
Trends in Parallel Computing for

Process Engineering

Chao-Yang Gau and Mark A. Stadtherr�

Department of Chemical Engineering
University of Notre Dame

Notre Dame, IN 46556 USA

AspenWorld 2000

Orlando, FL

February 6-11, 2000

�Phone: (219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

Outline

� Trends in technology

� One application: Parallel branch-and-bound for
chemical process modeling and optimization
problems

2

Trends { High End Computing

� Massively parallel

� Commodity processors (e.g., RISC, Pentium)

� Distributed memory

� Interconnect by very high speed switch

� Current (May 1999) example: IBM Blue Paci�c

{ 5760 processors
{ 3.9 teraops peak performance (3:9 � 1012

oating point operations per second)

� Soon: IBM ASCI White (ASCI = Accelerated
Strategic Computing Initiative, a DOE program)

3

ASCI White

� 10 teraops peak performance; cost $100 million

� 8192 processors (375-MHz IBM POWER3-II;
capable of four simultaneous oating point
operations)

� 8 MB (at least) RAM cache per processor

� Processors organized into nodes of 16 processors
each (512 nodes)

� Each node has at least 8 GB local memory plus two
internal 18 GB disks

� System has 10,752 external disks (195 terabytes �
20 LOCs)

� Multistar omega switching network (diameter two)

� Ultimate goal in ASCI series: 100 teraops (0.1
petaop) by 2004

4

Trends { Commercial Mainstream

� Symmetric multiprocessor (SMP) systems (or some
variation)

� Shared memory (may not be uniform access)

� Small (2) to moderate (64) number of commodity
processors: desktop to enterprise scale

� SMP technology has become dominant in the
commercial server market and is widely used in
industrial and academic research

� Network-based systems: clusters of SMPs, clusters
of workstations (COWs), metacomputing

5

Metacomputing

� Heterogeneous network of computational resources,
ranging from PCs to SMPs or beyond.

� The current fastest computer system is actually not
IBM Blue Paci�c, but is a metacomputing system:

� SETI@home

{ Over one million processors (home PCs)
{ Radio telescope data from Arecibo is processed,
looking for signs of ETs.

{ Computation rate (Sept. 99) over 7 teraops

� Virtual supercomputing

{ The network is the computer
{ Analogy: plug into a metacomputer for
computing power as you would plug into the
electrical power grid

{ Cycle scavenging

6

Towards the Future ...

� Metacomputing (RefrigeratorNet??)

� Quantum computing

� Optical computing

� Hybrid technologies (e.g., quantum processors with
optical interconnects)

7

Parallel Branch-and-Bound Techniques

� Branch-and-Bound (BB) and branch-and-prune
(BP) have important applications in engineering
and science, especially when a global solution to an
optimization or equation solving problem is sought

{ process synthesis
{ analysis of phase behavior
{ molecular modeling
{ etc.

� BB and BP involve successive subdivision of
the problem domain to create subproblems, thus
requiring a tree search process

{ Applications are often computationally intense
{ Subproblems (tree nodes) are independent
{ A natural opportunity for use of parallel
computing

� There are various BB and BP algorithms; we use
an interval Newton/generalized bisection (IN/GB)
method (session DT9, Wed. morning)

8

Parallel BB (cont'd)

� For practical problems, the binary tree that needs
to be searched may be quite large.

� The binary trees may be highly irregular, and can
result in highly uneven distribution of work among
processors and thus poor overall performance (e.g.,
idle processors).

� Need an e�ective load scheduling and load balancing
scheme to do parallel tree search eÆciently.

� Manager-worker schemes are popular but scale
poorly due to communication bottleneck.

� Three types of algorithms, designed for network-
based parallel computing (with MPI for message
passing) were studied:

{ Synchronous Work Stealing (SWS)
{ Synchronous Di�usive Load Balancing (SDLB)
{ Asynchronous Di�usive Load Balancing (ADLB)

9

Work Scheduling and Load Balancing

� Objective: Schedule the workload among processors
to minimize communication delays and execution
time, and maximize computing resource utilization.

� Use Dynamic Scheduling

{ Redistribute workload concurrently at runtime.
{ Transfer workload from a heavily loaded processor
to a lightly loaded one (load balancing).

� Use Distributed Load Balancing

{ Each processor locally makes the workload
placement decision to maintain the local interval
stack and prevent itself from becoming idle.

{ Alleviates bottleneck e�ects from centralized load
balancing policy (manager/worker).

{ Reduction of communication overhead could
provide high scalability for the parallel
computation.

10

Synchronous Work Stealing

� Periodically update workload information, workflg,
and any improved upper bound value (for
optimization) using synchronous global (all-to-all)
blocking communication.

� Once idle, steal one interval (box) from the
processor with the heaviest work load.

� DiÆculties

{ Large network overhead (global, all-to-all)
{ Idle time from process synchronism and blocking
communication

P0 P1 P2 P3

After T tests

 MPI_ALLGATHER
workflg = no. of stack boxes

Make placement decision

Transfer workload

Comm.

Comp.

Comp.

box box

11

Synchronous Di�usive Load Balancing

� Use local communication: Processors periodically
exchange units of work with their immediate
neighbors to maintain their workload.

� Reduces the appearance of idle states.

� Typical workload adjusting scheme:

u(j) = 0:5(workflg(i)� workflg(j))

(i: local processor: j: neighbor processor)

If u(j) is positive and greater than some tolerance:
send intervals (boxes). If u(j) is negative and less
than some tolerance: receive intervals (boxes).

� DiÆculties

{ IneÆciency due to synchronism.
{ Termination e�ects arising from local
communication strategy and di�usive message
propagation.

12

Synchronous Di�usive Load Balancing

(cont'd)

P0 P1 P2 P3

After T tests

Exchange workload
state information

Make placement decision

Workload transfer

Comp.

Comm.

Comp.

box box

Before balancing

After balancing

Concentration

13

Asynchronous Di�usive Load Balancing

� Use asynchronous nonblocking communication,
MPI ISEND, to update workload information and
transfer workload, breaking process synchronization.

� Overlap communication and computation.

� Maintain the workload (number of stack boxes)
higher than some threshold.

Before each test

Send out workflg(i)

Receive workflg(j)

Send out boxes

 Receive boxes

Pi

Comp.

Comp.

Comp.

Comp.

Comp.

Comm.

Comm.

Comm.

Comm.

(Flexible sequenece)

14

Testing Environment

� Software: Implemented in Fortran 77 using the
portable message-passing interface (MPI) protocol

� Physical hardware: Sun Ultra workstations
connected by switched Ethernet

M
$

M M M

$ $ $P P P P ⋅ ⋅ ⋅⋅ ⋅ ⋅

SWITCHED ETHERNET

� Virtual Network:

P

P

P

P P

P

P P

All-to-All Network 1-D Torus Network

P

P

P

P P

P

P P

Global Communication Local Communication

Used for SWS Used for SDLB and ADLB

15

Test Problem

� Parameter estimation in a vapor-liquid equilibrium
model.

� Use the maximum likelihood estimator as the
objective function to determine model parameters
that give the \best" �t.

� Problem data and characteristics chosen to make
this a particularly diÆcult problem.

� Can be formulated as a nonlinear equation solving
problem (which has �ve solutions).

� Or can be formulated as a global optimization
problem.

16

Comparison of Algorithms on

Equation-Solving Problem

Speedup vs. Number of Processors

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

SWS
SDLB
ADLB

17

Comparison of Algorithms on

Equation-Solving Problem

EÆciency vs. Number of Processors

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy

SWS
SDLB
ADLB

18

Using ADLB on Optimization Problem

Speedup vs. Number of Processors (three di�erent
runs of same problem)

2 4 6 8 10 12 14 16

5

10

15

20

25

30

35

40

45

50

55

Number of Processors

S
pe

ed
up

19

Using ADLB on Optimization Problem

(cont'd)

� Speedups around 50 on 16 processors: superlinear
speedup

� Superlinear speedup is possible because of broadcast
of least upper bounds, causing intervals to do
discarded earlier than in the serial case. That is,
there is less work to do in the parallel case than in
the serial case.

� Speedup anomaly: Results vary from run to
run because of di�erent timing in �nding and
broadcasting improved upper bound.

20

Discussion

We have also considered performance in a 2-D torus
virtual network.

1-D Torus Network

P

P

P

P P

P

P P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

2-D Torus Network

21

Discussion (cont'd)

� Comparison of 1-D vs. 2-D torus

{ 2-D has higher communication overhead (more
neighbors)

{ 2-D has smaller network diameter (shorter
message di�usion distance): dpP=2e vs. bP=2c

{ Trade o� may favor 2-D for large number of
processors.

� IsoeÆciency analysis with up to 32 processors
demonstrated the better scalability of the 2-D torus
on parallel BB and BP problems (Gau and Stadtherr,
1999)

� A dual stack management strategy can be
used to reduce speedup anomaly and produce
more consistently high superlinear speedups on
optimization (BB) problems (Gau and Stadtherr,
1999).

22

Concluding Remarks

� E�ective load management strategies can be
developed for solving BB and BP problems in parallel
on a network-based system.

� Parallel computing technology can be used not only
to solve problems faster, but to solve problems

more reliably.

{ Find the global optimum in an optimization
problem.

{ Find all the solutions of a system of nonlinear
equations.

� These reliability issues are often overlooked: Are we
just getting the wrong answers faster?

23

Acknowledgments

� NSF DMI96-96110

� NSF EEC97-00537-CRCD

� U.S. Army Research OÆce DAAG55-98-1-0091

� For more information:

{ Contact Mark Stadtherr at markst@nd.edu

24

