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Background

In steady-state process modeling, the central
problem is the solution of a system of nonlinear
equations (NLE):

f(x)=0

Solution of NLE problems is also the basis for many
optimization methods.

In engineering problems, the variables in an NLE
solving problem are typically constrained physically
within upper and lower bounds; that is:

ngxng

These problems may:

— Have multiple solutions
— Have no solution
— Be difficult to converge to any solution



Selected Recent Advances in NLE
Solving

e Methods for parallel computation
e Tensor methods

—> e Methods for finding (enclosing) all solutions



Methods for Parallel Computation

e Most methods are block oriented: decompose
problem into disjoint or loosely coupled blocks

e May employ some multilevel iteration strategy

e Asynchronous vs. synchronous techniques



Tensor Methods

Developed by Schnabel and colleagues.
Based on quadratic model of the nonlinear function.

Second order term based on a three-dimensional
“tensor” which is computed from past function
values.

Computational tests indicate this approach is very
well suited for problems with ill-conditioned or
singular Jacobian, and is at least as efficient as
“standard” methods on other problems.

Has been extended to large, sparse problems.

Has been extended to constrained optimization and
compares favorably to SQP.



Methods for enclosing all solutions

e Global optimization approach

— Developed by Floudas and colleagues

— Reformulate the NLE solving problem as a
minimization problem

— Find global minimum (minima) deterministically
using a branch-and-bound strategy with convex
underestimating functions

— o Interval analysis approach



Background—Interval Analysis

A real interval X = [a,b] ={x e R|a <z <b}is
a segment on the real number line and an interval
vector X = (X, X,,...,X,)! is an n-dimensional
rectangle or “box".

Basic interval arithmetic for X = [a,b] and Y =
lc,dlis X op Y ={ropyl|xzeX, yeVY}
where op € {4+, —, X, +}. For example, X +Y =
la 4 ¢, b+ d].

Computed endpoints are rounded out to guarantee
the enclosure.

Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

The interval extension F'(X) encloses the range (all
values) of f(x) for x € X.

Interval extensions can be computed using interval
arithmetic (the “natural” interval extension), or with
other techniques.



Interval Approach

e Interval Newton/Generalized Bisection (IN/GB)

— Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution
tolerance:

— IN/GB can find (enclose) with mathematical and
computational certainty either all solutions or
determine that no solutions exist. (e.g., Kearfott,
1996; Neumaier, 1990)

e A general purpose approach : requires no simplifying
assumptions or problem reformulations

e We have applied IN/GB successfully to several types
of problems in chemical engineering



Interval Approach (Cont’d)

Problem: Solve f(x) = 0 for all roots in interval X(©),

Basic iteration scheme: For a particular subinterval
(box), X*), perform root inclusion test:

e Compute the interval extension (range) of each
function in the system.

e |f 0 is not an element of each range, delete the box.
e If 0 is an element of each range, then compute

the image, N(*)  of the box by solving the interval
Newton equation

F’(X(k))(N(k) _ X(k)) — _f(X(k))

e x(*) is some point in the interior of X (),

o [ (X(k)) Is an interval extension of the Jacobian
of £(x) over the box X ().
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Any solutions in X~ are in

intersection of X(k) and N (k)

If intersection is sufficiently small, repeat root inclusion
test: otherwise bisect the result of the intersection and
apply root inclusion test to each resulting subinterval.
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Interval Approach (Cont’d)

Can be extended to global optimization problems.

No strong assumptions about the function f(x) need
be made.

The problem f(x) = 0 must have a finite number
of real roots in the given initial interval.

The method is not suitable if f(x) is a “black-box”
function.

If there is a solution at a singular point, then
existence and uniqueness cannot be confirmed. The
eventual result of the IN/GB approach will be a
very narrow enclosure that may contain one or
more solutions.
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Example — Phase Stability Problem

Will a mixture (feed) at a given T, P, and
composition z split into multiple phases?

A key subproblem in determination of phase
equilibrium, and thus in the design and analysis
of separation operations.

Using tangent plane analysis, can be formulated as a
minimization problem, or as an equivalent nonlinear
equation solving problem.

Equation system to be solved may have trivial
and/or multiple roots (optimization problem has
multiple local optima).

Conventional techniques may fail to converge, or
converge to false or trivial solutions.
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Tangent Plane Analysis

e A phase at T, P, and feed composition z is unstable
if the Gibbs energy of mixing vs. composition
surface

ever falls below a plane tangent to the surface at z

) = mtsc) 3 (57

e That is, if the tangent plane distance
D(x,v) = m(X,v) — Mgn(X)

Is negative for any composition x, the phase is
unstable.

e In this context, “unstable” refers to both the
metastable and classically unstable cases.
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Optimization Formulation

e To determine if D ever becomes negative, determine
the minimum of D and examine its sign

min D(x,v)
X,V

subject to

1 — sz =0
1=1
EOS(x,v) =0

e Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
find the global minimum.
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Equation Solving Formulation

e Stationary points of the optimization problem can
be found be solving the nonlinear equation system

()-(@)]-[6)- @)

1 — Zazz =0
1=1
EOS(x,v) =0

e Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to either find all the roots or find the
root that corresponds to the global minimum in D.
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Example 1 — Phase Stability

CHy4, HoS, T = 190 K, P = 40 atm, z; = 0.0187,
SRK EOS model. Tangent plane distance D vs. x;

D
0.1,

0.08 |
0.06 |
0.04 |
0.02 |

e Five stationary points (four minima, one maximum).
e Standard local methods (e.g. Michelsen, 1982)

known to fail (predict stability when system is
actually unstable).
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Example 1 (continued)

CHy4, HoS, T = 190 K, P = 40 atm, z; = 0.0187,
SRK EOS model. Tangent plane distance D vs. x;
(region near origin)

D
0.02 |
0.015
0.01 |
0.005 |
\ \ X1
085 0¥ 015 02
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Example 1 (continued)

e Use interval method to solve the NLE system,
finding all the stationary points

e Initial interval includes all physically feasible values
of mole fraction and molar volume

Feed (21, 22) Stationary Points (roots)

and CPU time (z1, z2,v [cm3/mol]) D
(0.0187, 0.9813) |  (0.885, 0.115, 36.6) | 0.011
0.20 sec (0.0187, 0.9813, 207.3) 0.0

(0.031, 0.969, 115.4) | 0.008
(0.077, 0.923, 64.1) | -0.004
(0.491, 0.509, 41.5) | 0.073

e CPU time on Sun Ultra 2/1300.

e All stationary points easily found, showing the feed
to be unstable.

e Presence of multiple real volume roots causes no
difficulties.
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Example 2 — Phase Stability

CH4, COQ, HQS, HQO, PR EOS model

Number of
Stationary CPU time
Feed Points D.in (sec)
A 3 -0.027 60.4
B 3 -1.201 9.8
C 3 -0.295 10.2
D 3 -0.027 129.2

CPU times on Sun Ultra 2/1300.

It is not really necessary to find all the stationary
points; only need to find the stationary point that is
the global minimum. The method can be implemented
so that this is done.
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Finding the Global Minimum Only

Requires evaluation of an interval extension of the
objective function D. This extra expense does not
pay off on small problems.

Can take advantage of the knowledge that there is
a known upper bound of zero (the tangent point)
on the global minimum of D.

Technique used is a special form of interval branch
and bound combined with interval Newton

For feed D in Example 2, CPU time reduced from
129.2 sec to 2.9 sec.

Interval method can be combined with local solvers
to further increase efficiency (for unstable feeds)
while maintaining rigor.
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Example — Parameter Estimation

e Assuming a relative least squares objective and using
an unconstrained formulation, the problem is

min 9(0 izp: [ym fi X )]

e A common approach for solving this problem is to
use the gradient of ¢(0) and to seek the stationary
points of ¢(0) by solving g(8) = V¢(8) = 0.
This system may have many roots, including local
minima, local maxima and saddle points.

e To insure that the global minimum of ¢(0) is found,
the capability to find all the roots of g(@) = 0 is
needed. This is provided by the interval technique

(IN/GB).

e [nterval Newton can be combined with branch-and-
bound so that roots of g(#) = 0 that cannot be the
global minimum need not be found.
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Parameter Estimation in VLE Modeling

e Goal: Determine parameter values in liquid phase
activity coefficient models (e.g. Wilson, van Laar,

NRTL, UNIQUAC):
Yui,cale = fi(X,ua 9)

e The relative least squares objective is:

2

¢(0) — Z Z [’Y,ui,calc(e) — Yui,exp

i=1 p=1 Vi exp

o Experimental values 7,;exp of the activity
coefficients are obtained from VLE measurements
at compositions x,,,u=1,...,p.

e This problem has been solved for many models,
systems, and data sets in the DECHEMA VLE Data
Collection (Gmehling et al., 1977-1990).
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Example 3 — Parameter Estimation

The binary system water (1) and formic acid (2)
was studied.

Eleven problems, each a different data set from the
DECHEMA VLE Data Collection were considered.

The model used was the Wilson equation. This has
binary interaction parameters

Ao = (v2/v1) exp(—01/RT) and
A1 = (v1/v2) exp(—b2/RT)

where v1 and vy are pure component molar volumes.

The energy parameters 61 and 65 must be estimated.

Parameter estimation results for #; and 6, are given
in the DECHEMA Collection for all eleven problems.
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Results—Example 3

e Each problem was solved using the IN/GB approach
to determine the globally optimal values of the 6,
and 65 parameters.

e These results were compared to those presented in
the DECHEMA Collection.

e For each problem, the number of local minima in
¢(0) was also determined (branch and bound steps
were turned off).

e Table 1 presents a summary of these results and
comparisons. CPU times are on a Sun Ultra 2/1300
workstation.
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Figure 1: Data Set 10 — Comparison of Relative Deviation in ~;
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Figure 2: Data Set 10—Comparison of Relative Deviation in ~,
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Example 4 — Parameter Estimation

e The binary system benzene (1) and hexafluorobenzene
(2) was studied.

e Ten problems, each a different data set from the
DECHEMA VLE Data Collection were considered.

e [he model used was the Wilson equation.

e Table 2 compares parameter estimation results for
01 and 6y with those given in the DECHEMA
Collection. New globally optimal parameter values
are found in five cases.
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Example 4 — Discussion

Does the use of the globally optimal parameters
make a significant difference when the Wilson model
is used to predict vapor-liquid equilibrium (VLE)?

A common test of the predictive power of a model
for VLE is its ability to predict azeotropes.

Experimentally this system has two homogeneous
azeotropes.

Table 3 shows comparison of homogeneous
azeotrope prediction when the locally optimal
DECHEMA parameters are used, and when the
global optimal parameters are used.
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Other Types of Problems Solved

Location of azeotropes (Maier et al., 1998, 1999,
2000)

— Homogeneous
— Heterogeneous
— Reactive

Location of mixture critical points (Stradi et al.,
1999)

Solid-fluid equilibrium (Xu et al., 2000)

General process modeling problems — up to 163
equations (Schnepper and Stadtherr, 1996)

34



Concluding Remarks

Interval analysis is a powerful general-purpose
and model-independent approach for solving a
variety of process modeling problems, providing
a mathematical and computational guarantee of
reliability.

Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive.

The guaranteed reliability of interval methods comes
at the expense of a significant CPU requirement.
Thus, there is a choice between fast local methods
that are not completely reliable, or a slower method
that is guaranteed to give the complete and correct
answer.

The modeler must make a decision concerning how
important it is to get the correct answer.
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