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ABSTRACT

Ideally, for the needs of robust process simulation, one would like a nonlinear equation

solving technique that can find any and all roots to a problem, and do so with mathematical

certainty. In general, currently used techniques do not provide such rigorous guarantees. One

approach to providing such assurances can be found in the use of interval analysis, in particular

the use of interval Newton methods combined with generalized bisection. However, these

methods have generally been regarded as extremely inefficient. Motivated by recent progress in

interval analysis, as well as continuing advances in computer speed and the availability of parallel

computing, we consider here the feasibility of using an interval Newton/generalized bisection

algorithm on process simulation problems. An algorithm designed for parallel computing on an

MIMD machine is described, and results of tests on several problems are reported. Experiments

indicate that the interval Newton/generalized bisection method works quite well on relatively

small problems, providing a powerful method for finding all solutions to a problem. For larger

problems, the method performs inconsistently with regard to efficiency, at least when reasonable

initial bounds are not provided.



INTRODUCTION

The central problem in steady-state process simulation is the solution of a system of

nonlinear equationsf(x) = 0, wheref ∈ n andx ∈ n. Newton and quasi-Newton methods are

extensively used in this context, but may not reliably converge, especially if the initial guess is

poor or if singular points are encountered. To improve convergence in these circumstances,

various methods have been used. These include trust-region techniques such as Powell’s dogleg

method (Powell, 1970; Chen and Stadtherr, 1981), homotopy-based methods (e.g., Wayburn and

Seader, 1987; Kuno and Seader, 1988), and techniques based on iterative mathematical

programming, as reviewed recently by Bullard and Biegler (1991).

An additional difficulty is that in process simulation there are invariably upper and lower

bounds on the variables,xL ≤ x ≤ xU, violation of which may cause some functions to become

undefined. Bounds are often dealt with in anad hocmanner (e.g., Zitney and Stadtherr, 1988)

involving truncation or reflection of the correction step. A more natural way of dealing with

bounds is to use the iterative mathematical programming approach (e.g., Bullard and Biegler,

1991; Swaney and Wilhelm, 1990), in which case the bounds become an integral part of the

problem. While a number of these techniques demonstrate excellent global convergence

properties in practice, none offer a rigorous mathematical guarantee of convergence, with the

exception of the method of Swaney and Wilhelm (1990), which makes use of bounds generated

using interval arithmetic, and if necessary uses a bisection strategy to guarantee convergence.

Another difficulty in solving the nonlinear equation system arising in process simulation

is that it may have multiple solutions. With the exception of homotopy-based methods, none of

the techniques mentioned above are designed for finding multiple solutions when they exist.

While in practice homotopy-based methods are frequently able to locate all solutions to a

problem, they offer no guarantee that all solutions have been found, except in special cases.
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Ideally then, what is desired is a technique that can find,with mathematical certainty, any

and all solutions to a system of nonlinear equations lying within the variable bounds. The

techniques of interval analysis provide just such a class of methods (Kearfott, 1990a), namely

interval Newton methods combined with generalized bisection. In general, the thought of using

such techniques for process simulation problems has been dismissed forthwith, on the assumption

that they would be extremely inefficient. However, recent advances in interval methods (e.g.,

Neumaier, 1990; Kearfott and Novoa, 1990), together with the continuing rapid advance in

computer speed and the availability of parallel computing, may make such methods viable, as

originally suggested by Schnepper and Stadtherr (1990). In this paper we report the results of

a feasibility study on the use of interval Newton/generalized bisection methods for solving

process simulation problems.

INTERVAL COMPUTATIONS

In this section we provide a brief introduction to interval computations, with emphasis on

those aspects needed for discussion of the nonlinear equation solving problem addressed here.

For a more complete and detailed discussion, the reader is referred to the excellent recent

monographs by Neumaier (1990), Hansen (1992) and Alefeld and Herzberger (1983), and the

classic work of Moore (1966).

A real interval number, or simply interval, X, can be defined byX = [a,b] =

{ x ∈ a ≤ x ≤ b}, wherea,b ∈ anda ≤ b. The set of all such real intervals is denoted .

Note that anyx ∈ can be represented by a degenerate (or thin) intervalX = [x,x] ∈ . Thus,

whenever interval and real numbers appear in the same expression here, it is understood that the

real numbers are treated as degenerate intervals. Interval vectors and matrices are analogous to
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real vectors and matrices. Thus, an interval vectorX = (Xi) = (X1,X2,...,Xn)
T ∈ n hasn real

interval componentsXi ∈ , i = 1,2,...,n. Similarly an interval matrixA = (Aij) ∈ n × m has

real interval elementsAij ∈ , i = 1,2,...,n and j = 1,2,...,m. Geometrically, an interval vector

can be interpreted as ann-dimensional rectangle, which is frequently referred to as abox.

Some useful definitions are: 1. The midpointx ∈ of the interval numberX = [a,b] is

x = (a + b)/2. 2. The midpointx ∈ n of the interval vectorX = (Xi) is x = (x1,x2,...,xn)
T.

3. The width of the interval numberX, w(X) ∈ , is w(X) = b − a. 4. The width (or diameter)

of the interval vectorX, w(X) ∈ , is w(X) = maxi w(Xi). 5. The absolute valueX ∈ of the

interval numberX is X = max { a , b }. 6. The vector norm X ∈ of the interval

vectorX is maxi Xi . 7. The volume of the boxX is V(X) = iw(Xi).

Interval arithmetic is an extension of real arithmetic. For an elementary real arithmetic

operation op∈ {+, −, , /}, the corresponding interval operation for intervalsX = [a,b] andY =

[c,d] is defined by

X op Y = {x op y x ∈ X, y ∈ Y}. (1)

Thus, in terms of the endpoints ofX andY, the following formulae can be developed:

X + Y = [a + c, b + d]

X − Y = [a − d, b − c]

X Y = [min (ac, ad, bc, bd), max (ac, ad, bc, bd)]

X / Y = [a,b] [1/d, 1/c], 0 ∉ [c,d].

For X / Y when 0∈ Y, an extended interval arithmetic is available (Hansen, 1968) which is useful

in the execution of the interval Newton methods discussed below. The extended arithmetic

produces the same set as defined by Eq. (1).

The foregoing assumes that we are able to compute the endpoints of an interval result
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exactly. Of course, when this is done on a computer, there may be round-off problems, so steps

must be taken to ensure that the resulting intervals enclose the exact values. The use of rounded-

interval arithmetic solves this problem. Essentially a directed outward rounding is used, so that

when a lower endpointa is computed, it is rounded down to the largest machine-representable

number less than or equal toa, and when an upper endpointb is computed, it is rounded up to

the smallest machine-representable number greater than or equal tob.

As emphasized by Kearfott (1989,1990a), a key feature of interval methods is the ability

to computeinclusion monotone interval extensions F(X) of real functionsf(x). An inclusion

monotone interval extensionF(X) of f(x) has the property {f(x) x ∈ X} ⊆ F(X), and the

property thatX ⊂ Y implies thatF(X) ⊂ F(Y). Inclusion monotone interval extensions of rational

real functions can be determined simply by replacingx with X and replacing the real arithmetic

operations with the corresponding elementary interval operations. Inclusion monotone interval

extensions of transcendental functions can also be readily obtained, and software for computing

the inclusion monotone interval extensions of the elementary functions (e.g., exponentiation,

logarithm, exponential) is available. Note that if we compute (using rounded-interval arithmetic)

an inclusion monotone interval extensionF(X) of f(x), and 0∉ F(X) then this is proof that there

is no root off(x) = 0 in X. It is safe to assume that all real functions of interest to us here have

easily computed inclusion monotone interval extensions, and we shall assume below that all

interval functions used are inclusion monotone interval extensions of the corresponding real

functions.

The interval extensionF(X) encloses all values off(x) for x ∈ X. In general the quality

(tightness) of this enclosure depends on the form in whichF(X) is expressed and evaluated. For

example, iff(x) = x1(x2 − x3) = x1x2 − x1x3, alternate interval extensions areF(X) = X1 (X2 − X3)
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and F(X) = (X1 X2) − (X1 X3). Evaluating the first of these, for sayX1 = X2 = X3 = [1,2]

yields [1,2] ([1,2] − [1,2]) = [1,2] ([−1,1]) = [−2,2], which is precisely the range off(x) over

X. However, evaluating the second expression yields ([1,2] [1,2]) − ([1,2] [1,2]) = [1,4] −

[1,4] = [−3,3], which contains the range off(x) over X but is an overestimate. In general, such

overestimations may occur when an interval variable appears more than once in an expression.

This so-called "dependence problem" occurs because interval arithmetic essentially treats all

occurrences of a variable independently rather than recognizing their dependence.

Finally, we consider the nature of interval equations. Take, for example, the system of

linear interval equationsAx = B, whereA ∈ n × n andB ∈ n. If Ã ∈ n × n andb ∈ n, then

the solution to the linear interval system is the setS= {x Ãx = b, Ã ∈ A, b ∈ B, x ∈ n}. In

general this set is not an interval box, and may have a very complex geometry. Thus, to "solve"

the linear interval system, one instead seeks a boxX containingS; there are various techniques

for doing this, producing enclosures ofS of varying quality, as discussed further below. Note

that if the interval matrixA contains any matrixÃ that is singular, then the solution set S will

be unbounded. It should also be noted that in considering an interval equation, the term

"equation" may need to be interpreted loosely. For example, consider the linear systemAx = B

in one variable, withA = [2,3] andB = [3,4]. The solution setS is X = B/A = [3,4]/[2,3] = [1,2].

However, if this is substituted back into the original "equation", the result isB = [2,3] [1,2]

= [2,6], which is not the originalB, but only contains it. This occurs because of the dependency

problem discussed above.
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INTERVAL NEWTON METHODS

Consider the solution of the system of real nonlinear equationsf(x) = 0, where it is

desired to find all solutions in an specified initial boxX(0). The basic idea in interval Newton

methods is to solve the linear interval equation system

F′(X(k))(N(k) − x(k)) = −f(x(k)) (2)

for N(k), where k is an iteration counter,F′(X(k)) is a suitable interval extension of the real

JacobianJ(x) of f(x) over the current boxX(k), andx(k) is a point in the interior ofX(k), usually

taken to be the midpoint. It can be shown (Moore, 1966) that any rootx* ∈ X(k) of f(x) is also

contained inN(k). This suggests the iteration

X(k+1) = X(k) ∩ N(k). (3)

The various interval Newton methods differ in how they determineN(k) from Eq. (2) and thus in

the tightness with whichN(k) encloses the solution set of Eq. (2).N(k) may be computed using

interval Gaussian elimination; frequently, however, it is computed component by component

using a Gauss-Seidel-like procedure, as described below. In this case, the intersection in Eq. (3)

may be applied after each individual component ofN(k) is determined, and the result used in

computing subsequent components ofN(k). This strategy yields a truncatedN(k) that does not

enclose the complete solution set of Eq. (2), but that does enclose the part of the solution set

necessary for the interval Newton iteration. Preconditioning Eq. (2), as discussed below, is

frequently used (e.g., Kearfott, 1990b) to obtain a tighter enclosure. Note that ifX(k+1) = ∅, this

means that there is no zero off(x) in the boxX(k), since if there was a zero off(x) in X(k) it would

have to also be inN(k), resulting in a nonempty setX(k+1).

While the iteration scheme given by Eqs. (2)-(3) can be used to tightly enclose a solution,

what is of most significance here is the power of Eq. (2) to provide an existence and uniqueness
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test. For several techniques for findingN(k) from Eq. (2), it can be proven (Neumaier, 1990) that

if N(k) ⊂ X(k), then there is auniquezero of f(x) in X(k), and furthermore that Newton’s method

with real arithmeticwill convergeto that solution starting fromany point in X(k). Thus, if N(k)

is determined using one of these techniques, the computation can be used as a root inclusion test

for any intervalX(k). If X(k) ∩ N(k) = ∅, then there is no root inX(k); if N(k) ⊂ X(k), then there is

exactly one root and Newton’s method with real arithmetic will find it; otherwise, no conclusion

can be drawn. In the last case, one could then repeat the root inclusion test on the next interval

Newton iterateX(k+1), assuming it is sufficiently smaller thanX(k), or one could bisectX(k+1) and

repeat the root inclusion test on the resulting intervals. This is the basic idea of interval

Newton/generalized bisection methods. Assuming it has been properly implemented, and

assuming thatf(x) = 0 has a finite number of real solutions in the specified initial box, the

interval Newton/generalized bisection method can findwith mathematical certaintyany and all

such solutions to a specified tolerance, or can determinewith mathematical certaintythat there

are no solutions in the given box (Kearfott, 1987a,1989,1990a).

The technique used here for computingN(k) is the preconditioned Gauss-Seidel-like

technique developed by Hansen and Sengupta (1981) and Hansen and Greenburg (1983). Eq. (2)

is first preconditioned with a real matrixY(k), which is often chosen to be the inverse of the

matrix formed from the midpoints of the components ofF′(X(k)). Eq. (2) now becomes

Y(k)F′(X(k))(N(k) − x(k)) = −Y(k)f(x(k)). (4)

Defining M = Y(k)F′(X(k)) and b = Y(k)f(x(k)), the interval Gauss-Seidel procedure proceeds

component by component according to
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and

(5a)
N (k)

i x (k)
i

bi

i 1

j 1

Mij X(k 1)
j x (k 1)

j

n

j i 1

Mij X (k)
j x (k)

j

Mii

for i = 1,...,n. If Mii 0 in Eq. (5a), then extended interval arithmetic must be used. Note that

(5b)X (k 1)
i N (k)

i X (k)
i

after componenti of N(k) is computed using Eq. (5a), the intersection in Eq. (5b) is performed,

and the result used in the computation of subsequent components ofN(k). As noted above, this

yields a truncatedN(k) that, while not enclosing the full solution set of Eq. (2), does enclose the

part of the solution set necessary for the interval Newton iteration. A proof of the existence and

uniqueness test for this method of determiningN(k) is summarized by Neumaier (1990).

Neumaier (1990) also shows that this method always yields a tighter intervalN(k) than the

Krawczyk (1969) method, an alternative method for determiningN(k) that has been extensively

studied.

Note that ifX(k) contains a singular point, that is if the interval JacobianF′(X(k)) contains

a singular matrix, then the complete solution set of Eq. (2), and its enclosureN(k), will be

unbounded. In this case, the existence and uniqueness condition,N(k) ⊂ X(k), will never be

satisfied, nor will the interval Newton iteration in Eq. (3) be of any use. For this situation, the

truncated enclosureN(k), found using the Gauss-Seidel procedure above, is useful since all or

some of its components may still be bounded despite the singularity. Thus, Eq. (3) may still be

useful. It can be seen from Eq. (5a) that, whether or not there is a singular point inX(k), all

components of the truncatedN(k) are bounded if 0∉ Mii for all i, and if 0 ∈ Mii for any i, then

the first i-1 components of the truncatedN(k) are bounded. However, even when the truncated
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N(k) is used, if there is a singular point inX(k), then the existence and uniqueness condition,

N(k) ⊂ X(k), will never be satisfied. This means that the existence and uniqueness condition cannot

be used to identify a solution at a singular point. Thus, to deal with this possibility, in

implementing interval Newton/generalized bisection a stopping criterion based on the norm of

F(X(k)) must be included (Step 2 in the root inclusion test procedure below).

IMPLEMENTATION

In this section we describe an implementation of an interval Newton/generalized bisection

(IN/GB) algorithm for use in process simulation problems. While for relatively small problems,

IN/GB is usually efficient (Kearfott, 1987b; Kearfott and Novoa, 1990), for larger problems

efficiency is less predictable (Kearfott, 1989; Kearfott and Novoa, 1990). In fact, for a properly

implemented IN/GB method applied to an initial box with a finite number of roots, the only

mode of failure is an excessive computational requirement. However, bisection provides natural

opportunities for large-grained parallel computation, and by taking advantage of this, computation

times can potentially be significantly decreased. Thus we implement an algorithm here based

on parallel computing, though it can also be performed on a single processor for small problems.

The key to designing efficient large-grained parallel algorithms is identifying independent

tasks, having approximately equal computational requirements, for concurrent execution. For the

parallel algorithm presented here, independent tasks at the subroutine programming level arise

from application of the bisection process. In a serial implementation of an IN/GB algorithm,

after a bisection step is completed, one of the subboxes is stored on a stack for later consideration

while the program continues processing the other subbox according to the interval Gauss-Seidel

method. However, the calculations performed on any given subbox are independent of the

calculations performed on any other subbox, and the boxes on the stack may be considered in
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any order. Therefore, on computers with the appropriate multiple-processor architecture, each

available processor may execute the Gauss-Seidel procedure on a different box from the stack.

The starting point for our implementation was the code INTBIS (Kearfott and Novoa,

1990), an implementation of a serial IN/GB algorithm (Kearfott, 1987a,b). INTBIS was designed

for the serial solution of small, dense systems of polynomials. Thus, a number of extensions

were necessary for application to process simulation problems. Primarily these involve the

development of interval extensions of the appropriate function types, and a provision for efficient

handling of sparse matrices.

To provide a library of interval functions appropriate for process simulation problems, we

began with the set of real function types needed for function and Jacobian evaluation in the

equation-based flowsheeting code SEQUEL-II (Zitney and Stadtherr, 1988). Using interval

arithmetic routines supplied with INTBIS, a library of routines for computing interval extensions

of these real functions was developed. INTBIS was then modified to use the sparse storage

scheme used in SEQUEL-II. The efficient sparse solver LU1SOL (Stadtherr and Wood, 1984;

Chen and Stadtherr, 1984; Kaijaluotoet al., 1989) was used in performing the preconditioning

and in connection with the point-Newton iteration done in intervals having a positive root

inclusion test. Before summarizing the algorithm used, we discuss some of its components in

more detail.

Two tolerances are supplied to the algorithm. The toleranceε essentially represents the

smallest allowable box dimension and is used to distinguish between roots that are close together.

Roots that are closer thanε together in some dimension may lie in the same small box. The

stopping criterion usingε uses the scaled diameterd(X) = maxi { w(Xi)/max( Xi ,1)}. A second

tolerance,εF is needed because, as explained above, an interval Newton inclusion test will not
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confirm a solution at which the Jacobian is singular. Thus if there is a boxF(X) 0 that has

become sufficiently small, based onF(X) < εF, then the root inclusion test is taken to be

satisfied. More information concerning the computational use ofε and εF can be found in

Kearfott (1987b).

The root inclusion test is called repeatedly in the main algorithm. It is outlined as a

separate procedure here. For a given boxX, encountered at any point in the solution process,

the root inclusion test returns a result T(X) = true, false, or unknown. If T(X) is set true or

unknownin Step 3, then the next interval Newton iterateX+ is also returned. The root inclusion

test procedure is as follows:

1. Compute the interval extensionF(X). If 0 ∉ F(X) then set T(X) = false and

return, since there can be no zero off(x) in this interval.

2. If F(X) < εF, then set T(X) = true. SetX+ = X and return.

3. Perform the preconditioned Gauss-Seidel test to compute the truncatedN,

component by component, as indicated by Eqs. (4) and (5a-b). The results of the

intersection in Eq. (5b) are stored as components ofX+. If for any value of i

during the Gauss-Seidel test, the intersection in Eq. (5b) yieldsXi
+ = ∅, then set

T(X) = falseand return without computing additional elements ofX+. If N ⊂ X,

then set T(X) = true and return; otherwise set T(X) = unknownand return.

For the preconditioning matrixY(k) in Eq. (4), we use the inverse ofJm = J(x ), the

Jacobian off(x) evaluated at the midpoint of the current boxX. Jm is an easily computed

approximation of the matrix formed from the midpoints of the components ofF′(X(k)), the inverse

of which is often suggested (e.g., Neumaier, 1990) as a good preconditioner. Other

preconditioners for improving the performance of the Gauss-Seidel procedure are being developed
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(Kearfott, 1990b; Kearfottet al., 1991a); however these are computationally more expensive than

the inverse Jacobian, especially for large problems. INTBIS computes and stores the entire

inverse Jacobian explicitly before proceeding with the Gauss-Seidel test. However, this is

undesirable in dealing with relatively large and sparse problems. Thus, since in Eq. (5a)M, and

thusY(k) = Jm
−1, is needed only a row at a time, and may not be needed for all rows if for some

i < n the intersection in Eq. (5b) is the empty set, we computeY(k) a row at a time as needed

from an LU factorization ofJm. ShouldJm be singular, the result of the root inclusion test is

treated asunknown, and the box is bisected.

If the result of the root inclusion test isunknownthen it must be decided whether to bisect

the interval tested or repeat the test on the next interval Newton iterate. This decision is based

on the ratioρ of the volumes ofX(k+1) andX(k):

In order to avoid computing the ratio of two very small numbers in determiningρ, if w(Xi
(k)) < ε

ρ V(X (k 1))

V(X (k))

n

i













w(X (k 1)
i )

w(X (k)
i )

for any i, then the corresponding factor in the product above is set to one. In INTBIS the Gauss-

Seidel test is repeated onX(k+1) using the same inverse Jacobian preconditioner ifρ < 0.4, and

is repeated using a reevaluated preconditioner if 0.4≤ ρ ≤ 0.6. OtherwiseX(k+1) is bisected. In

our algorithm, since the preconditioner is computed just a row at a time as needed, and is thus

never computed and stored explicitly, there is no strong incentive in reusing the same

preconditioner. Thus, we reevaluate the preconditioner and repeat the Gauss-Seidel test onX(k+1)

wheneverρ ≤ 0.6, and bisectX(k+1) otherwise.

When a box X = (Xi) is bisected, the resulting sub-boxesXU and XL are XU =

(X1,X2,...,[xq,bq],...Xn)
T andXL = (X1,X2,...,[aq,xq],...Xn)

T, whereXq = [aq,bq] andq is the coordinate
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direction chosen for bisection. Three strategies were tested for choosing the coordinate direction

for bisection. In the first scheme, the coordinate with the widest component interval is chosen;

that is,q is chosen so thatw(Xq) = w(X). In the second scheme, the coordinate with the largest

scaled diameter is chosen; that is,q is chosen so thatd(Xq) = d(X). The third scheme attempts

to determine the coordinate direction in which the values of the component functionsfi change

most rapidly. After completion of the Gauss-Seidel test, this is accomplished by computing for

each coordinate directionj the quantitysj = w(Xj
(k+1)) F j′(X(k)) , whereF j′(X(k)) is the j-th column

of the interval JacobianF′(X(k)). Then q is chosen so thatsq = maxj sj. Our computational

experiments on process simulation problems (Schnepper, 1992) have shown the third strategy to

be the most effective, and that is what is used here.

Algorithm (serial)

The basic IN/GB algorithm is outlined first in serial form. Its parallel implementation

will then be described. In the following steps, T(X) andX+ are as defined in the root inclusion

test procedure above, represents a list of boxes that have been determined to contain a solution,

andXb is an geometrically similar expansion ofX+ constructed to have the same midpoint asX+

but with component widths four times as large. This serial algorithm essentially performs a

depth-first search in the binary tree generated by the bisection.

I. Initialization

(a) SetX = X(0), the initial box.

(b) Set values for tolerancesε andεF.

(c) PushX onto the stack of boxes to be processed.
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II. Check stack.

(a) If the stack is empty, then go to Step IV.

III. Process a box. Steps III(b), III(g), and III(e(2)) are used to deal with roots on or near a

boundary.

(a) Remove a boxX from the stack.

(b) If d(X) < ε/4 andX has a nonnull intersection with a boxX* in the

list of solution-containing boxes, andd(X) + d(X*) ≤ ε/4, then go

to Step III(i).

(c) Call the root inclusion test procedure to determine T(X) andX+.

(d) If T(X) = false, then go to Step III(i).

(e) If T(X) = true, then:

(1) StoreX+ in the solution-containing list .

(2) If X+ has a nonnull intersection with a boxX* in , andd(X+) + d(X*) ≤

ε/4, then deleteX* from .

(3) Go to Step III(i).

(f) If T( X) = unknownandd(X+) ≥ ε/16, then compute the ratioρ = V(X+)/V(X):

(1) If the volume ratioρ > 0.6, then go to Step III(h).

(2) If the volume ratioρ ≤ 0.6, then resetX = X+, and return to Step III(c).

(g) If T(X) = unknownandd(X+) < ε/16, then adjust for roots on a boundary:

(1) ReplaceX+ by the expanded boxXb with the same midpoints asX+ but

four times as large.

(2) Delete from allX* ∈ for which X* ∩ Xb ≠ ∅ andd(Xb) + d(X*) ≤ ε/4.

(3) StoreXb in .
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(4) Go to Step III(i).

(h) BisectX+:

(1) Form sub-boxesXU andXL.

(2) StoreXU on the stack of boxes for later processing.

(3) StoreXL on the stack of boxes for later processing.

(i) Go to Step II.

IV. Final Point Solution.

(a) If the solution-containing list is empty, report that there are no solutions inX(0),

and stop.

(b) Execute the traditional point Newton method for each box stored in the solution-

containing list , starting at the midpoint of the box.

(c) Report solution(s), and stop.

In Step IV(b), a safeguard may be added to deal with anyX+ added to because T(X) was set

true in Step 2 of the root inclusion test procedure. In this case,X+ was added to because the

function norm became sufficiently close to zero, not because the existence and uniqueness test

was satisfied. This means that there is no guarantee that the point Newton method will converge

in this box. Thus, if the diameter of such anX+ is sufficiently small, one may wish to accept its

midpoint as the final point solution. If the diameter of thisX+ is not small enough, then a tighter

toleranceεF can be used.

Algorithm (parallel)

The parallel algorithm described here is designed for a MIMD computer supporting

globally shared memory. It is also assumed that each processor has its own local workspace.
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In the algorithm, Steps I and II are performed on one "controlling" processor, while Step III can

be performed on the remaining "working" processors as well as on the controlling processor.

Step II may be executing in parallel with Step III, and several Step III tasks may be executing

in parallel at any given time.

I. Initialization. Execute on the controlling processor.

(a-c) Same as serial algorithm Steps I(a-c).

(d) SetL = 1. L is the new box counter, indicating the number of new boxes placed

on the stack since boxes were last assigned for processing in Step II(b(1)); thus

L represents the number of boxes currently unassigned for processing.

II. Check stack. Execute on the controlling processor.

(a) If the stack is empty andL = 0, then:

(1) If any working processors are active, then:

(i) Wait for one to finish.

(ii) Return to Step II(a).

(2) If no working processors are active, then go to Step IV.

(b) If the stack is not empty or ifL ≥ 1, then:

(1) If L = 0, go to Step III.

(2) If L ≥ 1, there are new boxes on the stack that have not yet been assigned

for processing. Assign theseL boxes for processing at one box per

processor.

(3) Activate up toL 1 inactive working processors and start them executing

Step III in parallel on boxes now assigned for processing.

(4) Reset new box counterL = 0, and execute Step III.
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III. Process a box. Execute in parallel, one processor per box, on working processors and the

controlling processor.

(a) Remove from the stack a boxX that has been assigned for

processing.

(b-g) Same as serial algorithm Steps (b-g).

(h) BisectX+:

(1) Form sub-boxesXU andXL.

(2) StoreXU on the stack of boxes for later processing.

(3) SetL = L + 1.

(4) StoreXL on the stack of boxes for later processing.

(5) SetL = L + 1.

(i) If this is the controlling processor, return to Step II. If this is a working

processor, then:

(1) If there are boxes assigned for processing still waiting on the stack, then

go to Step III(a).

(2) If there are no boxes assigned for processing still on the stack, then remain

inactive until reactivated by the controlling processor in Step II(b(3)).

IV. Final Point Solution.

(a-c) Same as serial algorithm Steps IV(a-c). Steps IV(b-c) can be parallelized if

desired).

Note that in Step II(b(2)) there areL new boxes to assign for processing.L−1 of these boxes

are given to the working processors in Step II(b(3)). The remaining box is processed by the

controlling processor in Step II(b(4)), after which it returns in Step III(i) to Step II, where it may



18

generate additional parallel tasks for the working processors, thus activating as many processors

as possible. If there are more boxes assigned for processing in Step II(b(2)) than there are

inactive working processors, then the excess boxes assigned for processing simply remain on the

stack and are processed as soon as other working processors become available [Step III(i(1))].

In Step III each processor must be able to change the values of its own variables without

influencing the other processors, but all of the processors must access the same stack and stack-

related variables. Additionally, the list of boxes must be shared among the processors so that

all of the boxes in the list are available for comparison at Steps III(b), III(e(2)), and III(g(2)).

Thus, for Step III, each processor is provided with its own private copy of all of the variables

and arrays except for the stack of boxes awaiting the root inclusion test and its associated

pointers, the new box counterL, and the list of solution-containing boxes, all of which are

stored in global memory.

In terms of the speedup provided by parallel processing, the performance of the algorithm

will depend on the structure of the binary tree generated from the bisections. In a worst case

scenario the tree would be unbalanced and grow in depth only, as shown schematically in Figure

1. Such a tree would be produced if, after every bisection, one of the subboxes returned a test

value of true or false, while the other subbox returned a value ofunknown. In this case, the

maximum speedup that could be obtained is no more than two, regardless of the number of

processors. In a best case scenario, the tree would be balanced and grow in both breadth and

depth, as shown schematically in Figure 2. Note, however, that here speedup will be limited by

the startup time necessary to get all processors busy. For instance, for an eight-processor system,

the fourth level in the binary tree would have to be reached before all processors could be kept

busy. Both the difficulties mentioned here, startup time and lack of breadth in branching, are due

to the binary nature of the tree. However, in principle there is no reason that a box that tests
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unknownhas to be subdivided into only two subboxes. Boxes could be subdivided into as many

subboxes as there are available processors at any given time. An algorithm that does this would

generate more impressive speedup statistics than the bisection-based algorithm used here. There

are no guarantees that such an algorithm would solve a given problem any faster in terms of

elapsed time; on the average, however, it might do so.

TEST PROBLEMS

In order to investigate the feasibility of using an interval Newton/generalized bisection

algorithm on process simulation problems, we applied the algorithm described above to a number

of test problems. Each problem is relatively small. Some have only one solution and some have

multiple solutions. Each problem, and any variations of it considered, is described briefly below.

Simple models for enthalpies and vapor-liquid phase equilibrium were used: the Sternling-Brown

corresponding-states model for liquid heat capacities was used to estimate liquid phase enthalpies,

ideal heat capacities were used to estimate vapor phase enthalpies, and K-values for vapor-liquid

equilibrium were estimated using Raoult’s law with the Antoine equation for vapor pressure. In

the IN/GB algorithm, values ofε = 10−5 andεF = 10−10 were used. Except as noted below, the

initial boxes used were wide enough to enclose any physically feasible solution.

Problem 1 -- Simple Ethylene Plant.This problem is adapted from a sample problem in

Motard and Lee (1971). The flowsheet involves 10 units, 14 streams, and 7 hydrocarbon

components. When modeled using SEQUEL-II a system of 163 equations must be solved.

Problem 2 -- Mixer/Divider Network.This problem is also adapted from a problem in

Motard and Lee (1971). It involves 6 units, 10 streams, and 10 hydrocarbon components. When

modeled using SEQUEL-II a system of 146 equations must be solved.
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Problem 3 -- Multicomponent Flash. This problem is based on Example 8-14 in Reidet

al. (1987). It involves a single isothermal flash unit separating ethane and n-heptane. Two

formulations of this problem were considered. They differ in how the equilibrium relationships

are written.

In the first formulation (Problem 3A), the equilibrium relationships for each component

(i = 1,...,C) are written in terms of K-values and the exiting vapor and liquid flowratesVi andLi:

LVi − KiVLi = 0 (phase equilibrium)

Pi
SAT(T) − KiP = 0 (explicit K-value evaluation)

HereV andL are the total vapor and liquid flowrates. Of course, any other appropriate method

for evaluating K-values could be used. This type of formulation is commonly used in modeling

vapor-liquid equilibrium operations (e.g., Naphtali and Sandholm, 1971). When this formulation

is used there may be as many as three solutions, one solution with no vapor phase (V = Vi = 0),

one solution with no liquid phase (L = Li = 0), and one with both phases. Only one of these

solutions is physically correct. Other formulations of the flash problem also may have trivial

solutions (Michelsen, 1993). For this particular problem there are three solutions, of which the

two-phase result is the physically correct one. As modeled using SEQUEL-II, Problem 3A

involves 21 equations.

There are other formulations of the flash problem, in which the two-phase result is

implicitly assumed, that do not have the trivial roots. One such formulation (Problem 3B) is to

introduce the vapor and liquid mole fractionsyi andxi in place ofKi:

xiPi
SAT(T) − yiP = 0 (implicit K-value evaluation)

xiL − Li = 0, i = 1,...,C−1 (definition of xi)

yiV − Vi = 0, i = 1,...,C−1 (definition of yi)
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C
i=1 xi = 1

C
i=1 yi = 1 .

This formulation has one solution for the problem here. The SEQUEL-II model for Problem 3B

has 23 variables.

Problem 4 -- Adiabatic CSTR. This problem is taken from Example 5-4 in Smith (1981).

It has also been used by Kuno and Seader (1988). We consider two formulations of the problem.

The simplest formulation (Problem 4A) is that given in Smith (1981) and Kuno and Seader

(1988). It involves two balance equations and a feed temperature specification. Depending on

the feed temperature specified, there may be more than one solution. We use the same three feed

temperatures used by Kuno and Seader (1988). ForTf = 298 K (Problem 4A-1), there are three

solutions. ForTf = 258 K (Problem 4A-2) there is one solution, and forTf = 318 K (Problem

4A-3) there is also one solution.

For the second formulation (Problem 4B) a SEQUEL-II flowsheeting model was used.

In this case there are 11 equations. There are additional equations and variables in this

formulation because stream variables such as component flowrates, total flowrate, and enthalpy

appear as independent variables in a flowsheeting system. The same three feed temperatures are

also used in connection with this formulation, resulting inProblems 4B-1, 4B-2and4B-3.

Problem 5 -- Flash with Recycle. This problem involves a flash unit whose vapor product

is condensed, then split into a product stream and a stream recycled to the feed. The problem

involves four units, seven streams, and two components. The SEQUEL-II model has 50

equations. Two variations of this problem are considered, based on the initial box used. In

Problem 5-1, as in all the previous problems, the initial boxes specified were wide enough to

contain any physically attainable solution. InProblem 5-2, a more intelligently chosen initial box
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was used, based on knowledge of design specifications and physical properties.

Problem 6 -- Ammonia Plant.This problem is adapted from a problem in Seaderet al.

(1977). The flowsheet involves 11 units, 15 streams, and 5 components. When modeled using

SEQUEL-II a system of 177 equations must be solved.

RESULTS AND DISCUSSION

The problems described above were solved using a BBN TC2000 multiple-processor

computer. Both sequential runs on one processor, and parallel runs on up to 32 processors were

performed. The algorithm was implemented using the Uniform System programming model.

This was used because it provides memory and process management tools that efficiently map

the algorithm onto the hardware configuration of the BBN TC2000.

Sequential Results

Detailed results for the sequential runs are shown in Table 1. On all problems except

Problem 5, which will be discussed further below, the correct number of roots was found. To

put the CPU times reported for the BBN TC2000 into rough perspective, we note first that some

sequential runs were repeated on a Sun 3/50 workstation, which proved to be an order of

magnitude slower than the TC2000. Second we note that, based on the well-known LINPACK

benchmark (Dongarra, 1993), a machine (e.g., HP 9000/735) currently regarded as a fast

workstation runs about 500 times faster than a Sun 3/50. From this one might infer that the

times reported in Table 1 are at least an order of magnitude slower than what might be obtained

on a fast (by current standards) workstation. Figures are also given for the lowest level reached

in the binary tree generated in the bisection process, as well as for the maximum stack depth

reached.
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We first note that while the algorithm performs quite well on all the relatively small

problems (3A, 3B, 4A, and 4B), its performance on the larger problems is inconsistent. On

Problems 1 and 2, very few root inclusion tests were required, while on Problems 5 and 6 many

more were required. As such, the tests run on this limited sample of problems seem to bear out

the remarks of Kearfott (1989) and Kearfott and Novoa (1990) that performance on large

problems is fairly unpredictable and that a larger number of equations does not necessarily imply

a larger amount of work. It is interesting to note, however, that Problems 1 and 2 here are both

relatively linear, involving no phase equilibrium calculations, while Problems 5 and 6, which do

involve phase equilibrium, are more highly nonlinear.

Looking at Problem 5-1, the flash with recycle and with arbitrary initial box, we see an

illustration of the only mode of failure for a properly implemented interval Newton/generalized

bisection algorithm, namely an excessive computational requirement. On this problem, after one

hundred thousand root inclusion tests and over six hours of CPU time, no solution was found,

though we know there is at least one. On the other hand, when some effort was made to use a

reasonable initial box, as in Problem 5-2, the problem could be solved immediately without

bisection. The key variables here, for which better initial bounds lead to better algorithm

performance, were the temperature variables. When information about critical temperatures and

normal boiling points were used to intelligently bound the temperature variables, as in Problem

5-2, a solution was readily found. However, since the initial box used does not cover the entire

feasible space, we cannot say with absolute certainty that this problem has only one solution.

In fact, multiple solutions have been obtained for similar problems (e.g., Jacobsen and Skogestad,

1991). One thing that these results suggest is that the mathematical criterion used to select the

variables to be bisected may be inadequate for process simulation problems. For instance, in

Problem 5-1, if the temperature variables were selected, on physical grounds, to be preferentially
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bisected, better performance might have been obtained.

Our experience with Problem 6 was similar to that with Problem 5. Using an arbitrary

initial box the computational requirement was excessive. However, using a more intelligently

chosen initial box, the computation time was reasonable, though for this problem, still fairly

large, as shown in Table 1. While in principle the method described here requires no initial

guess in the usual sense, the results for Problems 5 and 6 indicate that, at least for larger

problems, some reasonable care needs to be taken to specify an initial box.

Parallel Results

The parallel implementation of the algorithm was used on the five problems with the

largest computational times on the sequential runs. The speedup obtained using various numbers

of processors is shown in Figure 3 for these five problems. Other results are the same as in

Table 1, except for maximum stack depth, which differs because the stack is now processed in

parallel. A limit of one hundred thousand root inclusion tests was maintained, so in Problem 5-1

the run still terminated without finding a solution. It should also be noted that multiple

processors performing simultaneous root inclusion tests may handle the stack differently for every

run, even when the same problem is retested using the same number of processors. This is due

to small differences between individual processors and in interprocessor communication

requirements. Thus CPU times are not exactly repeatable from run to run of the same problem.

Since some points in Figure 3 are based on a single run rather than an average over several runs,

they do not all fall on monotonically increasing curves.

For Problem 2, little or no speedup is observed. This is due in part to the small number

of root inclusion tests required, and a binary tree that branches according to the worst-case

scenario (Figure 1), which can be seen from the fact that level seven in the binary tree was



25

reached in seven root inclusion tests (Table 1). With this branching pattern, even under ideal

circumstances speedup will only approach two. In this case, because of the small number of root

inclusion tests, the overhead associated with activating multiple processors offsets any gain due

to parallel root inclusion tests.

For the other problems, the speedup observed is valuable though far from ideal. For

problem 5-1, on which processor utilization was most efficient, the fraction of operations

executing concurrently is 86%, based on an Amdahl’s law estimate. Some factors limiting

performance are inherent in the algorithm. As discussed above, because of the binary nature of

the search tree, some processors will necessarily be inactive initially, and perhaps subsequently

as well when there is not sufficient breadth in the tree. Also, since the time required to complete

a root inclusion test may vary substantially, situations may arise in which the controlling

processor is working on a relatively long root inclusion test, while other processors finish shorter

root inclusion tests and then have to wait for the controlling processor to finish working before

it returns to check the stack and reactivate other processors. These results suggest that the

current algorithm is best suited to a relatively small number of processors.

The algorithm used here exploits a large-grained parallelism at the level of the root

inclusion test. It should be noted that there are opportunities for smaller-grained parallelism

within the root inclusion tests. For example, Kearfottet al. (1991b) suggest using a Jacobi-like

technique in place of Eqs. (5a-b). In this case, all components ofN(k) can be computed

independently and in parallel before the intersections are performed, which also can be done in

parallel.
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CONCLUDING REMARKS

One way of looking at the interval Newton/generalized bisection algorithm is as a

technique for identifying, from within specified initial bounds, an initial guess from which

Newton’s method is guaranteed to converge. Based on the group of problems considered here,

it appears that for relatively small problems, it is feasible to specify initial bounds covering the

entire physically attainable space. For larger problems, however, providing some reasonable

initial bounds may be necessary on some problems. The premium over Newton’s method alone

can be judged by the number of root inclusion tests required. For small problems, even if a large

number of root inclusion tests is needed, the price to pay may be quite reasonable, since each

root inclusion test is inexpensive. For large problems, where root inclusion tests are more

expensive, the cost of a large number of root inclusion tests may become unreasonable.

For some problems, the most powerful aspect of the IN/GB approach is its ability to

guarantee that any and all roots within the specified initial box will be found. For problems with

multiple roots, various homotopy-based methods have been successfully applied. However,

unlike IN/GB, these methods do not provide a rigorous guarantee that all roots have been found,

except in special cases. Both IN/GB and homotopy-based methods can be computationally

expensive. The experiments of Kearfott (1987b) indicate that their relative expensive will depend

on the nature of the problem. Any additional expense incurred in using IN/GB may be a

worthwhile premium to pay to insure that all solutions to a problem are found.

Finally, it should be noted that since even the largest problem considered here is relatively

small by process simulation standards, we cannot judge the ultimate value of IN/GB in larger-

scale process simulation. Based on its performance on small problems, IN/GB might be

especially useful, however, in developing robust procedures or modules for use within larger

process simulation programs. Some additional results on the use of IN/GB for small nonlinear
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equation solving problems related to process simulation, and with multiple roots, have been

presented recently by Stadtherret al. (1994) and Balaji and Seader (1994).
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Table 1. Results for sequential runs on one processor of a BBN TC2000. CPU time is in
seconds. These times are estimated to be over an order of magnitude slower than what might
be expected on a fast (by current standards) workstation (see text).

Problem

Number
of

Equations

Number
of Roots
Found

Number
of Root

Inclusion
Tests

Lowest
Level

Reached in
Binary Tree

Maximum
Stack
Depth

CPU
Time

1 163 1 1 1 1 3.1

2 146 1 7 7 6 21.8

3A 21 3 569 27 21 49.0

3B 23 1 4 3 2 1.2

4A-1 3 3 47 10 7 0.98

4A-2 3 1 40 10 5 0.62

4A-3 3 1 41 9 6 0.70

4B-1 11 3 135 15 9 12.94

4B-2 11 1 109 15 8 8.41

4B-3 11 1 83 12 8 7.24

5-1 50 0† 100001 81 38 21790

5-2 50 1 1 1 1 4.0

6 177 1 108 16 14 1003.5

†Program terminated when limit of 100000 root inclusion tests was exceeded. This problem has
at least one solution.



FIGURE CAPTIONS

Figure 1. Unbalanced tree growing in depth only.

Figure 2. Balanced tree growing in both breadth and depth.

Figure 3. Speedup obtained using multiple processors on a BBN TC2000.
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