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Abstract 
Ionic liquids are a relatively new class of materials with properties that make them 
attractive for a wide variety of engineering applications.  For design purposes, it is 
useful to have a relatively simple model (i.e., excess Gibbs energy model or equation-
of-state model) capable of describing the physical properties and equilibrium behavior 
of ILs and IL solutions.  We consider here the performance of two selected models, 
NRTL applied to the modeling of liquid-liquid equilibrium and an electrolyte equation-
of-state applied to the modeling of aqueous mean ionic activity coefficients.  In each 
case we focus on issues in parameter estimation, and use an approach based on interval 
mathematics to solve the parameter estimation problem globally.  Sample results are 
presented and suggest that the models considered here may be useful for correlation of 
data, but may not be well suited for prediction. 
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1. Introduction 
Room-temperature ionic liquids (ILs) are a relatively new class of materials that 

have attracted significant interest in the context of environmentally-conscious process 
design.  These materials are salts but are liquids at room temperature.  ILs have no 
measurable vapor pressure (i.e., they do not evaporate) and thus, from a safety and 
environmental viewpoint, have several potential advantages relative to the traditional 
volatile organic compounds (VOCs) used as solvents for reactions and separations, 
including elimination of hazards due to inhalation, explosion and air pollution.  ILs also 
have many other interesting properties, including a wide liquidus range, that may make 
them attractive for a wide variety of engineering applications [1].  Thus, for engineering 
design purposes it is useful to have a relatively simple model (i.e., excess Gibbs energy 
model or equation-of-state model) capable of describing the physical properties and 
equilibrium behavior of ILs and IL solutions.  As a basis for such models there is 
available today an increasing amount of physical property and phase equilibrium data 
[e.g., 2], as well as results from molecular simulation studies [e.g., 3]. 

The overall goal of this project is to evaluate the performance of a variety of models 
for computing the physical properties and phase behavior of ILs.  Since the degree of 
dissociation in IL solutions is unclear, and there are molecular simulation results [4] that 
suggest that it may be small even in some dilute solutions, both electrolyte and 
nonelectrolyte models should be considered.  In this abbreviated paper, we will present 
some initial results for two selected models.  The first is the standard NRTL excess 
Gibbs energy model, without electrolyte extension, which will be applied to liquid-
liquid equilibrium problems involving ILs.  The second is the equation-of-state (EOS) 
model given by Myers et al. [5], which is an extension of the Peng-Robinson EOS to 
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electrolyte systems, and which will be applied to aqueous IL solutions.  It should be 
noted that, beyond standard EOS models, excess Gibbs energy models, and their 
electrolyte extensions, approaches such as QSPR [e.g., 6] and COSMO-RS [e.g., 7] also 
have potential in this context.  

2. Methodology 

2.1. Parameter Estimation 
The models to be studied involve parameters that must be estimated from 

experimental data.  Estimation of parameters in these models requires either the solution 
of a nonconvex global optimization problem, or the solution of a nonlinear equation 
system.  Failure to find the globally optimal parameters for a thermodynamic model, 
and using locally optimal parameters instead, can have significant consequences in 
subsequent calculations, as demonstrated by Gau et al. [8] and Ulas et al. [9].  The use 
of locally optimal parameters can lead to rejection of a model that may perform 
satisfactorily when using globally optimal parameters.  For example, Gau et al. [8] 
showed that using the globally optimal parameters improved the predictive capability of 
a model.  In a problem involving the prediction of homogeneous azeotropes using the 
Wilson equation, they showed that using the locally optimal parameters given by 
Gmehling et al. [10] resulted in incorrect predictions of the number of azeotropes, but 
when using the globally optimal parameters the correct number of azeotropes was 
predicted.  Therefore, in evaluating a model, it is important in doing parameter 
estimation that the method used will guarantee finding the globally optimal parameters.  
The interval-Newton approach provides such a methodology. 
2.2. Interval-Newton Approach 

For general background on interval mathematics, including interval-Newton 
methods, there are several good sources [e.g., 11].  The interval-Newton approach 
provides a method for computing all the solutions of a system of nonlinear equations, 
and doing so with mathematical and computational certainty.  It can be applied directly 
to a parameter estimation problem formulated as an equation solving problem, or, for a 
problem formulated as an optimization problem, it can be applied to the equivalent 
system of equations (local optimality conditions).   An important feature of this 
approach is that, unlike standard methods for nonlinear equation solving and/or 
optimization that require a point initialization, the interval-Newton approach requires 
only an initial interval, and this interval can be chosen to be sufficiently large to enclose 
all possible results of interest.  Intervals are searched for solutions using a powerful root 
inclusion test based on interval mathematics.  This test can determine with mathematical 
certainty if an interval contains no solution or if it contains a unique solution.  If neither 
of these results can be proven, then typically the interval is bisected and the root 
inclusion test applied to each subinterval.  On completion, an interval-
Newton/generalized bisection (IN/GB) algorithm will have determined narrow 
enclosures of all the solutions to the equation system of interest.  In an unconstrained 
optimization problem, these solutions represent the stationary points, including all local 
minima, so the global minimum can be readily determined.  Alternatively, IN/GB can 
be applied in connection with a branch-and-bound scheme, which will lead directly to 
the global minimum without finding any of the other stationary points.  In recent years, 
we have applied this technique to many problems in the modeling of phase behavior 
[e.g., 8,12]. 
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3. Results 

3.1. Modeling IL-Alcohol-Water Systems Using NRTL 
One potential application of ILs is in the separation of fermentation broths.  Thus, 

modeling the liquid-liquid equilibrium of IL-alcohol-water systems is of interest.  The 
ternary system IL-octanol-water is also of particular interest since octanol-water 
partition coefficients are widely used as a measure of the potential ecological impact of 
a compound.  The applicability of an excess Gibbs energy model (NRTL) to such 
systems is considered here.  NRTL parameters for the underlying binary systems were 
determined using the procedure described below, and then these were used to predict the 
ternary behavior for comparison to experimental data. 

When a binary system at constant temperature and pressure is modeled using a two-
parameter excess Gibbs energy model, the parameters can be determined directly by 
using the equal activity condition for each component.  This provides two equations: 
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where γi
π is the activity coefficient and xi

π is the mole fraction of component i in phase 
π.  The activity coefficients are functions of composition, involving two unknown 
parameters.  Thus, by substituting the experimental values of xi

π into Eq. (1), there 
remain only two unknowns, in this case the NRTL binary interaction parameters ∆g12 
and ∆g21 (we will consider the NRTL nonrandomness factor to be fixed at α = 0.2).  For 
the NRTL model, it is well known [13] that there may be multiple solutions to this 
nonlinear equation system.  Thus, it is important that we be able to determine all 
solutions.  This is done using the IN/GB approach discussed above, which is guaranteed 
to find all solutions within a specified initial parameter interval, here chosen to be very 
large, namely [−5×106, 5×106] J/mol for each parameter.  Since Eq. (1) is a necessary 
but not sufficient condition for phase equilibrium, solutions must be tested to determine 
if they correspond to thermodynamically stable phase equilibrium.  This can be done by 
using IN/GB to perform tangent plane analysis, as described by Tessier et al. [14], 
which guarantees that the phase stability problem is solved correctly.  If multiple 
parameter solutions remain after testing for stability, then physical considerations must 
be used to choose the most appropriate values, since each solution represents an exact 
fit to the experimental data.  For example, parameter values leading to the prediction of 
multiple miscibility gaps in the binary system can be eliminated, since this behavior is 
not observed experimentally.  Or one can consider whether or not the sign and/or 
magnitude of the parameters are physically reasonable. 

Using IN/GB in this framework, the NRTL parameters for alcohol-water, IL-water 
and IL-alcohol binaries were determined for a number of cases.  Some sample results 
are shown in Tables 1 and 2 for the case in which the IL is 1-butyl-3-
methylimidazolium hexafluorophosphate ([bmim][PF6]) and the alcohol is octanol.  For 
the octanol-water binary, four parameter solutions to Eq. (1) were found.  Solutions 1 
and 2 predict stable states, but solution 2 shows two immiscibility gaps, so it is 
discarded.  Solutions 3 and 4 predict unstable phases so they are discarded.  Parameter 
solution 1 corresponds to the literature value [13] for this binary.  For the [bmim][PF6]-
water binary, two solutions to Eq. (1) are found and both predict stable states.  



4  A. Ayala et al. 

However, solution 2 has a ∆g12 value that is extremely large and can be considered 
physically unreasonable; therefore, it is discarded.  The same procedure was used to 
determine the NRTL parameters from binary data at other temperatures of interest, and 
for other ILs and alcohols.  A linear dependence of the parameters on temperature is 
observed.  In general, NRTL can be used quite successfully to correlate the available 
binary LLE data involving ILs. 

Table 1 
NRTL parameters (J/mol) for n-octanol/water at T = 313K (Data from [13]) 

Solution No. ∆g12 ∆g21 Stable? 
1 99.52 22303.92 TRUE 
2 58859.91 22356.01 TRUE 
3 14293.37 120783.35 FALSE 
4 12783.56 120877.45 FALSE 

Table 2 
NRTL parameters (J/mol) for [bmim][PF6]/water at T = 298K (Data from [15]) 

Solution No. ∆g12 ∆g21 Stable? 
1 -556.43 16569.13 TRUE 
2 -209974 21658.84 TRUE 

 
Using parameter sets found from binary data as described above, the NRTL model 

was applied to predict IL/alcohol/water ternary diagrams.  For the systems considered, 
the model predicts a three-phase region in IL/alcohol/water systems for alcohols with 
alkyl chains longer than ethanol.  The three-phase region becomes smaller as 
temperature is increased and eventually disappears at a ternary upper critical solution 
temperature.  In general, however, compared to experimental data [16] for such systems, 
NRTL does not show the right qualitative behavior, since a three-phase region has not 
been observed.  From these results, it is reasonable to presume that, even though NRTL 
can successfully correlate binary data, it is not well suited to predict ternary phase 
diagrams from binary data.  Therefore, we are investigating the use of the electrolyte 
NRTL model [17] as a tool for modeling these systems. 
3.2. Modeling Aqueous Solutions with an Electrolyte Equation of State 

In this section, we present some sample results for parameter estimation with the 
Myers et al. [5] EOS, applied to the modeling of mean ionic activity coefficients in 
aqueous solutions.  This is a three parameter model.  Two of the parameters are the van 
der Waals attraction parameter, a, and excluded volume parameter, b.  The third 
parameter is σ , which is the hydrated radius of ions in solution.  Myers et al. [5] have 
used experimental mean ionic activity coefficient data to estimate these parameters for a 
very large number of electrolytes in aqueous solution, and found that in general it 
correlates these data better than the (two-parameter) electrolyte NRTL model.  
However, the a values found span several orders of magnitude, and in general it is not 
clear that the parameter values reported are consistent with their physical 
interpretations.  Previously [18], using local optimization methods, we have shown that 
the Myers et al. [5] EOS correlates activity coefficient data well for aqueous solutions 
of tetra-alkyl ammonium and choline salts, compounds whose structure is similar to that 
of some ILs.  Again, the fit is somewhat better than that obtained [19] with electrolyte 
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NRTL, though again the parameter values span a wide range and have no clear physical 
meaning.  This work also demonstrated that the least squares function arising in the 
parameter estimation for this EOS could have several local minima, and that thus global 
optimization methods really should be used.   

Most existing data for mean ionic activity coefficients of aqueous electrolyte 
solutions was measured some time ago and does not include any volumetric data.  
However, more recent activity coefficient data, such as that currently being obtained for 
ILs, may also be complemented with density data as a function of composition.  These 
two types of data can be combined to obtain data in the form of mean ionic activity 
coefficient exp,iγ ±  as a function of solute density ρi = xiρ = xi/v, where v indicates the 
molar volume of the solution and xi the mole fraction of the solute.  We show here some 
sample results for the model parameters a, b and σ  when estimated from data in this 
form using the IN/GB methodology to globally minimize a simple least squares 
function.  The problems used were designed to test the sensitivity of the optimal 
parameter values to small changes in the volumetric data used.  The activity coefficient 
data used, along with five slightly different sets of volumetric data, are shown in Table 
3.  Thus, there are five sets of activity coefficient vs. solute density data for which 
parameter estimation can be done.  These data sets should be regarded as hypothetical 
test problems. 

Since this parameter estimation problem is an unconstrained optimization problem, 
the IN/GB approach can be applied to solve the first-order optimality condition for 
stationary points.  It is assumed that the initial parameter interval is selected to be 
sufficiently large that it contains the global optimum in its interior.  Since all stationary 
points in the initial parameter interval will be found, this also guarantees that the global 
minimum will be found.  Table 4 shows the results of the parameter estimation for the 
data given in Table 3.  It is observed that a wide range of σ values are obtained, varying 
by multiple orders of magnitude.  Apparently, at least for these test problems, the 
optimal value of the σ parameter in the EOS is quite sensitive to small changes in the 
volumetric data used.  This parameter represents the radius (given here in Å) of 
hydrated ions in solution and so the values found do not all appear to be physically 
meaningful.  Our experience with these simple test problems, together with our previous 
experience [18], and the original results of Myers et al. [5], all suggest that optimal 
parameter values may vary over a wide range and often appear not to have physical 
significance.  This is suggestive of a model that may correlate well, but not be well 
suited for prediction.  We are currently investigating electrolyte extensions of other 
equation-of-state models for application to ILs and IL solutions. 

4. Concluding Remarks 
We have considered here the performance of two selected models, NRTL applied to 

the modeling of liquid-liquid equilibrium and an electrolyte equation-of-state applied to 
the modeling of aqueous mean ionic activity coefficients.  An interval-Newton approach 
was used to ensure that parameter estimation problems were solved globally.  The 
sample results presented suggest that the models considered here are useful for 
correlation of data involving ILs, but may not be well suited for prediction. 
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Table 3 
Data for EOS test problems:  Molar volume and mean ionic activity coefficients versus 
solute molality m. 

Table 4 
Parameter estimation results for test problems using data in Table 3. 
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 Molar Volume (cm3mol-1) 

case m = 0.1 m = 0.2 m = 0.3 m = 0.4 m = 0.5 
A 18.241 18.318 18.394 18.469 18.544 
B 18.163 18.161 18.160 18.158 18.157 
C 18.299 18.433 18.567 18.699 18.830 
D 18.273 18.382 18.489 18.596 18.703 
E 18.352 18.539 18.724 18.909 19.092 
 Mean Ionic Activity Coefficients 
 0.7980 0.7520 0.7370 0.7280 0.7280 

case a (Pa·m6mol-1) b (cm3mol-1) σ (Å) 
A 0.435 15.134 1244.8 
B 0.763 16.194 7126.2 
C 4.757 17.634 52.1 
D 3.080 18.187 234.3 
E 3.689 18.008 114.1 


