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Computing Technology

� Faster and faster single processor performance

� High performance computing (HPC)

{ Many forms of scalar multiprocessing
{ Vector multiprocessing
{ Metacomputing

� Capability to

{ Solve problems faster
{ Solve larger problems
{ Solve more complex problems
{ Solve problems more reliably
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Solving Problems More Reliably

� Global vs. local optimization

� Finding multiple solutions

� Existence and uniqueness of solutions

� Feasibility of NLPs

� Floating point arithmetic problems (e.g., rounding
errors)
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Common Misconceptions

� Dennis and Schnabel (1983)

\In general, the questions of existence and
uniqueness|does a given problem have a
solution and is it unique?|are beyond the
capabilities one can expect of algorithms that
solve nonlinear problems"

� Heath (1997)

\It is not possible, in general, to guarantee
convergence to the correct solution or to
bracket the solution to produce an absolutely
safe method" [for solving nonlinear equations]
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Solving Problems More Reliably

� In fact there do exist methods, based on interval

analysis, that, within given initial bounds on each
variable, can:

{ Find (enclose) any and all solutions to a nonlinear
equation system to a desired tolerance

{ Determine that there is no solution of a nonlinear
equation system

{ Find the global optimum of a nonlinear objective
function

� These methods:

{ Provide a mathematical guarantee of reliability
{ Deal automatically with rounding error, and
so also provide a computational guarantee of
reliability

5



Rounding Error

� Rump's (1988) problem

f(x; y) = 333:75y6

+x2(11x2y2 � y6 � 121y4 � 2)

+5:5y8 + x=2y

� Evaluate f(x; y) for x = 77617 and y = 33096.

� All inputs are machine numbers (representable
exactly in 
oating point arithmetic), so only
rounding errors occur during function evaluation.
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Rounding Error

� Evaluation on an IBM S/370 using a FORTRAN
program

� Single precision

f = 1:172603 : : :

� Double precision

f = 1:1726039400531 : : :

� Extended precision

f = 1:172603940053178 : : :

� The correct answer is

f = �0:827396059946 : : :
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Background|Interval Analysis

� A real interval X = [a; b] = fx 2 < j a � x � bg is
a segment on the real number line

� An interval vector X = (X1;X2; :::;Xn)
T is an

n-dimensional rectangle or \box".

� Basic interval arithmetic for X = [a; b] and Y =
[c; d] is X op Y = fx op y j x 2 X; y 2 Y g

X + Y = [a+ c; b+ d]

X � Y = [a� d; b� c]

X � Y = [min(ac; ad; bc; bd);max(ac; ad; bc; bd)]

X � Y = [a; b]� [1=d; 1=c]; 0 =2 Y

� For X � Y when 0 2 Y , an extended interval
arithmetic is available.

� Computed endpoints are rounded out to guarantee
the enclosure.

8



Interval Analysis (continued)

� Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

� The interval extension F (X) encloses all values of
f(x) for x 2 X. That is, F (X) � ff(x) j x 2 Xg.

� Interval extensions can be computed using interval
arithmetic (the \natural" interval extension), or with
other techniques

� If a variable occurs more than once in an expression,
the natural interval extension may not tightly bound
the true range
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Interval Analysis (continued)

� Example: f(x) = x=(x � 1) evaluated for the
interval X = [2; 3]

� The natural interval extension is

F ([2; 3]) = [2; 3]=([2; 3]� 1)

= [2; 3]=[1; 2] = [1; 3]

� Rearranged f(x) = x=(x� 1) = 1 + 1=(x� 1), the
natural interval extension is

F ([2; 3]) = 1 + 1=([2; 3]� 1)

= 1 + 1=[1; 2]

= 1 + [0:5; 1] = [1:5; 2]

which is the true range.

� This is the \dependency" problem. In the �rst case,
each occurrence of x was treated as a independent
interval in performing interval arithmetic.
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Interval Newton Method

� For a system of nonlinear equations f(x) = 0, �nd
(enclose) all roots in a given initial interval X(0) or
determine that there are none.

� At iteration k, given the interval X(k), if 0 2
F(X(k)) solve the linear interval equation system

F 0(X(k))(N(k) � x
(k)) = �f(x(k))

for the \image" N(k), where F 0(X(k)) is an interval
extension of the Jacobian of f(x) over the current
interval X(k), and x(k) is a point inside X(k).

� Any root x� 2 X
(k) is also contained in the image

N
(k), suggesting the iteration scheme X

(k+1) =
X

(k) \ N
(k) (Moore, 1966).

� It follows that if X(k) \ N
(k) = ;, then there

is no root in X
(k). This is also the conclusion if

0 =2 F(X(k))
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Interval Newton Method (continued)

� Interval Newton provides an existence and
uniqueness test: If N(k) � X

(k), then:

{ There is a unique zero of f(x) in X(k).
{ The interval Newton iteration X

(k+1) = X
(k)

\ N
(k) will converge quadratically to a tight

enclosure of the root.
{ The point Newton method will converge
quadratically to the root starting from any point
in X(k).

� If a unique root cannot be con�rmed (N(k) � X
(k))

or ruled out (X(k) \ N
(k) = ;), then either:

{ Continue with the next iterate X
(k+1) if it is

su�ciently smaller than N(k)

{ Bisect X(k+1) and perform interval Newton on
the resulting intervals

This is the interval Newton/generalized bisection
(IN/GB) approach.
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x1

x2

X
(k)

N
(k)

Any solutions in X      are in

intersection of X      and N

(k)

(k) (k)
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x1

x2

X
(k) N

(k)

There was no solution in X
(k)
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x1

x2

X
(k)

N
(k)

Unique solution in X

Point Newton method will converge to it

(k)

This solution is in N
(k)
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Interval Newton Method (continued)

� For f(x) = 0, this method can enclose with

mathematical and computational certainty any
and all solutions in a given initial interval, or can
determine that there are none.

� A preconditioned interval Gauss-Seidel-like technique
is often used to solve for the image N(k) (Hansen
and coworkers).

� Our implementation is based on modi�cations of
routines taken from the packages INTBIS and
INTLIB (Kearfott and coworkers).

� The interval Newton procedure can be performed
on multiple intervals independently and in parallel.

� IN/GB was �rst implemented for process modeling
problems by Schnepper and Stadtherr (1990).
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Phase Stability Problem

� Will a mixture (feed) at a given T , P , and
composition x split into multiple phases?

� A key subproblem in determination of phase
equilibrium, and thus in the design and analysis
of separation operations.

� Using tangent plane analysis, can be formulated as a
minimization problem, or as an equivalent nonlinear
equation solving problem.

� Equation system to be solved may have trivial
and/or multiple roots (optimization problem has
multiple local optima).

� Conventional techniques may fail to converge, or
converge to false or trivial solutions.
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Tangent Plane Analysis

� A phase at T , P , and feed composition z is unstable
if the Gibbs energy of mixing vs. composition
surface

m(x; v) = �gmix = �Ĝmix=RT

ever falls below a plane tangent to the surface at z

mtan(x) = m(z; vz) +
nX
i=1

�
@m

@xi

�����
z

(xi � zi)

� That is, if the tangent plane distance

D(x; v) = m(x; v)�mtan(x)

is negative for any composition x, the phase is
unstable.

� In this context, \unstable" refers to both the
metastable and classically unstable cases.
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Example 0

n-Butyl Acetate|Water, NRTL Model

Gibbs energy of mixing m vs. x1

0.2 0.4 0.6 0.8 1
x1

-0.02

0.02

0.04 m
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Example 0 (continued)

Feed composition z1 = 0.95

0.2 0.4 0.6 0.8 1
x1

-0.04

0.04

0.08

m

m_tan

D

Phase of this composition is stable (D is never
negative).
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Example 0 (continued)

Feed composition z1 = 0.62

0.2 0.4 0.6 0.8 1
x1

-0.02

0.02

0.04
m

m_tan

D

Phase of this composition is unstable and can split (D
becomes negative).
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Optimization Formulation

� To determine if D ever becomes negative, determine
the minimum of D and examine its sign

min
x;v

D(x; v)

subject to

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
�nd the global minimum.
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Equation Solving Formulation

� Stationary points of the optimization problem can
be found be solving the nonlinear equation system

��
@m

@xi

�
�

�
@m

@xn

��
�

��
@m

@xi

�
�

�
@m

@xn

��
z

= 0;

i = 1; : : : ; n� 1

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to �nd all the roots.

23



Example 1

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK model. Tangent plane distance D vs. x1

0.2 0.4 0.6 0.8 1
x1

0.02

0.04

0.06

0.08

0.1
D

� Five stationary points (four minima, one maximum).

� Standard local methods (e.g. Michelsen, 1982)
known to fail (predict stability when system is
actually unstable).
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Example 1 (continued)

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK model. Tangent plane distance D vs. x1 (region
near origin)

0.05 0.1 0.15 0.2
x1

0.005

0.01

0.015

0.02

D
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Some Current Solution Methods

� Various local methods | Fast, but initialization
dependent (may use multiple initial guesses), and
not always reliable

� Some more reliable approaches

{ Exhaustive search on grid (Eubank et al., 1992)
{ Homotopy-continuation (Sun and Seider, 1995)
{ Topological degree (Wasylkiewicz et al., 1996)
{ Branch and bound (McDonald and Floudas,
1995, 1997): Guarantee of global optimum when
certain activity coe�cient models are used

� Interval analysis

{ Provides a general-purpose, model-independent
method for solving phase stability problem
with complete certainty.

{ Stadtherr et al. (1994,1995), McKinnon et al.

(1995,1996): Activity coe�cient models
{ Hua et al. (1995,1996,1997): Equation of state
models
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Interval Analysis for Phase Stability

� Initial interval includes all physically feasible values
of mole fraction and molar volume

� To reduce overestimation in interval extensions due
to dependency problem:

{ Identify and use function monotonicity
{ Let monotonicity information be inherited when
an interval is bisected

{ Use special properties of mole fraction weighted
averages

� \Standard" mixing rules used

{ Quadratic for a
{ Linear for b

27



Example 1 | Phase Stability

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK model

Feed (z1; z2) Stationary Points (roots)

and CPU time (x1; x2; v [cm3/mol]) D

(0.0187, 0.9813) (0.885, 0.115, 36.6) 0.011

0.20 sec (0.0187, 0.9813, 207.3) 0.0

(0.031, 0.969, 115.4) 0.008

(0.077, 0.923, 64.1) -0.004

(0.491, 0.509, 41.5) 0.073

� CPU time on Sun Ultra 2/1300.

� All stationary points easily found, showing the feed
to be unstable.

� Presence of multiple real volume roots causes no
di�culties.
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Example 2 | Phase Stability

CO2, CH4, T = 220 K, P = 60.8 bar, PR model

Number of

Stationary CPU time

Feed (z1; z2) Points Dmin (sec)

(0.10, 0.90) 1 0.0 0.11

(0.20, 0.80) 3 -0.007 0.33

(0.30, 0.70) 3 -0.0002 0.36

(0.43, 0.57) 3 -0.001 0.35

(0.60, 0.40) 1 0.0 0.29

CPU times on Sun Ultra 2/1300.
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Example 3 | Phase Stability

Green et al. (1993) ternary, T = 400 K, P = 80 atm,
VDW model

Number of

Stationary CPU time

Feed (z1; z2; z3) Points Dmin (sec)

(0.83,0.085,0.085) 3 -0.0099 0.70

(0.77,0.115,0.115) 3 -0.0036 0.76

(0.72,0.14,0.14) 3 -0.0036 0.83

(0.69,0.155,0.155) 3 0.0 0.85

CPU times on Sun Ultra 2/1300.
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Example 4 | Phase Stability

N2, CH4, C2H6, T = 270 K, P = 76 bar, PR model

Number of

Stationary CPU time

Feed (z1; z2; z3) Points Dmin (sec)

(0.30,0.10,0.60) 3 -0.015 1.3

(0.15,0.30,0.55) 3 -0.001 3.4

(0.08,0.38,0.54) 1 0.0 2.5

(0.05,0.05,0.90) 1 0.0 0.54

CPU times on Sun Ultra 2/1300.
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Example 5 | Phase Stability

CH4, CO2, H2S, H2O, PR model

Number of

Stationary CPU time

Feed Points Dmin (sec)

A 3 -0.027 60.4

B 3 -1.201 9.8

C 3 -0.295 10.2

D 3 -0.027 129.2

CPU times on Sun Ultra 2/1300.

It is not really necessary to �nd all the stationary
points; only need to �nd the global minimum.
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Finding the global minimum

� Requires evaluation of an interval extension of the
objective function D. This extra expense does not
pay o� on small problems.

� There is a known upper bound of zero (the tangent
point) on the global minimum of D.

� If interval extension of D has positive lower bound
over some interval, that interval cannot contain the
global minimum and can be discarded.

� If interval extension of D has negative upper bound
over some interval, global minimum will be negative,
proving instability

� This is a special form of interval branch and bound
combined with interval Newton

� For feed D in Problem 5, CPU time reduced from
129.2 sec to 2.9 sec.
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Incorporating Local Techniques

� If a local method indicates instability then this is
the correct answer as it means a point at which
D < 0 has been found.

� If a local method indicates stability, however, this
may not be the correct answer since the local
method may have missed the global minimum in
D.

� Combined local/global approach:

{ Use local methods to try to demonstrate
instability.

{ If instability not found, only then use global
interval method to con�rm stability or identify
instability.
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Approach Used

� If m(z; vz) > 0 ) unstable

� Evaluate D at pure components. If any D < 0 )
unstable

� For a number of randomly chosen compositions:

{ If D < 0 ) unstable
{ If D � 0, then start a local solver (Newton)
and try to converge to a stationary point. If at
termination D < 0 ) unstable

� If still not shown unstable, then apply interval
approach to con�rm stability or �nd instability
missed by local techniques.

� This approach is implemented in the code INTSTAB
(Hua et al., 1997)
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E�ect of Local Approach

� Typical results comparing combined local/global
approach with global only approach

Example CPU time (sec)

Problem Stable? Global Local/Global

1 N 0.20 0.002

3 (feed 1) N 0.70 0.001

3 (feed 4) Y 0.85 0.88

4 (feed 1) N 1.3 0.002

4 (feed 4) Y 0.54 0.58

� CPU times on Sun Ultra 2/1300 using INTSTAB.

� For unstable mixtures, instability generally detected
in milliseconds.

� For stable mixtures, negligible increase in
computation time.
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Phase Equilibrium Problem

� Can formulate as global minimization of total Gibbs
energy, subject to material balance constraints. May
have multiple local minima.

� Can also formulate as equation solving problem:
equifugacity equations and material balances. May
have multiple solutions.

� Need to seek global solution, but local methods can
be applied since phase stability analysis can be used
as a global optimality test that can be applied to
any local solution (Baker et al., 1982).

� Correct solution of the phase stability problem
is thus the key to correct solution of the phase
equilibrium problem.

� Interval analysis guarantees correct solution of the
phase stability problem, and so can also guarantee
correct solution of the phase equilibrium (split)
problem.
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Global Solution of Phase Equilibrium

Problem

� Can combine the global stability analysis with any
standard phase split (or 
ash) algorithm.

� One approach

{ Perform global stability analysis. If unstable, use
the local minima in D to generate initial guesses
for the solution to the phase split problem.

{ For each such initial guess, use a local optimizer
(SQP) to solve the phase split problem and then
test for stability.

{ If global solution not found increase number of
phases and continue.

� This approach is implemented in the code
INTFLASH (Hua et al., 1997)
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Example 6 | Phase Equilibrium

CH4, CO2, H2S, T = 282.15 K, P = 59.5 bar, PR
model, z1 = 0.4995, z2 = 0.0977, z3 = 0.4028

Phase I �I 0.1748

(L) vI 41.95 cm3/mol

x
I (0.1047,0.0727,0.8226)

Phase II �II 0.8352

(V) vII 280.1 cm3/mol

x
II (0.5832,0.1030,0.3138)

CPU 2.05 sec

CPU times on Sun Ultra 2/1300 using INTFLASH.
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Example 7 | Phase Equilibrium

CH4, CO2, H2S, T = 208 K, P = 54.9 bar, PR model,
z1 = 0.4989, z2 = 0.0988, z3 = 0.4023

Phase I �I 0.0702

(V) vI 141.9 cm3/mol

x
I (0.9120,0.0417,0.0463)

Phase II �II 0.3816

(L) vII 53.46 cm3/mol

x
II (0.7539,0.0848,0.1613)

Phase III �III 0.5482

(L) vIII 35.69 cm3/mol

x
III (0.2685,0.1158,0.6157)

CPU 9.0 sec

CPU times on Sun Ultra 2/1300 using INTFLASH.
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Computing Homogeneous Azeotropes

� Why

{ Identify limitations in separation operations
{ Construction of residue curve maps for design and
synthesis of separation operations

{ Evaluation of thermodynamic models

� How

{ Solve system(s) of nonlinear equations derived
from equifugacity condition

{ These equation system(s) often have multiple
and/or trivial roots, or may have no solutions
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Formulation : Simultaneous Approach

xi
�
lnP � lnP sat

i � ln 
i
�
= 0; i 2 C

1�
X
i2C

xi = 0

� C is the set of all N components

� Ideal vapor phase

� P sat
i and 
i are functions of T

� All k-ary azeotropes (k � N) are solutions, as are
all of the pure components (trivial roots)

� Need solution method guaranteed to �nd all
solutions
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Formulation : Sequential Approach

� If xi 6= 0

lnP � lnP sat
i � ln 
i = 0; i 2 Cnz

1�
X
i2Cnz

xi = 0

� Cnz is a set of k nonzero components

� All k-ary azeotropes (k � N) for the chosen Cnz are
solutions; there may be no solutions

� Solve (unordered) sequence of problems :

For k = 2 ! N:

For all combinations of k nonzero components,
solve for all k-ary azeotropes

� Need solution method guaranteed to �nd all
solutions of all problems, and to determine
with certainty when there are no solutions

43



Formulation : Other Issues

� T dependence of 
i

{ Treat explicitly using T-dependent parameters in

i model

{ Guess a reference temperature Tref and treat
T-dependent parameters as constants evaluated
at Tref ) No guarantee all azeotropes will be
found, even if equations solved correctly

� Solutions of equifugacity equations may not be
stable phases (liquid may split)

{ Need to check stability of liquid phase at
azeotropic composition and temperature

{ Interval analysis also provides guaranteed method
to determine stability
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Some Current Solution Methods

� Various local methods | Fast, but initialization
dependent and hard to �nd all roots

� Fidkowski et al. (1993) use a homotopy-
continuation method

{ Simultaneous approach with explicit T-
dependence of 
i

{ Improved reliability but no guarantee that all
roots are found

� Harding et al. (1997) use a branch and bound
method

{ Simultaneous and sequential approaches, but
Tref approach for T-dependence of 
i

{ Reformulation as a global optimization problem
using convex underestimating functions

{ Mathematical guarantee that all roots are found
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Example Problems

� Solved using both simultaneous and sequential
approaches (with same results for azeotropic
composition and temperature)

� Solved for case of T-dependent 
i-model parameters
and for the case of constant 
i-model parameters

� Problem A1
{ Ethanol, Methyl Ethyl Ketone, Water
{ 1 atm, 10-100 �C, Wilson Equation

� Problem A2
{ Acetone, Chloroform, Methanol
{ 16.8 atm, 100-200 �C, NRTL Equation

� Problem A3
{ Acetone, Methyl Acetate, Methanol
{ 1 atm, 10-100 �C, Wilson Equation

� Have solved many other problems using Wilson,
NRTL and UNIQUAC activity coe�cient models
with up to N=5
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Results - Problem A1

Azeotropes


i parameters E MEK W T (�C)

0.49 0.51 0.00 74.1
Constant 0.90 0.00 0.10 78.1

(Tref=73.7
�C) 0.00 0.68 0.32 73.7

0.23 0.54 0.23 72.8

0.49 0.51 0.00 74.1
T-dependent 0.91 0.00 0.09 78.2

0.00 0.68 0.32 73.7
0.23 0.54 0.23 72.8

CPU Times (Sun Ultra 1/140, sec)

Constant T dependent
Sequential 0.21 0.34

Simultaneous 0.90 4.62

E = Ethanol; MEK = Methyl Ethyl Ketone
W = Water
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Results - Problem A2

Azeotropes


i parameters A C M T (�C)

Constant 0.33 0.67 0.00 181.8
(Tref=152.4

�C) 0.29 0.00 0.71 155.3
0.00 0.41 0.59 151.6

0.32 0.68 0.00 181.2
T-dependent 0.29 0.00 0.71 155.4

0.00 0.41 0.59 151.6

CPU Times (sec)

Constant T dependent

Sequential 0.51 0.82
Simultaneous 0.94 6.15

A = Acetone; C = Chloroform; M = Methanol
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Results - Problem A3

Azeotropes


i parameters A MA M T (�C)
0.53 0.47 0.00 55.7

Constant� 0.75 0.00 0.25 54.5
0.00 0.68 0.32 54.4
0.27 0.47 0.26 54.3

0.66 0.34 0.00 55.6
T dependent 0.79 0.00 0.21 55.4

0.00 0.66 0.34 53.6

CPU Times (sec)

Constant T dependent

Sequential 0.40 1.04
Simultaneous 1.63 6.36

A = Acetone(1); MA = Methyl Acetate(2)
M=Methanol(3)

� �12 = 0.480, �21 = 1.550, �13 = 0.768
�31 = 0.566, �23 = 0.544, �32 = 0.650
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Other Process Modeling Problems

1. Simple ethylene plant

2. Mixer/divider network

3. Adiabatic CSTR

4. Flash with recycle

5. Ammonia plant

Number

Number of of CPU time

Problem Equations Roots (sec)

1 163 1 3.1

2 146 1 21.8

3 11 3 12.9

4 50 MAX

1 4.0

5 177 1 1003

CPU times on BBN TC2000 (1 processor).
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Concluding Remarks

� Interval analysis is a general-purpose and
model-independent approach for solving phase
behavior problems, providing a mathematical and

computational guarantee of reliability

{ Phase stability
{ Phase equilibrium (split)
{ Homogeneous azeotropes

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems

� Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive
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