# Reliable Process Modeling Using Interval Analysis

Mark A. Stadtherr Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556

> Carnegie Mellon University February 1998

# Outline

- Motivation
- Background
- Methodology
- Examples
  - Phase Stability Analysis
  - Phase Equilibrium
  - Computation of Azeotropes
  - Other

# **Computing Technology**

- Faster and faster single processor performance
- High performance computing (HPC)
  - Many forms of scalar multiprocessing
  - Vector multiprocessing
  - Metacomputing
- Capability to
  - Solve problems faster
  - Solve larger problems
  - Solve more complex problems
  - Solve problems more reliably

# **Solving Problems More Reliably**

- Global vs. local optimization
- Finding multiple solutions
- Existence and uniqueness of solutions
- Feasibility of NLPs
- Floating point arithmetic problems (e.g., rounding errors)

# **Common Misconceptions**

• Dennis and Schnabel (1983)

"In general, the questions of existence and uniqueness—does a given problem have a solution and is it unique?—are beyond the capabilities one can expect of algorithms that solve nonlinear problems"

• Heath (1997)

"It is not possible, in general, to guarantee convergence to the correct solution or to bracket the solution to produce an absolutely safe method" [for solving nonlinear equations]

# **Solving Problems More Reliably**

- In fact there do exist methods, based on **interval analysis**, that, within given initial bounds on each variable, can:
  - Find (enclose) any and all solutions to a nonlinear equation system to a desired tolerance
  - Determine that there is no solution of a nonlinear equation system
  - Find the global optimum of a nonlinear objective function
- These methods:
  - Provide a mathematical guarantee of reliability
  - Deal automatically with rounding error, and so also provide a computational guarantee of reliability

## **Rounding Error**

• Rump's (1988) problem

$$f(x,y) = 333.75y^{6}$$
  
+x<sup>2</sup>(11x<sup>2</sup>y<sup>2</sup> - y<sup>6</sup> - 121y<sup>4</sup> - 2)  
+5.5y<sup>8</sup> + x/2y

- Evaluate f(x, y) for x = 77617 and y = 33096.
- All inputs are machine numbers (representable exactly in floating point arithmetic), so only rounding errors occur during function evaluation.

# **Rounding Error**

- Evaluation on an IBM S/370 using a FORTRAN program
- Single precision

$$f = 1.172603...$$

• Double precision

 $f = 1.1726039400531\dots$ 

• Extended precision

 $f = 1.172603940053178\dots$ 

• The correct answer is

 $f = -0.827396059946\dots$ 

#### **Background**—Interval Analysis

- A real interval  $X = [a, b] = \{x \in \Re \mid a \le x \le b\}$  is a segment on the real number line
- An interval vector  $\mathbf{X} = (X_1, X_2, ..., X_n)^T$  is an *n*-dimensional rectangle or "box".
- Basic interval arithmetic for X = [a, b] and Y = [c, d] is X op  $Y = \{x \text{ op } y \mid x \in X, y \in Y\}$

$$\begin{aligned} X+Y &= [a+c,b+d] \\ X-Y &= [a-d,b-c] \\ X\times Y &= [min(ac,ad,bc,bd),max(ac,ad,bc,bd)] \\ X\div Y &= [a,b]\times [1/d,1/c], \quad 0 \notin Y \end{aligned}$$

- For  $X \div Y$  when  $0 \in Y$ , an extended interval arithmetic is available.
- Computed endpoints are **rounded out** to guarantee the enclosure.

# Interval Analysis (continued)

- Interval elementary functions (e.g.  $\exp(X)$ ,  $\log(X)$ , etc.) are also available.
- The interval extension  $F(\mathbf{X})$  encloses all values of  $f(\mathbf{x})$  for  $\mathbf{x} \in \mathbf{X}$ . That is,  $F(\mathbf{X}) \supseteq \{f(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}$ .
- Interval extensions can be computed using interval arithmetic (the "natural" interval extension), or with other techniques
- If a variable occurs more than once in an expression, the natural interval extension may not tightly bound the true range

### Interval Analysis (continued)

- Example: f(x) = x/(x-1) evaluated for the interval X = [2,3]
- The natural interval extension is

$$F([2,3]) = [2,3]/([2,3]-1)$$
  
=  $[2,3]/[1,2] = [1,3]$ 

• Rearranged f(x) = x/(x-1) = 1 + 1/(x-1), the natural interval extension is

$$F([2,3]) = 1 + 1/([2,3] - 1)$$
  
= 1 + 1/[1,2]  
= 1 + [0.5,1] = [1.5,2]

which is the true range.

• This is the "dependency" problem. In the first case, each occurrence of x was treated as a independent interval in performing interval arithmetic.

#### **Interval Newton Method**

- For a system of nonlinear equations  $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ , find (enclose) all roots in a given initial interval  $\mathbf{X}^{(0)}$  or determine that there are none.
- At iteration k, given the interval  $\mathbf{X}^{(k)}$ , if  $0 \in \mathbf{F}(\mathbf{X}^{(k)})$  solve the linear interval equation system

$$F'(\mathbf{X}^{(k)})(\mathbf{N}^{(k)} - \mathbf{x}^{(k)}) = -\mathbf{f}(\mathbf{x}^{(k)})$$

for the "image"  $\mathbf{N}^{(k)}$ , where  $F'(\mathbf{X}^{(k)})$  is an interval extension of the Jacobian of  $f(\mathbf{x})$  over the current interval  $\mathbf{X}^{(k)}$ , and  $\mathbf{x}^{(k)}$  is a point inside  $\mathbf{X}^{(k)}$ .

- Any root  $\mathbf{x}^* \in \mathbf{X}^{(k)}$  is also contained in the image  $\mathbf{N}^{(k)}$ , suggesting the iteration scheme  $\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} \cap \mathbf{N}^{(k)}$  (Moore, 1966).
- It follows that if  $\mathbf{X}^{(k)} \cap \mathbf{N}^{(k)} = \emptyset$ , then there is no root in  $\mathbf{X}^{(k)}$ . This is also the conclusion if  $0 \notin \mathbf{F}(\mathbf{X}^{(k)})$

# Interval Newton Method (continued)

- Interval Newton provides an existence and uniqueness test: If  $\mathbf{N}^{(k)} \subset \mathbf{X}^{(k)}$ , then:
  - There is a **unique** zero of f(x) in  $X^{(k)}$ .
  - The interval Newton iteration  $\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)}$  $\cap \mathbf{N}^{(k)}$  will converge quadratically to a tight enclosure of the root.
  - The point Newton method will converge quadratically to the root starting from any point in  $\mathbf{X}^{(k)}$ .
- If a unique root cannot be confirmed  $(\mathbf{N}^{(k)} \subset \mathbf{X}^{(k)})$ or ruled out  $(\mathbf{X}^{(k)} \cap \mathbf{N}^{(k)} = \emptyset)$ , then either:
  - Continue with the next iterate  $\mathbf{X}^{(k+1)}$  if it is sufficiently smaller than  $\mathbf{N}^{(k)}$
  - Bisect  $\mathbf{X}^{(k+1)}$  and perform interval Newton on the resulting intervals

This is the interval Newton/generalized bisection (IN/GB) approach.







<sup>x</sup>2





Unique solution in  $X^{(k)}$ This solution is in  $N^{(k)}$ Point Newton method will converge to it

# Interval Newton Method (continued)

- For f(x) = 0, this method can enclose with mathematical and computational certainty any and all solutions in a given initial interval, or can determine that there are none.
- A preconditioned interval Gauss-Seidel-like technique is often used to solve for the image N<sup>(k)</sup> (Hansen and coworkers).
- Our implementation is based on modifications of routines taken from the packages INTBIS and INTLIB (Kearfott and coworkers).
- The interval Newton procedure can be performed on multiple intervals independently and in parallel.
- IN/GB was first implemented for process modeling problems by Schnepper and Stadtherr (1990).

# Phase Stability Problem

- Will a mixture (feed) at a given T, P, and composition x split into multiple phases?
- A key subproblem in determination of phase equilibrium, and thus in the design and analysis of separation operations.
- Using tangent plane analysis, can be formulated as a minimization problem, or as an equivalent nonlinear equation solving problem.
- Equation system to be solved may have trivial and/or multiple roots (optimization problem has multiple local optima).
- Conventional techniques may fail to converge, or converge to false or trivial solutions.

#### **Tangent Plane Analysis**

• A phase at *T*, *P*, and feed composition z is unstable if the Gibbs energy of mixing vs. composition surface

$$m(\mathbf{x}, v) = \Delta g_{mix} = \Delta \hat{G}_{mix}/RT$$

ever falls below a plane tangent to the surface at  $\mathbf{z}$ 

$$m_{tan}(\mathbf{x}) = m(\mathbf{z}, v_{\mathbf{z}}) + \sum_{i=1}^{n} \left(\frac{\partial m}{\partial x_{i}}\right)\Big|_{\mathbf{z}} (x_{i} - z_{i})$$

• That is, if the *tangent plane distance* 

$$D(\mathbf{x}, v) = m(\mathbf{x}, v) - m_{tan}(\mathbf{x})$$

is negative for any composition  $\mathbf{x}$ , the phase is unstable.

• In this context, "unstable" refers to both the metastable and classically unstable cases.

#### Example 0

*n*-Butyl Acetate—Water, NRTL Model

Gibbs energy of mixing m vs.  $x_1$ 



# Example 0 (continued)

Feed composition  $z_1 = 0.95$ 



Phase of this composition is stable (D is never negative).

# Example 0 (continued)

Feed composition  $z_1 = 0.62$ 



Phase of this composition is unstable and can split (D becomes negative).

#### **Optimization Formulation**

• To determine if D ever becomes negative, determine the minimum of D and examine its sign

$$\min_{\mathbf{x},v} D(\mathbf{x},v)$$

subject to

$$1 - \sum_{i=1}^{n} x_i = 0$$

$$EOS(\mathbf{x}, v) = 0$$

• Trivial local optimum (minimum or maximum) at the feed composition  $\mathbf{x} = \mathbf{z}$ ; may be multiple nontrivial optima. Need technique <u>guaranteed</u> to find the global minimum.

#### **Equation Solving Formulation**

• Stationary points of the optimization problem can be found be solving the nonlinear equation system

$$\left[ \left( \frac{\partial m}{\partial x_i} \right) - \left( \frac{\partial m}{\partial x_n} \right) \right] - \left[ \left( \frac{\partial m}{\partial x_i} \right) - \left( \frac{\partial m}{\partial x_n} \right) \right]_{\mathbf{z}} = 0,$$
  
$$i = 1, \dots, n - 1$$

$$1 - \sum_{i=1}^{n} x_i = 0$$

$$EOS(\mathbf{x}, v) = 0$$

 Trivial root at the feed composition x = z; may be multiple nontrivial roots. Need technique guaranteed to find <u>all</u> the roots.

#### Example 1

CH<sub>4</sub>, H<sub>2</sub>S, T = 190 K, P = 40 atm,  $z_1 = 0.0187$ , SRK model. Tangent plane distance D vs.  $x_1$ 



- Five stationary points (four minima, one maximum).
- Standard local methods (e.g. Michelsen, 1982) known to fail (predict stability when system is actually unstable).

### **Example 1 (continued)**

CH<sub>4</sub>, H<sub>2</sub>S, T = 190 K, P = 40 atm,  $z_1 = 0.0187$ , SRK model. Tangent plane distance D vs.  $x_1$  (region near origin)



# **Some Current Solution Methods**

- Various local methods Fast, but initialization dependent (may use multiple initial guesses), and not always reliable
- Some more reliable approaches
  - Exhaustive search on grid (Eubank et al., 1992)
  - Homotopy-continuation (Sun and Seider, 1995)
  - Topological degree (Wasylkiewicz et al., 1996)
  - Branch and bound (McDonald and Floudas, 1995, 1997): Guarantee of global optimum when certain activity coefficient models are used
- Interval analysis
  - Provides a general-purpose, model-independent method for solving phase stability problem with complete certainty.
  - Stadtherr *et al.* (1994,1995), McKinnon *et al.* (1995,1996): Activity coefficient models
  - Hua *et al.* (1995,1996,1997): Equation of state models

# **Interval Analysis for Phase Stability**

- Initial interval includes all physically feasible values of mole fraction and molar volume
- To reduce overestimation in interval extensions due to dependency problem:
  - Identify and use function monotonicity
  - Let monotonicity information be inherited when an interval is bisected
  - Use special properties of mole fraction weighted averages
- "Standard" mixing rules used
  - Quadratic for a
  - Linear for b

## **Example 1** — Phase Stability

CH\_4, H\_2S,  $T\,=\,190\,$  K,  $P\,=\,40\,$  atm,  $\,z_1\,=\,0.0187,$  SRK model

| Feed $(z_1, z_2)$ | Stationary Points (roots)   |        |
|-------------------|-----------------------------|--------|
| and CPU time      | $(x_1,x_2,v \; [cm^3/mol])$ | D      |
| (0.0187, 0.9813)  | (0.885, 0.115, 36.6)        | 0.011  |
| 0.20 sec          | (0.0187, 0.9813, 207.3)     | 0.0    |
|                   | (0.031, 0.969, 115.4)       | 0.008  |
|                   | (0.077, 0.923, 64.1)        | -0.004 |
|                   | (0.491, 0.509, 41.5)        | 0.073  |

- CPU time on Sun Ultra 2/1300.
- All stationary points easily found, showing the feed to be unstable.
- Presence of multiple real volume roots causes no difficulties.

### **Example 2** — Phase Stability

 $\mathrm{CO}_2$ ,  $\mathrm{CH}_4$ , T= 220 K, P= 60.8 bar, PR model

|                   | Number of  |           |          |
|-------------------|------------|-----------|----------|
|                   | Stationary |           | CPU time |
| Feed $(z_1, z_2)$ | Points     | $D_{min}$ | (sec)    |
| (0.10, 0.90)      | 1          | 0.0       | 0.11     |
| (0.20, 0.80)      | 3          | -0.007    | 0.33     |
| (0.30, 0.70)      | 3          | -0.0002   | 0.36     |
| (0.43, 0.57)      | 3          | -0.001    | 0.35     |
| (0.60, 0.40)      | 1          | 0.0       | 0.29     |

CPU times on Sun Ultra 2/1300.

#### **Example 3** — Phase Stability

Green et al. (1993) ternary, T= 400 K, P= 80 atm, VDW model

|                        | Number of  |           |          |
|------------------------|------------|-----------|----------|
|                        | Stationary |           | CPU time |
| Feed $(z_1, z_2, z_3)$ | Points     | $D_{min}$ | (sec)    |
| (0.83,0.085,0.085)     | 3          | -0.0099   | 0.70     |
| (0.77, 0.115, 0.115)   | 3          | -0.0036   | 0.76     |
| (0.72,0.14,0.14)       | 3          | -0.0036   | 0.83     |
| (0.69,0.155,0.155)     | 3          | 0.0       | 0.85     |

CPU times on Sun Ultra 2/1300.

#### **Example 4** — Phase Stability

 $\mathsf{N}_2\text{, }\mathsf{CH}_4\text{, }\mathsf{C}_2\mathsf{H}_6\text{, }T$  = 270 K, P = 76 bar, PR model

|                        | Number of  |           |          |
|------------------------|------------|-----------|----------|
|                        | Stationary |           | CPU time |
| Feed $(z_1, z_2, z_3)$ | Points     | $D_{min}$ | (sec)    |
| (0.30,0.10,0.60)       | 3          | -0.015    | 1.3      |
| (0.15,0.30,0.55)       | 3          | -0.001    | 3.4      |
| (0.08,0.38,0.54)       | 1          | 0.0       | 2.5      |
| (0.05,0.05,0.90)       | 1          | 0.0       | 0.54     |

CPU times on Sun Ultra 2/1300.

# **Example 5** — Phase Stability

CH<sub>4</sub>, CO<sub>2</sub>, H<sub>2</sub>S, H<sub>2</sub>O, PR model

|      | Number of  |           |          |
|------|------------|-----------|----------|
|      | Stationary |           | CPU time |
| Feed | Points     | $D_{min}$ | (sec)    |
| А    | 3          | -0.027    | 60.4     |
| В    | 3          | -1.201    | 9.8      |
| С    | 3          | -0.295    | 10.2     |
| D    | 3          | -0.027    | 129.2    |

CPU times on Sun Ultra 2/1300.

It is not really necessary to find **all** the stationary points; only need to find the global minimum.

# Finding the global minimum

- Requires evaluation of an interval extension of the objective function *D*. This extra expense does not pay off on small problems.
- There is a known upper bound of zero (the tangent point) on the global minimum of D.
- If interval extension of *D* has positive lower bound over some interval, that interval cannot contain the global minimum and can be discarded.
- If interval extension of *D* has negative upper bound over some interval, global minimum will be negative, proving instability
- This is a special form of interval branch and bound combined with interval Newton
- For feed D in Problem 5, CPU time reduced from 129.2 sec to 2.9 sec.

# **Incorporating Local Techniques**

- If a local method indicates instability then this is the correct answer as it means a point at which D < 0 has been found.
- If a local method indicates stability, however, this may not be the correct answer since the local method may have missed the global minimum in D.
- Combined local/global approach:
  - Use local methods to try to demonstrate instability.
  - If instability not found, only then use global interval method to confirm stability or identify instability.

# **Approach Used**

- If  $m(\mathbf{z}, v_{\mathbf{z}}) > 0 \Rightarrow$  unstable
- Evaluate D at pure components. If any  $D < 0 \Rightarrow \mbox{unstable}$
- For a number of randomly chosen compositions:
  - If  $D < 0 \Rightarrow$  unstable
  - If  $D \ge 0$ , then start a local solver (Newton) and try to converge to a stationary point. If at termination  $D < 0 \Rightarrow$  unstable
- If still not shown unstable, then apply interval approach to confirm stability or find instability missed by local techniques.
- This approach is implemented in the code INTSTAB (Hua *et al.*, 1997)

# Effect of Local Approach

• Typical results comparing combined local/global approach with global only approach

| Example    |         | CPU time (sec) |              |  |
|------------|---------|----------------|--------------|--|
| Problem    | Stable? | Global         | Local/Global |  |
| 1          | N       | 0.20           | 0.002        |  |
| 3 (feed 1) | N       | 0.70           | 0.001        |  |
| 3 (feed 4) | Y       | 0.85           | 0.88         |  |
| 4 (feed 1) | N       | 1.3            | 0.002        |  |
| 4 (feed 4) | Y       | 0.54           | 0.58         |  |

- CPU times on Sun Ultra 2/1300 using INTSTAB.
- For unstable mixtures, instability generally detected in milliseconds.
- For stable mixtures, negligible increase in computation time.

# Phase Equilibrium Problem

- Can formulate as global minimization of total Gibbs energy, subject to material balance constraints. May have multiple local minima.
- Can also formulate as equation solving problem: equifugacity equations and material balances. May have multiple solutions.
- Need to seek global solution, but local methods can be applied since phase stability analysis can be used as a global optimality test that can be applied to any local solution (Baker *et al.*, 1982).
- Correct solution of the phase stability problem is thus the key to correct solution of the phase equilibrium problem.
- Interval analysis guarantees correct solution of the phase stability problem, and so can also guarantee correct solution of the phase equilibrium (split) problem.

# Global Solution of Phase Equilibrium Problem

- Can combine the global stability analysis with any standard phase split (or flash) algorithm.
- One approach
  - Perform global stability analysis. If unstable, use the local minima in D to generate initial guesses for the solution to the phase split problem.
  - For each such initial guess, use a local optimizer (SQP) to solve the phase split problem and then test for stability.
  - If global solution not found increase number of phases and continue.
- This approach is implemented in the code INTFLASH (Hua *et al.*, 1997)

#### Example 6 — Phase Equilibrium

CH<sub>4</sub>, CO<sub>2</sub>, H<sub>2</sub>S, T = 282.15 K, P = 59.5 bar, PR model,  $z_1 = 0.4995$ ,  $z_2 = 0.0977$ ,  $z_3 = 0.4028$ 

| Phase I  | $eta^I$           | 0.1748                     |  |
|----------|-------------------|----------------------------|--|
| (L)      | $v^{I}$           | 41.95 cm $^3$ /mol         |  |
|          | $\mathbf{x}^{I}$  | (0.1047,0.0727,0.8226)     |  |
| Phase II | $\beta^{II}$      | 0.8352                     |  |
| (V)      | $v^{II}$          | 280.1 cm <sup>3</sup> /mol |  |
|          | $\mathbf{x}^{II}$ | (0.5832,0.1030,0.3138)     |  |
| CPU      | 2.05 sec          |                            |  |

CPU times on Sun Ultra 2/1300 using INTFLASH.

#### Example 7 — Phase Equilibrium

CH<sub>4</sub>, CO<sub>2</sub>, H<sub>2</sub>S, T = 208 K, P = 54.9 bar, PR model,  $z_1 = 0.4989$ ,  $z_2 = 0.0988$ ,  $z_3 = 0.4023$ 

|           | -                  |                        |  |
|-----------|--------------------|------------------------|--|
| Phase I   | $\beta^{I}$        | 0.0702                 |  |
| (V)       | $v^{I}$            | 141.9 cm $^3$ /mol     |  |
|           | $\mathbf{x}^{I}$   | (0.9120,0.0417,0.0463) |  |
| Phase II  | $\beta^{II}$       | 0.3816                 |  |
| (L)       | $v^{II}$           | 53.46 cm $^{3}$ /mol   |  |
|           | $\mathbf{x}^{II}$  | (0.7539,0.0848,0.1613) |  |
| Phase III | $\beta^{III}$      | 0.5482                 |  |
| (L)       | $v^{III}$          | 35.69 cm $^{3}$ /mol   |  |
|           | $\mathbf{x}^{III}$ | (0.2685,0.1158,0.6157) |  |
| CPU       | 9.0 sec            |                        |  |

CPU times on Sun Ultra 2/1300 using INTFLASH.

# **Computing Homogeneous Azeotropes**

- Why
  - Identify limitations in separation operations
  - Construction of residue curve maps for design and synthesis of separation operations
  - Evaluation of thermodynamic models
- How
  - Solve system(s) of nonlinear equations derived from equifugacity condition
  - These equation system(s) often have multiple and/or trivial roots, or may have no solutions

#### Formulation : Simultaneous Approach

$$x_i \left( \ln P - \ln P_i^{sat} - \ln \gamma_i \right) = 0, \ i \in \mathcal{C}$$

$$1 - \sum_{i \in \mathcal{C}} x_i = 0$$

- ${\mathcal C}$  is the set of all N components
- Ideal vapor phase
- $P_i^{sat}$  and  $\gamma_i$  are functions of T
- All k-ary azeotropes  $(k \le N)$  are solutions, as are all of the pure components (trivial roots)
- Need solution method <u>guaranteed</u> to find <u>all</u> solutions

## Formulation : Sequential Approach

• If  $x_i \neq 0$ 

$$\ln P - \ln P_i^{sat} - \ln \gamma_i = 0, \ i \in \mathcal{C}_{nz}$$

$$1 - \sum_{i \in \mathcal{C}_{nz}} x_i = 0$$

- $C_{nz}$  is a set of k nonzero components
- All k-ary azeotropes  $(k \leq N)$  for the chosen  $C_{nz}$  are solutions; there may be no solutions
- Solve (unordered) sequence of problems :

For  $k = 2 \rightarrow N$ :

For all combinations of k nonzero components, solve for all k-ary azeotropes

 Need solution method <u>guaranteed</u> to find <u>all</u> solutions of <u>all</u> problems, and to determine with certainty when there are no solutions

# **Formulation : Other Issues**

- T dependence of  $\gamma_i$ 
  - Treat explicitly using T-dependent parameters in  $\gamma_i$  model
  - Guess a reference temperature  $T_{ref}$  and treat T-dependent parameters as constants evaluated at  $T_{ref} \Rightarrow$  No guarantee all azeotropes will be found, even if equations solved correctly
- Solutions of equifugacity equations may not be stable phases (liquid may split)
  - Need to check stability of liquid phase at azeotropic composition and temperature
  - Interval analysis also provides guaranteed method to determine stability

# **Some Current Solution Methods**

- Various local methods Fast, but initialization dependent and hard to find all roots
- Fidkowski et al. (1993) use a homotopycontinuation method
  - Simultaneous approach with explicit T-dependence of  $\gamma_i$
  - Improved reliability but no guarantee that all roots are found
- Harding et al. (1997) use a branch and bound method
  - Simultaneous and sequential approaches, but  $T_{ref}$  approach for T-dependence of  $\gamma_i$
  - Reformulation as a global optimization problem using convex underestimating functions
  - Mathematical guarantee that all roots are found

# **Example Problems**

- Solved using both simultaneous and sequential approaches (with same results for azeotropic composition and temperature)
- Solved for case of T-dependent  $\gamma_i$ -model parameters and for the case of constant  $\gamma_i$ -model parameters
- Problem A1
  - Ethanol, Methyl Ethyl Ketone, Water
  - 1 atm, 10-100  $^{\circ}$ C, Wilson Equation
- Problem A2
  - Acetone, Chloroform, Methanol
  - 16.8 atm, 100-200  $^\circ$ C, NRTL Equation
- Problem A3
  - Acetone, Methyl Acetate, Methanol
  - 1 atm, 10-100  $^{\circ}$ C, Wilson Equation
- Have solved many other problems using Wilson, NRTL and UNIQUAC activity coefficient models with up to N=5

### **Results - Problem A1**

#### Azeotropes

| $\gamma_i$ parameters        | E    | MEK  | W    | T (°C) |
|------------------------------|------|------|------|--------|
|                              | 0.49 | 0.51 | 0.00 | 74.1   |
| Constant                     | 0.90 | 0.00 | 0.10 | 78.1   |
| $(T_{ref}=73.7 \ ^{\circ}C)$ | 0.00 | 0.68 | 0.32 | 73.7   |
| U U                          | 0.23 | 0.54 | 0.23 | 72.8   |
|                              | 0.49 | 0.51 | 0.00 | 74.1   |
| T-dependent                  | 0.91 | 0.00 | 0.09 | 78.2   |
|                              | 0.00 | 0.68 | 0.32 | 73.7   |
|                              | 0.23 | 0.54 | 0.23 | 72.8   |

CPU Times (Sun Ultra 1/140, sec)

|              | Constant | T dependent |
|--------------|----------|-------------|
| Sequential   | 0.21     | 0.34        |
| Simultaneous | 0.90     | 4.62        |

 $\mathsf{E}=\mathsf{Ethanol};\,\mathsf{MEK}=\mathsf{Methyl}\;\mathsf{Ethyl}\;\mathsf{Ketone}$   $\mathsf{W}=\mathsf{Water}$ 

## **Results - Problem A2**

| $\gamma_i$ parameters              | А    | С    | Μ    | T (°C) |
|------------------------------------|------|------|------|--------|
| Constant                           | 0.33 | 0.67 | 0.00 | 181.8  |
| ( <i>T<sub>ref</sub></i> =152.4°C) | 0.29 | 0.00 | 0.71 | 155.3  |
|                                    | 0.00 | 0.41 | 0.59 | 151.6  |
|                                    | 0.32 | 0.68 | 0.00 | 181.2  |
| T-dependent                        | 0.29 | 0.00 | 0.71 | 155.4  |
|                                    | 0.00 | 0.41 | 0.59 | 151.6  |

#### Azeotropes

CPU Times (sec)

|              | Constant | T dependent |
|--------------|----------|-------------|
| Sequential   | 0.51     | 0.82        |
| Simultaneous | 0.94     | 6.15        |

A = Acetone; C = Chloroform; M = Methanol

## **Results - Problem A3**

| $\gamma_i$ parameters | А    | MA   | Μ    | T (°C) |
|-----------------------|------|------|------|--------|
|                       | 0.53 | 0.47 | 0.00 | 55.7   |
| $Constant^*$          | 0.75 | 0.00 | 0.25 | 54.5   |
|                       | 0.00 | 0.68 | 0.32 | 54.4   |
|                       | 0.27 | 0.47 | 0.26 | 54.3   |
|                       | 0.66 | 0.34 | 0.00 | 55.6   |
| T dependent           | 0.79 | 0.00 | 0.21 | 55.4   |
|                       | 0.00 | 0.66 | 0.34 | 53.6   |

Azeotropes

CPU Times (sec)

|              | Constant | T dependent |
|--------------|----------|-------------|
| Sequential   | 0.40     | 1.04        |
| Simultaneous | 1.63     | 6.36        |

A = Acetone(1); MA = Methyl Acetate(2) M=Methanol(3)

\* 
$$\Lambda_{12}=$$
 0.480,  $\Lambda_{21}=$  1.550,  $\Lambda_{13}=$  0.768  
 $\Lambda_{31}=$  0.566,  $\Lambda_{23}=$  0.544,  $\Lambda_{32}=$  0.650

# **Other Process Modeling Problems**

- 1. Simple ethylene plant
- 2. Mixer/divider network
- 3. Adiabatic CSTR
- 4. Flash with recycle
- 5. Ammonia plant

|         |           | Number |          |
|---------|-----------|--------|----------|
|         | Number of | of     | CPU time |
| Problem | Equations | Roots  | (sec)    |
| 1       | 163       | 1      | 3.1      |
| 2       | 146       | 1      | 21.8     |
| 3       | 11        | 3      | 12.9     |
| 4       | 50        |        | MAX      |
|         |           | 1      | 4.0      |
| 5       | 177       | 1      | 1003     |

CPU times on BBN TC2000 (1 processor).

# **Concluding Remarks**

- Interval analysis is a general-purpose and model-independent approach for solving phase behavior problems, providing a mathematical and computational guarantee of reliability
  - Phase stability
  - Phase equilibrium (split)
  - Homogeneous azeotropes
- Interval analysis provides powerful problem solving techniques with many other applications in the modeling of thermodynamics and phase behavior and in other process modeling problems
- Continuing advances in computing hardware and software (e.g., compiler support for interval arithmetic) will make this approach even more attractive

# Acknowledgments

- Students: Carol Schnepper (Air Liquide), James Hua (Shell Chemical), Bill Rooney (CMU), Rob Maier (Notre Dame), Gang Xu (Notre Dame)
- Funding:
  - ACS Petroleum Research Fund
  - National Science Foundation
  - Environmental Protection Agency
  - Department of Energy
  - Sun Microsystems, Inc.