Recent Advances in Reliable Nonlinear Equation Solving

Mark A. Stadtherr*

Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 USA

> AspenWorld 2000 Orlando, FL February 6-11, 2000

*Phone: (219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

Background

 In steady-state process modeling, the central problem is the solution of a system of nonlinear equations (NLE):

$$f(\mathbf{x}) = \mathbf{0}$$

- Solution of NLE problems is also the basis for many optimization methods.
- In engineering problems, the variables in an NLE solving problem are typically constrained physically within upper and lower bounds; that is:

$$\mathbf{x}^L \leq \mathbf{x} \leq \mathbf{x}^U$$

- These problems may:
 - Have multiple solutions
 - Have no solution
 - Be difficult to converge to any solution

Selected Recent Advances in NLE Solving

- Methods for parallel computation
- Tensor methods
- \implies Methods for finding (enclosing) *all* solutions

Methods for Parallel Computation

- Most methods are block oriented: decompose problem into disjoint or loosely coupled blocks
- May employ some multilevel iteration strategy
- Asynchronous vs. synchronous techniques

Tensor Methods

- Developed by Schnabel and colleagues.
- Based on quadratic model of the nonlinear function.
- Second order term based on a three-dimensional "tensor" which is computed from past function values.
- Computational tests indicate this approach is very well suited for problems with ill-conditioned or singular Jacobian, and is at least as efficient as "standard" methods on other problems.
- Has been extended to large, sparse problems.
- Has been extended to constrained optimization and compares favorably to SQP.

Methods for enclosing all solutions

- Global optimization approach
 - Developed by Floudas and colleagues
 - Reformulate the NLE solving problem as a minimization problem
 - Find global minimum (minima) deterministically using a branch-and-bound strategy with convex underestimating functions
- $\implies \bullet$ Interval analysis approach

Background—Interval Analysis

- A real interval $X = [a, b] = \{x \in \Re \mid a \le x \le b\}$ is a segment on the real number line and an interval vector $\mathbf{X} = (X_1, X_2, ..., X_n)^T$ is an *n*-dimensional rectangle or "box".
- Basic interval arithmetic for X = [a, b] and Y = [c, d] is X op $Y = \{x \text{ op } y \mid x \in X, y \in Y\}$ where $\text{op} \in \{+, -, \times, \div\}$. For example, X + Y = [a + c, b + d].
- Computed endpoints are **rounded out** to guarantee the enclosure.
- Interval elementary functions (e.g. $\exp(X)$, $\log(X)$, etc.) are also available.
- The interval extension $F(\mathbf{X})$ encloses the range (all values) of $f(\mathbf{x})$ for $\mathbf{x} \in \mathbf{X}$.
- Interval extensions can be computed using interval arithmetic (the "natural" interval extension), or with other techniques.

Interval Approach

- Interval Newton/Generalized Bisection (IN/GB)
 - Given a system of equations to solve, an initial interval (bounds on all variables), and a solution tolerance:
 - IN/GB can find (enclose) with mathematical and computational certainty either all solutions or determine that no solutions exist. (e.g., Kearfott, 1996; Neumaier, 1990)
- A general purpose approach : requires no simplifying assumptions or problem reformulations
- We have applied IN/GB successfully to several types of problems in chemical engineering

Interval Approach (Cont'd)

Problem: Solve $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ for all roots in interval $\mathbf{X}^{(0)}$.

Basic iteration scheme: For a particular subinterval (box), $\mathbf{X}^{(k)}$, perform root inclusion test:

- Compute the interval extension (range) of each function in the system.
- If 0 is not an element of each range, delete the box.
- If 0 is an element of each range, then compute the *image*, $\mathbf{N}^{(k)}$, of the box by solving the interval Newton equation

$$F'(\mathbf{X}^{(k)})(\mathbf{N}^{(k)} - \mathbf{x}^{(k)}) = -\mathbf{f}(\mathbf{x}^{(k)})$$

- $\mathbf{x}^{(k)}$ is some point in the interior of $\mathbf{X}^{(k)}$.
- $F'(\mathbf{X}^{(k)})$ is an interval extension of the Jacobian of $\mathbf{f}(\mathbf{x})$ over the box $\mathbf{X}^{(k)}$.

^x2

Unique solution in $X^{(k)}$ This solution is in $N^{(k)}$ Point Newton method will converge to it

If intersection is sufficiently small, repeat root inclusion test; otherwise bisect the result of the intersection and apply root inclusion test to each resulting subinterval.

Interval Approach (Cont'd)

- Can be extended to global optimization problems.
- No strong assumptions about the function $f(\mathbf{x})$ need be made.
- The problem $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ must have a finite number of real roots in the given initial interval.
- The method is not suitable if $\mathbf{f}(\mathbf{x})$ is a "black-box" function.
- If there is a solution at a singular point, then existence and uniqueness cannot be confirmed. The eventual result of the IN/GB approach will be a very narrow enclosure that *may* contain one or more solutions.

Example – Phase Stability Problem

- Will a mixture (feed) at a given T, P, and composition z split into multiple phases?
- A key subproblem in determination of phase equilibrium, and thus in the design and analysis of separation operations.
- Using tangent plane analysis, can be formulated as a minimization problem, or as an equivalent nonlinear equation solving problem.
- Equation system to be solved may have trivial and/or multiple roots (optimization problem has multiple local optima).
- Conventional techniques may fail to converge, or converge to false or trivial solutions.

Tangent Plane Analysis

• A phase at *T*, *P*, and feed composition z is unstable if the Gibbs energy of mixing vs. composition surface

$$m(\mathbf{x}, v) = \Delta g_{mix} = \Delta \hat{G}_{mix}/RT$$

ever falls below a plane tangent to the surface at \mathbf{z}

$$m_{tan}(\mathbf{x}) = m(\mathbf{z}, v_{\mathbf{z}}) + \sum_{i=1}^{n} \left(\frac{\partial m}{\partial x_{i}}\right)\Big|_{\mathbf{z}} (x_{i} - z_{i})$$

• That is, if the *tangent plane distance*

$$D(\mathbf{x}, v) = m(\mathbf{x}, v) - m_{tan}(\mathbf{x})$$

is negative for any composition \mathbf{x} , the phase is unstable.

• In this context, "unstable" refers to both the metastable and classically unstable cases.

Optimization Formulation

• To determine if D ever becomes negative, determine the minimum of D and examine its sign

$$\min_{\mathbf{x},v} D(\mathbf{x},v)$$

subject to

$$1 - \sum_{i=1}^{n} x_i = 0$$

$$EOS(\mathbf{x}, v) = 0$$

• Trivial local optimum (minimum or maximum) at the feed composition $\mathbf{x} = \mathbf{z}$; may be multiple nontrivial optima. Need technique <u>guaranteed</u> to find the global minimum.

Equation Solving Formulation

• Stationary points of the optimization problem can be found be solving the nonlinear equation system

$$\left[\left(\frac{\partial m}{\partial x_i} \right) - \left(\frac{\partial m}{\partial x_n} \right) \right] - \left[\left(\frac{\partial m}{\partial x_i} \right) - \left(\frac{\partial m}{\partial x_n} \right) \right]_{\mathbf{z}} = 0,$$

$$i = 1, \dots, n-1$$

$$1 - \sum_{i=1}^{n} x_i = 0$$

$$EOS(\mathbf{x}, v) = 0$$

• Trivial root at the feed composition $\mathbf{x} = \mathbf{z}$; may be multiple nontrivial roots. Need technique <u>guaranteed</u> to either find <u>all</u> the roots or find the root that corresponds to the global minimum in D.

Example 1 – Phase Stability

CH₄, H₂S, T = 190 K, P = 40 atm, $z_1 = 0.0187$, SRK EOS model. Tangent plane distance D vs. x_1

- Five stationary points (four minima, one maximum).
- Standard local methods (e.g. Michelsen, 1982) known to fail (predict stability when system is actually unstable).

Example 1 (continued)

CH₄, H₂S, T = 190 K, P = 40 atm, $z_1 = 0.0187$, SRK EOS model. Tangent plane distance D vs. x_1 (region near origin)

Example 1 (continued)

- Use interval method to solve the NLE system, finding all the stationary points
- Initial interval includes all physically feasible values of mole fraction and molar volume

Feed (z_1, z_2)	Stationary Points (roots)	
and CPU time	$(x_1,x_2,v \; [cm^3/mol])$	D
(0.0187, 0.9813)	(0.885, 0.115, 36.6)	0.011
0.20 sec	(0.0187, 0.9813, 207.3)	0.0
	(0.031, 0.969, 115.4)	0.008
	(0.077, 0.923, 64.1)	-0.004
	(0.491, 0.509, 41.5)	0.073

- CPU time on Sun Ultra 2/1300.
- All stationary points easily found, showing the feed to be unstable.
- Presence of multiple real volume roots causes no difficulties.

Example 2 — Phase Stability

CH₄, CO₂, H₂S, H₂O, PR EOS model

	Number of		
	Stationary		CPU time
Feed	Points	D_{min}	(sec)
А	3	-0.027	60.4
В	3	-1.201	9.8
С	3	-0.295	10.2
D	3	-0.027	129.2

CPU times on Sun Ultra 2/1300.

It is not really necessary to find **all** the stationary points; only need to find the stationary point that is the global minimum. The method can be implemented so that this is done.

Finding the Global Minimum Only

- Requires evaluation of an interval extension of the objective function *D*. This extra expense does not pay off on small problems.
- Can take advantage of the knowledge that there is a known upper bound of zero (the tangent point) on the global minimum of D.
- Technique used is a special form of interval branch and bound combined with interval Newton
- For feed D in Example 2, CPU time reduced from 129.2 sec to 2.9 sec.
- Interval method can be combined with local solvers to further increase efficiency (for unstable feeds) while maintaining rigor.

Example – Parameter Estimation

• Assuming a relative least squares objective and using an unconstrained formulation, the problem is

$$\min_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}) = \sum_{i=1}^{q} \sum_{\mu=1}^{p} \left[\frac{y_{\mu i} - f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})}{y_{\mu i}} \right]^2$$

- A common approach for solving this problem is to use the gradient of φ(θ) and to seek the stationary points of φ(θ) by solving g(θ) ≡ ∇φ(θ) = 0. This system may have many roots, including local minima, local maxima and saddle points.
- To insure that the global minimum of φ(θ) is found, the capability to find *all* the roots of g(θ) = 0 is needed. This is provided by the interval technique (IN/GB).
- Interval Newton can be combined with branch-andbound so that roots of $g(\theta) = 0$ that cannot be the global minimum need not be found.

Parameter Estimation in VLE Modeling

 Goal: Determine parameter values in liquid phase activity coefficient models (e.g. Wilson, van Laar, NRTL, UNIQUAC):

$$\gamma_{\mu i, ext{calc}} = f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})$$

• The relative least squares objective is:

$$\phi(\boldsymbol{\theta}) = \sum_{i=1}^{n} \sum_{\mu=1}^{p} \left[\frac{\gamma_{\mu i, \text{calc}}(\boldsymbol{\theta}) - \gamma_{\mu i, \text{exp}}}{\gamma_{\mu i, \text{exp}}} \right]^{2}$$

- Experimental values $\gamma_{\mu i, \exp}$ of the activity coefficients are obtained from VLE measurements at compositions $\mathbf{x}_{\mu}, \mu = 1, \dots, p$.
- This problem has been solved for many models, systems, and data sets in the DECHEMA VLE Data Collection (Gmehling *et al.*, 1977-1990).

Example 3 – Parameter Estimation

- The binary system water (1) and formic acid (2) was studied.
- Eleven problems, each a different data set from the DECHEMA VLE Data Collection were considered.
- The model used was the Wilson equation. This has binary interaction parameters

$$\begin{split} \Lambda_{12} &= (v_2/v_1)\exp(-\theta_1/RT) \text{ and } \\ \Lambda_{21} &= (v_1/v_2)\exp(-\theta_2/RT) \end{split}$$

where v_1 and v_2 are pure component molar volumes.

- The energy parameters θ_1 and θ_2 must be estimated.
- Parameter estimation results for θ_1 and θ_2 are given in the DECHEMA Collection for all eleven problems.

Results–Example 3

- Each problem was solved using the IN/GB approach to determine the globally optimal values of the θ_1 and θ_2 parameters.
- These results were compared to those presented in the DECHEMA Collection.
- For each problem, the number of local minima in $\phi(\theta)$ was also determined (branch and bound steps were turned off).
- Table 1 presents a summary of these results and comparisons. CPU times are on a Sun Ultra 2/1300 workstation.

Table 1: Example 3 – IN/GB results vs. DECHEMA values

CPU	time(s)	14.7	12.9	17.4	22.0	16.0	21.7	19.5	17.8	24.4	27.4	16.4
No. of	Minima	2	2	2	2	ŝ	2	2	ŝ	2	ς	3
	$\phi(oldsymbol{ heta})$	0.0342	0.0106	0.0151	0.353	0.0257	0.0708	0.0914	0.0342	0.1114	0.0819	0.0372
IN/GB	$ heta_2$	759	1038	1167	984	1509	-1120	1250	1404	966	1394	1519
	$ heta_1$	-195	-278	-308	-282	-365	1065	-331	-340	-285	-329	-330
A	$\phi(oldsymbol{ heta})$	0.0342	0.0106	0.0151	0.353	0.0257	0.0708	0.1410	0.0459	0.1650	0.1510	0.0399
DECHEN	$ heta_2$	759	1038	1181	985	1513	-1122	-985	-608	-718	-663	-762
	$ heta_1$	-195	-278	-310	-282	-366	1067	892	370	539	450	558
P	(mmHg)	760	760	760	760	760	760	200	200	100	100	70
Data	points	15	15	12	28	12	15	14	11	16	19	6
Data	Set	1	2	с	4	വ	9	7*	*∞	*6	10^{*}	11^{*}

*:New globally optimal parameters found.

Detailed results (Figure 1 and Figure 2) will be shown for Data Set 10.

Figure 1: Data Set 10 – Comparison of Relative Deviation in γ_1

Figure 2: Data Set 10–Comparison of Relative Deviation in γ_2

Example 4 – Parameter Estimation

- The binary system benzene (1) and hexafluorobenzene
 (2) was studied.
- Ten problems, each a different data set from the DECHEMA VLE Data Collection were considered.
- The model used was the Wilson equation.
- Table 2 compares parameter estimation results for θ_1 and θ_2 with those given in the DECHEMA Collection. New globally optimal parameter values are found in five cases.

Table 2: Example 4 – IN/GB results vs. DECHEMA values

T	DEC	HEMA	1		IN/GB		No. of	CPU
	$\theta_1 \theta$	\mathbf{h}_2	$\phi(oldsymbol{ heta})$	$ heta_1$	$ heta_2$	$\phi(oldsymbol{ heta})$	Minima	time(s)
	437 -4	37	0.0382	-468	1314	0.0118	2	15.1
7	t05 -4	05	0.0327	-459	1227	0.0079	2	13.7
က	74 -3	74	0.0289	-449	1157	0.0058	2	12.3
Υ	42 -3	42	0.0428	-424	984	0.0089	2	10.9
7	t39 10	96	0.0047	-439	1094	0.0047	2	9.7
ĩ	424 10	35	0.0032	-425	1036	0.0032	2	7.9
			V V				J VI VI	

	P		DECHEN	ЛA		IN/GB	5	No. of	CPU
(mmHg)		θ^1	$ heta_2$	$\phi(oldsymbol{ heta})$	θ^1	$ heta_2$	$\phi(oldsymbol{ heta})$	Minima	time(s)
300		344	-347	0.0566	-432	663	0.0149	2	17.4
500		-405	906	0.0083	-407	912	0.0083	2	14.3
760		-407	923	0.0057	-399	908	0.0053	Н	13.9
760		-333	702	0.0146	-335	705	0.0146	2	20.5

L

^{*:}New globally optimal parameters found.

Example 4 – Discussion

- Does the use of the globally optimal parameters make a significant difference when the Wilson model is used to predict vapor-liquid equilibrium (VLE)?
- A common test of the predictive power of a model for VLE is its ability to predict azeotropes.
- Experimentally this system has two homogeneous azeotropes.
- Table 3 shows comparison of homogeneous azeotrope prediction when the locally optimal DECHEMA parameters are used, and when the global optimal parameters are used.

	P or T	$P{=}107$	121	168	185	255	275	256	274	$T{=}54.13$	52.49
IN/GB	x_2	0.9459	0.0658	0.9239	0.0756	0.9012	0.0886	0.9412	0.0887	0.8388	0.0685
	x_1	0.0541	0.9342	0.0761	0.9244	0.0988	0.9114	0.0588	0.9113	0.1612	0.9315
	P or T	$P{=}107$		168							
DECHEMA	x_2	0.9340		0.9685							
	1x	0990.0		0.0315		NONE		NONE		NONE	
$T(^{o}C)or$	P (mmHg)	T=30		40		50		50		$P{=}300$	
Data	Set	1		2		с		4		7	

Table 3: Example 4 – Homogeneous azeotrope prediction

 Based on DECHEMA results, one would conclude Wilson is a poor model for this system. But actually Wilson is a reasonable model if the parameter estimation problem is solved correctly.

Other Types of Problems Solved

- Location of azeotropes (Maier *et al.*, 1998, 1999, 2000)
 - Homogeneous
 - Heterogeneous
 - Reactive
- Location of mixture critical points (Stradi *et al.*, 1999)
- Solid-fluid equilibrium (Xu et al., 2000)
- General process modeling problems up to 163 equations (Schnepper and Stadtherr, 1996)

Concluding Remarks

- Interval analysis is a powerful general-purpose and model-independent approach for solving a variety of process modeling problems, providing a mathematical and computational guarantee of reliability.
- Continuing advances in computing hardware and software (e.g., compiler support for interval arithmetic) will make this approach even more attractive.
- The guaranteed reliability of interval methods comes at the expense of a significant CPU requirement. Thus, there is a choice between fast local methods that are not completely reliable, or a slower method that is guaranteed to give the complete and correct answer.
- The modeler must make a decision concerning how important it is to get the correct answer.

Acknowledgments

- Students
 - Chao-Yang Gau
 - Robert Maier
 - Gang Xu
 - Benito Stradi
 - Stephen Tessier
 - James Hua
 - Carol Schnepper
- Funding
 - ACS PRF 30421-AC9
 - NSF CTS95-22835
 - NSF DMI96-96110
 - NSF EEC97-00537-CRCD
 - EPA R824731-01-0
 - DOE DE-FG07-96ER14691
 - Sun Microsystems, Inc.
- For more information:
 - Contact Mark Stadtherr at markst@nd.edu