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Computing Technology

e Faster and faster single processor performance

e High performance computing (HPC)

— Many forms of scalar multiprocessing
— Vector multiprocessing
— Metacomputing

e Capability to

— Solve problems faster

— Solve larger problems

— Solve more complex problems

— Solve problems more reliably



Solving Problems More Reliably

Global vs. local optimization
Finding multiple solutions
Existence and uniqueness of solutions

Feasibility of NLPs

Floating point arithmetic problems (e.g., rounding
errors)



Common Misconceptions

e Dennis and Schnabel (1983)

“In general, the questions of existence and
uniqueness—does a given problem have a
solution and is it unique?—are beyond the
capabilities one can expect of algorithms that
solve nonlinear problems”

e Heath (1997)

“It is not possible, in general, to guarantee
convergence to the correct solution or to
bracket the solution to produce an absolutely
safe method" [for solving nonlinear equations]



Solving Problems More Reliably

e In fact there do exist methods, based on interval
analysis, that, within given initial bounds on each
variable, can:

— Find (enclose) any and all solutions to a nonlinear
equation system to a desired tolerance

— Determine that there is no solution of a nonlinear
equation system

— Find the global optimum of a nonlinear objective
function

e [hese methods:

— Provide a mathematical guarantee of reliability

— Deal automatically with rounding error, and
so also provide a computational guarantee of
reliability



Rounding Error

e Rump’s (1988) problem

f(z,y) = 333.75¢°
+z%(112%y* — ¢ — 1219* — 2)
+5.5y% + x/2y

e Evaluate f(x,y) for x = 77617 and y = 33096.

e All inputs are machine numbers (representable
exactly in floating point arithmetic), so only
rounding errors occur during function evaluation.



Rounding Error

Evaluation on an IBM S/370 using a FORTRAN
program

Single precision

f=1.172603...

Double precision

f =1.1726039400531 . . .

Extended precision

f =1.172603940053178 . ..

The correct answer is

f = —0.827396059946 . . .



Background—Interval Analysis

o Arealinterval X =a,b]={zx e R |a<x<b}is
a segment on the real number line

e An interval vector X = (X{,X,,...,X,)! is an
n-dimensional rectangle or “box".

e Basic interval arithmetic for X = [a,b] and YV =
c,dlisX opY={zxopy|lxeX,yeY}

X+Y =la+cb+d]
X—-Y=la—d,b— |
X xY = |min(ac, ad, be, bd), mazx(ac, ad, be, bd)]
X+Y=labx[1/d,1/c], 0¢Y

e For X - Y when 0 € Y, an extended interval
arithmetic is available.

e Computed endpoints are rounded out to guarantee
the enclosure.



Interval Analysis (continued)

Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

The interval extension F'(X) encloses all values of
f(x) for x € X. Thatis, F(X) D {f(x) | x € X}.

Interval extensions can be computed using interval
arithmetic (the “natural” interval extension), or with
other techniques

If a variable occurs more than once in an expression,
the natural interval extension may not tightly bound
the true range



Interval Analysis (continued)

e Example: f(z) = z/(z — 1) evaluated for the
interval X = [2, 3]

e [ he natural interval extension is

3]/(12,3] = 1)
73]/[172] — [173]

F([273]) — [27
— [2
e Rearranged f(z) =xz/(x —1)=1+1/(x — 1), the
natural interval extension is
F(2,3])) = 1+1/(2,3]-1)

= 1+1/1,2]
— 1+10.5,1] =[1.5,2]

which is the true range.

e This is the “dependency” problem. In the first case,
each occurrence of x was treated as a independent
interval in performing interval arithmetic.
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Interval Newton Method

e For a system of nonlinear equations f(x) = 0, find
(enclose) all roots in a given initial interval X(©) or
determine that there are none.

e At iteration k, given the interval X(¥) if 0 ¢
F (X)) solve the linear interval equation system

F’(X(k))(N(k) _ X(k)) _ _f(X(k))

for the “image” N*) where F'(X(*)) is an interval
extension of the Jacobian of f(x) over the current
interval X(*) and x(*) is a point inside X (k)

e Any root x* € X(*) is also contained in the image
N suggesting the iteration scheme X(+1) =
X*) 1 N (Moore, 1966).

e It follows that if X*) N N&) = () then there
is no root in X(*)_ This is also the conclusion if
0 ¢ F(X®)
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Interval Newton Method (continued)

e Interval Newton provides an existence and

uniqueness test: If N(*) < X(*) then:

— There is a unique zero of f(x) in X(¥).

— The interval Newton iteration X1 = X(*)
N N®) will converge quadratically to a tight
enclosure of the root.

— The point Newton method will converge

quadratically to the root starting from any point
in X(%),

If a unique root cannot be confirmed (N(¥) ¢ X (¥))
or ruled out (X*) N N®) = (), then either:

— Continue with the next iterate X1 if it is
sufficiently smaller than N (%)

— Bisect X(**t1 and perform interval Newton on
the resulting intervals

This is the interval Newton/generalized bisection
(IN/GB) approach.
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This solutionisin N

Point Newton method will converge to it
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Interval Newton Method (continued)

For f(x) = 0, this method can enclose with
mathematical and computational certainty any
and all solutions in a given initial interval, or can
determine that there are none.

A preconditioned interval Gauss-Seidel-like technique
is often used to solve for the image N*) (Hansen
and coworkers).

Our implementation is based on modifications of
routines taken from the packages INTBIS and
INTLIB (Kearfott and coworkers).

The interval Newton procedure can be performed
on multiple intervals independently and in parallel.

IN/GB was first implemented for process modeling
problems by Schnepper and Stadtherr (1990).
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Phase Stability Problem

Will a mixture (feed) at a given T, P, and
composition x split into multiple phases?

A key subproblem in determination of phase
equilibrium, and thus in the design and analysis
of separation operations.

Using tangent plane analysis, can be formulated as a
minimization problem, or as an equivalent nonlinear
equation solving problem.

Equation system to be solved may have trivial
and/or multiple roots (optimization problem has
multiple local optima).

Conventional techniques may fail to converge, or
converge to false or trivial solutions.
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Tangent Plane Analysis

e A phase at T, P, and feed composition z is unstable
if the Gibbs energy of mixing vs. composition
surface

ever falls below a plane tangent to the surface at z

) = mtsc) 3 (57

e That is, if the tangent plane distance
D(x,v) = m(X,v) — Mgn(X)

Is negative for any composition x, the phase is
unstable.

e In this context, “unstable” refers to both the
metastable and classically unstable cases.
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Example 0

n-Butyl Acetate—Water, NRTL Model

Gibbs energy of mixing m vs.

0.04 ¢

0.02

- 0.02 ¢

0.2

0.6

0.8

x1
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Example 0 (continued)

Feed composition z; = 0.95

0.08 |

0.04 |

- 0.04 |

Phase of this composition is stable (D is never
negative).
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Example 0 (continued)

Feed composition z; = 0.62

0.04 |

0.02

- 0.02 |

Phase of this composition is unstable and can split (D
becomes negative).
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Optimization Formulation

e To determine if D ever becomes negative, determine
the minimum of D and examine its sign

min D(x,v)
X,V

subject to

1 — sz =0
1=1
EOS(x,v) =0

e Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
find the global minimum.
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Equation Solving Formulation

e Stationary points of the optimization problem can
be found be solving the nonlinear equation system

()-(@)]-[6)- @)

1—i$i:0
1=1

EOS(x,v) =0

e Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to find all the roots.
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Example 1

CHy4, HoS, T = 190 K, P = 40 atm, z; = 0.0187,
SRK model. Tangent plane distance D vs. x4

D
0.1,

0.08 |
0.06 |
0.04 |
0.02 |

e Five stationary points (four minima, one maximum).
e Standard local methods (e.g. Michelsen, 1982)

known to fail (predict stability when system is
actually unstable).
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Example 1 (continued)

CHy, HoS, T =190 K, P = 40 atm, 2z; = 0.0187,
SRK model. Tangent plane distance D vs. x; (region
near origin)

D
0.02 |
0.015
0.01 |
0.005 |
\ \ X1
085 0¥ 015 02
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Some Current Solution Methods

e \arious local methods — Fast, but initialization
dependent (may use multiple initial guesses), and
not always reliable

e Some more reliable approaches

— Exhaustive search on grid (Eubank et al., 1992)
— Homotopy-continuation (Sun and Seider, 1995)
— Topological degree (Wasylkiewicz et al., 1996)
— Branch and bound (McDonald and Floudas,
1995, 1997): Guarantee of global optimum when
certain activity coefficient models are used

e Interval analysis

— Provides a general-purpose, model-independent
method for solving phase stability problem
with complete certainty.

— Stadtherr et al. (1994,1995), McKinnon et al.
(1995,1996): Activity coefficient models

— Hua et al. (1995,1996,1997): Equation of state
models
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Interval Analysis for Phase Stability

e Initial interval includes all physically feasible values
of mole fraction and molar volume

e [o reduce overestimation in interval extensions due
to dependency problem:

— Identify and use function monotonicity

— Let monotonicity information be inherited when
an interval is bisected

— Use special properties of mole fraction weighted
averages

e “Standard” mixing rules used

— Quadratic for a
— Linear for b
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Example 1 — Phase Stability

CH4, HsS, T = 190 K, P = 40 atm, z; = 0.0187,
SRK model

Feed (21, 22) Stationary Points (roots)

and CPU time (1,2, v [cm3/mol]) D
(0.0187, 0.9813) |  (0.885, 0.115, 36.6) | 0.011
0.20 sec (0.0187, 0.9813, 207.3) 0.0

(0.031, 0.969, 115.4) | 0.008
(0.077, 0.923, 64.1) | -0.004
(0.491, 0.509, 41.5) | 0.073

e CPU time on Sun Ultra 2/1300.

e All stationary points easily found, showing the feed
to be unstable.

e Presence of multiple real volume roots causes no
difficulties.
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Example 2 — Phase Stability

CO,, CHy, T =220 K, P = 60.8 bar, PR model

Number of

Stationary CPU time
Feed (z1, 22) Points D.in (sec)
(0.10, 0.90) 1 0.0 0.11
(0.20, 0.80) 3 -0.007 0.33
(0.30, 0.70) 3 -0.0002 0.36
(0.43, 0.57) 3 -0.001 0.35
(0.60, 0.40) 1 0.0 0.29

CPU times on Sun Ultra 2/1300.
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Example 3 — Phase Stability

Green et al. (1993) ternary, T' = 400 K, P = 80 atm,
VDW model

Number of
Stationary CPU time
Feed (21, 22, 23) Points Din (sec)
(0.83,0.085,0.085) 3 -0.0099 0.70
(0.77,0.115,0.115) 3 -0.0036 0.76
(0.72,0.14,0.14) 3 -0.0036 0.83
(0.69,0.155,0.155) 3 0.0 0.85

CPU times on Sun Ultra 2/1300.
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Example 4 — Phase Stability

No, CHy, CoHg, T = 270 K, P = 76 bar, PR model

Number of

Stationary CPU time
Feed (z1, 22, 23) Points D.in (sec)
(0.30,0.10,0.60) 3 -0.015 1.3
(0.15,0.30,0.55) 3 -0.001 3.4
(0.08,0.38,0.54) 1 0.0 2.5
(0.05,0.05,0.90) 1 0.0 0.54

CPU times on Sun Ultra 2/1300.
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Example 5 — Phase Stability

CH4, COQ, HQS, HQO, PR model

Number of
Stationary CPU time
Feed Points D.in (sec)
A 3 -0.027 60.4
B 3 -1.201 9.8
C 3 -0.295 10.2
D 3 -0.027 129.2

CPU times on Sun Ultra 2/1300.

It is not really necessary to find all the stationary
points; only need to find the global minimum.
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Finding the global minimum

Requires evaluation of an interval extension of the
objective function D. This extra expense does not
pay off on small problems.

There is a known upper bound of zero (the tangent
point) on the global minimum of D.

If interval extension of D has positive lower bound
over some interval, that interval cannot contain the
global minimum and can be discarded.

If interval extension of D has negative upper bound
over some interval, global minimum will be negative,
proving instability

This is a special form of interval branch and bound
combined with interval Newton

For feed D in Problem 5, CPU time reduced from
129.2 sec to 2.9 sec.
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Incorporating Local Techniques

e |f a local method indicates instability then this is

the correct answer as it means a point at which
D < 0 has been found.

e If a local method indicates stability, however, this
may not be the correct answer since the local

method may have missed the global minimum in
D.

e Combined local/global approach:

— Use local methods to try to demonstrate
instability.

— If instability not found, only then use global
interval method to confirm stability or identify
instability.
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Approach Used

If m(z,v,) > 0 = unstable

Evaluate D at pure components. If any D < 0 =
unstable

For a number of randomly chosen compositions:

— If D < 0 = unstable

— If D > 0, then start a local solver (Newton)
and try to converge to a stationary point. If at
termination D < 0 = unstable

If still not shown unstable, then apply interval
approach to confirm stability or find instability

missed by local techniques.

This approach is implemented in the code INTSTAB
(Hua et al., 1997)

35



Effect of Local Approach

e Typical results comparing combined local/global
approach with global only approach

Example CPU time (sec)
Problem | Stable? | Global | Local/Global
1 N 0.20 0.002
3 (feed 1) N 0.70 0.001
3 (feed 4) Y 0.85 0.88
4 (feed 1) N 1.3 0.002
4 (feed 4) Y 0.54 0.58

e CPU times on Sun Ultra 2/1300 using INTSTAB.

e For unstable mixtures, instability generally detected
in milliseconds.

e For stable

mixtures,

computation time.

negligible increase in
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Phase Equilibrium Problem

Can formulate as global minimization of total Gibbs
energy, subject to material balance constraints. May
have multiple local minima.

Can also formulate as equation solving problem:
equifugacity equations and material balances. May
have multiple solutions.

Need to seek global solution, but local methods can
be applied since phase stability analysis can be used
as a global optimality test that can be applied to
any local solution (Baker et al., 1982).

Correct solution of the phase stability problem
is thus the key to correct solution of the phase
equilibrium problem.

Interval analysis guarantees correct solution of the
phase stability problem, and so can also guarantee
correct solution of the phase equilibrium (split)
problem.
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Global Solution of Phase Equilibrium
Problem

e Can combine the global stability analysis with any
standard phase split (or flash) algorithm.

e One approach

— Perform global stability analysis. If unstable, use
the local minima in D to generate initial guesses
for the solution to the phase split problem.

— For each such initial guess, use a local optimizer
(SQP) to solve the phase split problem and then
test for stability.

— If global solution not found increase number of
phases and continue.

e This approach is implemented in the code
INTFLASH (Hua et al., 1997)
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Example 6 — Phase Equilibrium

CH4, COQ, HQS, T = 282.15 K, P = 595 bar, PR
model, z; = 0.4995, z5 = 0.0977, z3 = 0.4028

Phase | | B! 0.1748
(L) v! 41.95 cm?/mol
x! | (0.1047,0.0727,0.8226)
Phase Il | 51 0.8352
(V) v!! 280.1 cm*/mol
x!! (0.5832,0.1030,0.3138)
CPU 2.05 sec

CPU times on Sun Ultra 2/1300 using INTFLASH.
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Example 7 — Phase Equilibrium

CH,4, CO,, HyS, T =208 K, P = 54.9 bar, PR model,
z1 = 0.4989, zo = 0.0988, z3 = 0.4023

Phase | | B! 0.0702
(V) v! 141.9 cm?/mol
x! | (0.9120,0.0417,0.0463)
Phase Il | g1 0.3816
(L) vl! 53.46 cm?/mol
x!! 1 (0.7539,0.0848,0.1613)
Phase Il | g1 0.5482
(L) vl 35.69 cm?/mol
x!11] (0.2685,0.1158,0.6157)
CPU 9.0 sec

CPU times on Sun Ultra 2/1300 using INTFLASH.
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Computing Homogeneous Azeotropes

o Why

— Identify limitations in separation operations

— Construction of residue curve maps for design and
synthesis of separation operations

— Evaluation of thermodynamic models

e How

— Solve system(s) of nonlinear equations derived
from equifugacity condition

— These equation system(s) often have multiple
and/or trivial roots, or may have no solutions
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Formulation : Simultaneous Approach

X; (lnP — In PP — ln%) =0,2€C

1—Z$i:0

ieC
C is the set of all N components
|deal vapor phase
P#* and +; are functions of T

All k-ary azeotropes (k < N) are solutions, as are
all of the pure components (trivial roots)

Need solution method guaranteed to find all
solutions
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Formulation : Sequential Approach

In P — lnPisat —In~vy, =0, 1 € Cp.

1 — ZQZ‘@:O

ZEC’I’LZ

C,. is a set of k nonzero components

All k-ary azeotropes (k < N) for the chosen C,,, are
solutions; there may be no solutions

Solve (unordered) sequence of problems :
For k =2 — N:

For all combinations of k nonzero components,
solve for all k-ary azeotropes

Need solution method guaranteed to find all
solutions of all problems, and to determine
with certainty when there are no solutions
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Formulation : Other Issues

e 1" dependence of ~;

— Treat explicitly using T-dependent parameters in
~v; model

— Guess a reference temperature T,.r and treat
T-dependent parameters as constants evaluated
at T,.r = No guarantee all azeotropes will be
found, even if equations solved correctly

e Solutions of equifugacity equations may not be
stable phases (liquid may split)

— Need to check stability of liquid phase at
azeotropic composition and temperature

— Interval analysis also provides guaranteed method
to determine stability
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Some Current Solution Methods

e \arious local methods — Fast, but initialization
dependent and hard to find all roots

o Fidkowski et al. (1993) use a homotopy-
continuation method

— Simultaneous approach with explicit T-
dependence of ~;

— Improved reliability but no guarantee that all
roots are found

e Harding et al. (1997) use a branch and bound
method

— Simultaneous and sequential approaches, but
Tre+ approach for T-dependence of v;

— Reformulation as a global optimization problem
using convex underestimating functions

— Mathematical guarantee that all roots are found
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Example Problems

Solved using both simultaneous and sequential
approaches (with same results for azeotropic
composition and temperature)

Solved for case of T-dependent ~;,-model parameters
and for the case of constant ;-model parameters

Problem Al
— Ethanol, Methyl Ethyl Ketone, Water

— 1 atm, 10-100 °C, Wilson Equation

Problem A2
— Acetone, Chloroform, Methanol

— 16.8 atm, 100-200 °C, NRTL Equation

Problem A3
— Acetone, Methyl Acetate, Methanol

— 1 atm, 10-100 °C, Wilson Equation
Have solved many other problems using Wilson,

NRTL and UNIQUAC activity coefficient models
with up to N=5
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Results - Problem Al

Azeotropes

v; parameters E | MEK| W | T (°C)
0.49 | 0.51 | 0.00 | 74.1
Constant 0.90 | 0.00 | 0.10 | 78.1
(Iref=73.7°C) | 0.00 | 0.68 | 0.32 | 73.7
0.23 | 0.54 | 0.23 | 72.8
0.49 | 0.51 | 0.00 | 74.1
T-dependent 091 | 0.00 | 0.09 | 78.2
0.00 | 0.68 | 0.32 | 73.7
0.23 | 0.54 | 0.23 | 72.8

CPU Times (Sun Ultra 1/140, sec)

Constant | T dependent
Sequential 0.21 0.34
Simultaneous 0.90 4.62

E = Ethanol; MEK = Methyl Ethyl Ketone

W = Water
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Results - Problem A2

Azeotropes
i parameters A C M | T(°C)
Constant 0.33 | 0.67 | 0.00 | 181.8
(Tref=152.4°C) | 0.29 | 0.00 | 0.71 | 155.3
0.00 | 0.41 | 0.59 | 151.6
0.32 | 0.68 | 0.00 | 181.2
T-dependent 0.29 | 0.00 | 0.71 | 155.4
0.00 | 0.41 | 0.59 | 151.6

CPU Times (sec)

Constant | T dependent
Sequential 0.51 0.82
Simultaneous 0.94 6.15

A = Acetone; C = Chloroform; M = Methanol
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Results - Problem A3

Azeotropes

v; parameters | A | MA | M | T (°C)

053 | 0.47 | 0.00 | 55.7
Constant* 0.75 | 0.00 | 0.25 54.5
0.00 | 0.68 | 0.32 | 54.4
0.27 | 0.47 | 0.26 | 54.3

0.66 | 0.34 | 0.00 | 55.6
T dependent | 0.79 | 0.00 | 0.21 554
0.00 | 0.66 | 0.34 | 53.6

CPU Times (sec)

Constant | T dependent
Sequential 0.40 1.04
Simultaneous 1.63 6.36

A = Acetone(1); MA = Methyl Acetate(2)
M=Methanol(3)

* Ao = 0.480, Ay; = 1.550, A3 = 0.768
A31 — 0566, A23 — 0544, A32 — 0650



Other Process Modeling Problems

Simple ethylene plant
Mixer /divider network
Adiabatic CSTR

Flash with recycle

o kR b=

Ammonia plant

Number
Number of of CPU time
Problem | Equations | Roots (sec)
1 163 1 3.1
2 146 1 21.8
3 11 3 12.9
4 50 MAX
1 4.0
5 177 1 1003

CPU times on BBN TC2000 (1 processor).
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Concluding Remarks

e Interval analysis is a general-purpose and

model-independent approach for solving phase
behavior problems, providing a mathematical and
computational guarantee of reliability

— Phase stability
— Phase equilibrium (split)
— Homogeneous azeotropes

Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems

Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive
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