region where 

two stable steady-states exist in which all three species can coexist; this region also contains an 

unstable-steady state (this is not seen in the plot for x2 since all three of these solutions have the 
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same x2 value).  It also appears, according to this model, that the enrichment paradox does not 

hold for systems of generalist predators, as increasing K does not ultimately result in an unstable 

system.  However, it should be noted that in this system the two fold bifurcations are catastrophic 

because they result in an abrupt change in system behavior.  For instance, if the system is at the 

stable high-population (prey and superpredator) equilibrium state, and the prey carrying capacity 

K is decreasing, then, at the leftmost fold bifurcation, this state suddenly disappears and is 

replaced by a low-population equilibrium state.  The transient behavior by which the new low-

population state is approached is not investigated here. 

4.3  Tritrophic Model with Hyperbolic Predator and Sigmoidal Superpredator Responses 

The last of the food chain models used as a test problem here is the tritrophic model with 

a hyperbolic (Holling Type II) predator response and a sigmoidal (Holling Type III) 

superpredator response, as given by Eqs (13-15).   

4.3.1  Bifurcation Diagram 

This model has apparently received little, if any, previous study.  Using a hyperbolic 

(specialist) predator and a sigmoidal (generalist) superpredator is justifiable in that organisms 

that are higher up on a food chain tend to have more diversity in the types of organisms that 

compose their diets.  Again the IN/GB methodology was applied to compute the bifurcation 

diagram for the case of r and K as free parameters.  The average CPU time for each solution of 

Eqs. (20-21) for fold and transcritical bifurcations was about 2.1 seconds, and for each solution 

of Eqs. (22-23) for Hopf bifurcations was about 3.8 seconds.  Solving Eqs. (25-27) for 

codimension-two bifurcations (double-fold or fold-Hold) required about 62 seconds.  The 

resulting bifurcation diagram is shown in Figure 12. 

 The bifurcation diagram illustrates a range of features, including fold and transcritical of 

equilibria bifurcations, Hopf bifurcations, and a codimension-two bifurcation point classified as 

a fold-Hopf bifurcation.  The fold and transcritical bifurcation curves appear to be quite similar 

to those seen in the Rosenzweig-MacArthur model, however the Hopf bifurcation behavior is 

quite different in that the Hopf curve that originates at the fold-Hopf bifurcation point does not 

double back in the diagram for this model.  Also the fold-Hopf point occurs at a significantly 

larger value of r. 
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4.3.2  Solution Branch Diagrams 

 Using the IN/GB methodology, solution branch diagrams were generated for this model 

that examine the effect of increasing the prey carrying capacity K on the biomasses in the three 

trophic levels, while holding r constant at a value of 1.0.  These diagrams are shown in Figure 

13.  The solution branch diagrams illustrate a transcritical bifurcation followed by a Hopf 

bifurcation and then a fold bifurcation.  An interesting feature to note is that the Hopf bifurcation 

that causes a change in system stability is, in fact, a planar Hopf bifurcation.  A second Hopf 

bifurcation is encountered with no change in system stability.  This Hopf bifurcation is non-

planar, but a change in stability does not occur as the sign of the third eigenvalue is already 

positive.  As one equilibrium created in the fold bifurcation approaches K = 2.0, it grows close to 

a transcritical bifurcation.  This model displays a region of instability between the Hopf and fold 

bifurcations.  However, the model does not exhibit behavior in accordance with the enrichment 

paradox.  While increasing the prey carrying capacity does take the system through a region of 

instability, the presence of a generalist superpredator causes the system to be stable for larger 

values of K, at least for the parameter values at which this diagram was generated. 

4.4  Computational Performance 

 Average computation times are given above for single solutions of the appropriate 

nonlinear equation systems for determination of equilibrium states, codimension-one bifurcations 

and codimension-two bifurcations.  To generate an equilibrium solution branch diagram or a 

bifurcation diagram requires that these equation systems be solved multiple times.  For instance, 

a solution branch diagram generated over a parameter range [0, 2] with a step size of 0.001 

would require 2000 solutions of Eq. (17) for the equilibrium states.  With a solution time on the 

order of 0.05 seconds for an individual system, this means that the entire solution branch 

diagram requires roughly 100 seconds of computation time.  Bifurcation diagrams are more 

costly since both Eqs. (20-21) and Eqs (22-23) must be solved repeatedly, and Eqs. (25-27) once.  

For example, the K vs. r bifurcation diagram for the Rosenzwieg-MacArthur model requires 

about 1640 seconds of computation time.  We do not consider computational effort on this order 

to be unreasonable, especially since the methodology used provides a guarantee of reliability.  

Furthermore, since the diagrams can be generated automatically, without user intervention to 
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deal with initialization issues, the actual elapsed time to generate a bifurcation diagram for a new 

model may actually be significantly less than when initialization-dependent methods are used. 

 Since all of the nonlinear equation systems that must be solved to generate a diagram are 

independent of each other, one obvious way to improve computational performance is to use 

parallel computing.  Distribution of the independent equation systems across multiple processors 

will result in essentially linear speedup.  Furthermore, the IN/GB methodology itself can be 

readily parallelized; for example, Gau and Stadtherr (2002c) have described an MPI-based 

implementation of IN/GB that provides very efficient processor utilization.  The serial 

performance of the methodology can also be easily improved by using additional tools from 

interval analysis, including constraint propagation and the exploitation of function properties 

(e.g., monotonicity) in evaluating interval extensions.  The work of Maier and Stadtherr (2001) 

on an application arising in the modeling of phase transitions in nanopores demonstrates the use 

of these types of techniques. 

 

5.  CONCLUDING REMARKS 

 Using several examples drawn from three different tritrophic food chain models, we have 

demonstrated a new methodology for computing all equilibrium states and bifurcations of 

equilibria (fold, transcritical, Hopf, double-fold and fold-Hopf).  This technique is based on 

interval analysis, in particular an interval-Newton/generalized bisection (IN/GB) approach.  

Using this methodology it was possible to easily and automatically, without any need for 

initialization or a priori insight into expected system behavior, generate complete solution 

branch diagrams and bifurcation diagrams.  Furthermore, this could be done with certainty, since 

the technique provides a mathematical and computational guarantee that all solutions to a system 

of nonlinear equations are enclosed.  Since this technique is essentially initialization 

independent, it can provide a powerful alternative to traditional continuation methods, which in 

general are initialization dependant and thus may not be completely reliable.  Although the 

systems studied here were relatively simple, we anticipate that the methodology used can be 

applied to larger and more complex problems, as well as in the analysis of other dynamical 

systems of interest in chemical engineering. 
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Table 1:  Computed equilibrium states for the Rosenzweig-MacArthur model with K = 1.0 and r 
= 1.0. 
 
 

Solution # x1 x2 x3 Stability 

1 0.819 0.125 9.808 Unstable 

2 0.105 0.235 0 Unstable 

3 1.000 0 0 Unstable 

4 0 0 0 Unstable 
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Table 2:  Computed equilibrium states for the Rosenzweig-MacArthur model with K = 0.5 and r 
= 1.0. 
 
 

Solution # x1 x2 x3 Stability 

1 0.347 0.125 5.624 Stable 

2 0.105 0.208 0 Unstable 

3 0.500 0 0 Unstable 

4 0 0 0 Unstable 
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Figure 4.  Bifurcation diagram of K (prey carrying capacity) vs. r (prey growth rate constant) for the 

Rosenzweig-MacArthur model.   

Figure 5.  Bifurcation diagram of K (prey carrying capacity) vs. d2 (predator death rate constant) for 

the Rosenzweig-MacArthur model.  r = 1.0. 

Figure 6.   Solution branch diagrams illustrating the change in species biomass with the change in 

the predator death rate constant d2 for the Rosenzweig-MacArthur model.  From left to right: 

prey, predator, and superpredator biomasses.  K = 1.0 and r = 1.0 for all three plots. 

Figure 7.  Bifurcation diagram of d2 (predator death rate constant) vs. r (prey growth rate constant) 

for the Rosenzweig-MacArthur model.  K = 1.0. 

Figure 8.   Solution branch diagrams illustrating the change in species biomass with the change in 

the predator death rate constant d2 for the Rosenzweig-MacArthur model.  From left to right: 

prey, predator, and superpredator biomasses.  K = 1.0 and r = 0.5 for all three plots. 

Figure 9.   Solution branch diagrams illustrating the change in species biomass with the change in 

the prey growth rate constant r for the Rosenzweig-MacArthur model.  From left to right: 

prey, predator, and superpredator biomasses.  K = 1.0 and d2 = 0.4 in all three plots. 

Figure 10.  Bifurcation diagram of K (prey carrying capacity) vs. r (prey growth rate constant) for 

the tri-trophic, sigmoidal response model. 

Figure 11.   Solution branch diagrams illustrating the change in species biomass with the change in 

the prey carrying capacity K for the tri-trophic, sigmoidal response model.  From left to 

right: prey, predator, and superpredator biomasses.  r = 0.7 for all three plots. 
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Figure 12.  Bifurcation diagram of K (prey carrying capacity) vs. r (prey growth rate constant) for 

the tri-trophic model with a hyperbolic predator and a sigmoidal superpredator. 

Figure 13.   Solution branch diagrams illustrating the change in species biomass with the change in 

the prey carrying capacity K for the tri-trophic model with a hyperbolic predator and a 

sigmoidal superpredator.  From left to right: prey, predator, and superpredator biomasses.  r 

= 1.0 for all three plots.
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Figure 1.   Solution branch diagrams illustrating the change in species biomass with the change in the prey carrying capacity K for the 

Rosenzweig-MacArthur model.  From left to right: prey, predator, and superpredator biomasses.  r = 1.0 for all three plots. 
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Figure 2.   Solution branch diagrams illustrating the change in species biomass with the change in the prey carrying capacity K for the 

Rosenzweig-MacArthur model.  From left to right: prey, predator, and superpredator biomasses.  r = 0.5 for all three plots. 
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Figure 3.   Solution branch diagrams illustrating the change in species biomass with the change in the prey carrying capacity K for the 

Rosenzweig-MacArthur model.  From left to right: prey, predator, and superpredator biomasses.  r = 0.4 for all three plots. 
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Figure 4.  Bifurcation diagram of K (prey carrying capacity) vs. r (prey growth rate constant) for the 

Rosenzweig-MacArthur model.   
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Figure 5.  Bifurcation diagram of K (prey carrying capacity) vs. d2 (predator death rate constant) for 

the Rosenzweig-MacArthur model.  r = 1.0. 
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Figure 6.   Solution branch diagrams illustrating the change in species biomass with the change in the predator death rate constant d2 

for the Rosenzweig-MacArthur model.  From left to right: prey, predator, and superpredator biomasses.  K = 1.0 and r = 1.0 for all 

three plots. 
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Figure 7.  Bifurcation diagram of d2 (predator death rate constant) vs. r (prey growth rate constant) 

for the Rosenzweig-MacArthur model.  K = 1.0. 



 39 

 

Figure 8.   Solution branch diagrams illustrating the change in species biomass with the change in the predator death rate constant d2 

for the Rosenzweig-MacArthur model.  From left to right: prey, predator, and superpredator biomasses.  K = 1.0 and r = 0.5 for all 

three plots.



 40 

 

Figure 9.   Solution branch diagrams illustrating the change in species biomass with the change in the prey growth rate constant r for 

the Rosenzweig-MacArthur model.  From left to right: prey, predator, and superpredator biomasses.  K = 1.0 and d2 = 0.4 in all three 

plots. 
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Figure 10.  Bifurcation diagram of K (prey carrying capacity) vs. r (prey growth rate constant) for 

the tri-trophic, sigmoidal response model. 
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Figure 11.   Solution branch diagrams illustrating the change in species biomass with the change in the prey carrying capacity K for 

the tri-trophic, sigmoidal response model.  From left to right: prey, predator, and superpredator biomasses.  r = 0.7 for all three plots. 
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Figure 12.  Bifurcation diagram of K (prey carrying capacity) vs. r (prey growth rate constant) for 

the tri-trophic model with a hyperbolic predator and a sigmoidal superpredator. 
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Figure 13.   Solution branch diagrams illustrating the change in species biomass with the change in the prey carrying capacity K for 

the tri-trophic model with a hyperbolic predator and a sigmoidal superpredator.  From left to right: prey, predator, and superpredator 

biomasses.  r = 1.0 for all three plots. 


