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Abstract 

 

The identification of the correct, stable solution to a phase equilibrium problem, 

given a particular thermodynamic model, is essential for the design of separation processes.  

It is also important in the selection of an appropriate model to represent experimental data.  

The need for a completely reliable method to test for phase stability is particularly pressing 

when the number of phases likely to be present is not intuitive to the user, as is frequently 

the case with high-pressure systems.  Previously, we have a presented a completely reliable 

computational technique, based on interval analysis, to correctly identify phase equilibrium 

and test for phase stability in binary solvent-solute systems, that include the possibility of a 

solid phase, using any of a variety of cubic equations of state as the thermodynamic model.  

Here we extend the methodology to include multicomponent solvent-solute-cosolvent 

systems where the likelihood of additional phase formation is even greater than in the 

binary case.  Gaseous or liquid cosolvents are frequently used in supercritical fluid 

extraction processes, and are integral in processes such as the gas anti-solvent process 

(GAS) to precipitate uniform solid particles.  Using several examples from the literature, we 

demonstrate how the new computational technique can be used to identify experimental 

data that may have been misinterpreted and to identify models that do not predict what the 

modeler intended. 

 

Keywords: Solid-Fluid Equilibrium, Supercritical Fluids, Phase Stability, Phase 

Equilibrium, Interval Analysis 
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1. INTRODUCTION 

The calculation of solid-fluid equilibrium using an equation of state has formed the 

foundation for the design of supercritical fluid extraction processes.1  It is also important in 

designing solid precipitation processes using high-pressure gases, such as the rapid expansion of 

a supercritical solution (RESS), gas anti-solvent (GAS) and supercritical anti-solvent (SAS) 

processes.2,3,4,5,6  In a previous paper7 we presented a framework for the completely reliable 

computation of solid-fluid equilibrium, using interval analysis to solve correctly the phase 

equilibrium and phase stability problems, when a cubic equation of state is used as the 

thermodynamic model for binary solvent-solute systems.  We chose to apply the technique using 

cubic equations of state because they are simple, generally give good representations of high-

pressure phase behavior, and are used extensively in industry.  In this paper we extend this 

framework for the reliable computation of solid-fluid equilibrium to multicomponent solvent-

solute-cosolvent mixtures.  

The correct solution of multicomponent high-pressure phase equilibrium problems 

involving solids is vitally important to process design and to the evaluation of model 

performance.  Without the identification of the correct, thermodynamically stable solutions to a 

model, experimental data can be misinterpreted and gross design errors can be made.  For 

instance, we have shown7 that for binary systems in the literature, there are instances where data 

is reported as solid-fluid equilibrium but the equation-of-state model, with parameters regressed 

by the authors from their experimental data, actually predicts vapor-liquid equilibrium (VLE).  

This generally occurs because the researchers assume that the model will predict solid-fluid 

equilibrium and either do not check for phase stability or do the phase stability check using a 

local solution technique that does not guarantee the correct solution.  In some cases, authors have 
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recognized that their experimental data seemed suspicious (i.e., solubilities too high for the solid 

dissolved in a supercritical fluid phase) and they later verified that what they had originally 

believed to be solid-fluid equilibrium was really vapor-liquid equilibrium, in agreement with the 

model predictions.8,9  As we will discuss here, the likelihood of such errors greatly increases 

when one computes high-pressure phase equilibria involving solids in multicomponent mixtures 

using conventional numerical solution techniques.     

There are a wide variety of industrial processes where correct modeling of solid-fluid 

equilibrium is important.  The most obvious are those involving supercritical fluid extraction, 

which has found extensive application for coffee and tea decaffeination, and for the recovery of 

components in natural products, such as hops, essential oils and nutraceuticals.1  A common 

practice is to add a chemical modifier (called a cosolvent or entrainer) to the supercritical fluid in 

order to increase solute solubility or selectivity.  For instance, a polar cosolvent such as ethanol 

might be added to nonpolar supercritical CO2 to increase the solubility of polar compounds.  As 

a result, most supercritical fluid extractions involve multicomponent mixtures.  Moreover, there 

is a large body of data in the literature on the solubility of solid solutes in supercritical fluids that 

have been modified with the addition of either gaseous or liquid cosolvents.10,11,12,13  In 

particular, the practice of adding cosolvents has been used extensively with supercritical carbon 

dioxide, which has a relatively low solvent power, but which is used frequently since it is 

inexpensive and environmentally benign.  A supercritical extraction process with a cosolvent 

usually begins by first mixing a certain proportion of the cosolvent and solvent at a particular 

temperature and pressure that ensures that a single phase exists, i.e., above the mixture critical 

point of the binary solvent-cosolvent system.  Then this mixture is passed to another unit to 

contact the solid and extract the solute.  In modeling the solubility of the solute in the extraction, 
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the solvent to cosolvent ratio is fixed, and then one solves for the solubility that satisfies the 

equifugacity requirement of the solute in both the solid and supercritical phases.  It is customary 

to neglect the possibility of a second fluid phase (liquid) forming (fluid phase instability) in both 

measurement and modeling as long as the original solvent-cosolvent mixture remains above its 

binary mixture critical point.  However, as we will demonstrate here, this can lead to erroneous 

results.   

A second type of application in which reliable modeling of high-pressure, 

multicomponent phase behavior involving a solid phase is important is materials production 

using the RESS, GAS or SAS processes.  For instance, the point at which a solid precipitates 

from a liquid with the addition of a pressurized gas forms the basis of the gas anti-solvent 

process (GAS) and supercritical anti-solvent process (SAS).  Therefore, these processes 

invariably require knowledge of the multicomponent saturation conditions for adequate 

development.  A third type of application of interest in this context is the use of supercritical 

fluids as solvents for reactions.  Many reactions in supercritical fluids involve the presence of 

both solid and liquid reactants, products, and catalysts, and reliable computation of phase 

behavior is important because frequently single phase operation is desired.  For a review of 

homogeneous reactions in supercritical fluids see Jessop et al.14   

We will present here a completely reliable computational strategy, based on interval 

analysis, to find the solution to high-pressure, multicomponent phase equilibrium problems 

involving a solid phase.  The examples given are for solid-fluid equilibrium in the presence of 

cosolvents, as might be encountered in a supercritical fluid extraction process, but this 

computational technique can also easily be used in modeling the phase behavior in the other 

high-pressure phase equilibrium applications mentioned above.  First, we will present a brief 
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overview of the features of high-pressure solid-fluid phase behavior, in order to illustrate the 

inherent complexity that can be encountered in modeling these systems.  Then we will detail the 

problem formulation and summarize the solution method based on interval analysis.  Finally, we 

will give several examples in which we have applied this technique.  These are taken from the 

literature, and illustrate the importance of reliable computation of high-pressure phase 

equilibrium for multicomponent mixtures with solids present. 

2. BACKGROUND 

In this section, we will present a brief overview of the features of high-pressure solid-

fluid phase behavior, and discuss some of the modeling difficulties that can result. 

2.1 Binary Phase Behavior 

It has been known for some time that solid solutes can undergo melting below their 

normal melting points with an increase in pressure of a compressed gas.15,16,17  For binary 

systems with a temperature specified in an appropriate range, there is one (or possibly more than 

one) value of pressure at which the solid melts to form a three phase, solid-liquid-vapor (SLV) 

system.  This is shown in Figure 1, which is a pressure-temperature (PT) projection of a typical 

asymmetric system, such as naphthalene and ethane.18  Most supercritical fluid extraction 

systems are designed to operate at temperatures between the two SLV regions, usually above the 

lower critical end-point (LCEP) and below the upper critical end-point (UCEP).  The critical 

end-points are where two phases become identical in the presence of a third phase; e.g., vapor 

and liquid become critical in the presence of a solid phase.  Above the sublimation pressure of 

the solid, only equilibrium between two phases (either solid-vapor or solid-supercritical fluid 

equilibrium) can exist at temperatures and pressures between the LCEP and UCEP, except for 

the case with a temperature minimum in the SLV curve, as shown by curve II in Figure 1 (which 
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will be discussed below).  At temperatures close to the UCEP or LCEP one can observe large 

changes in solvent power with small changes in pressure.19  If the temperature is above the 

UCEP (or above the minimum in the SLV curve, as discussed below), the solid will melt and one 

will observe VLE, unless a large loading of the solid solute is used, which will result in solid-

liquid equilibrium (SLE).  If the pressure is further increased, the liquid and vapor phases will 

disappear at the mixture critical point and either a single phase will exist or one will observe SFE 

at large solute loadings.  The upper (higher temperature) SLV line emanates from the solute 

triple point and proceeds directly to the UCEP as illustrated as SLV curve I in Figure 1.  

However, for some systems, e.g. naphthalene and CO2,
9 and biphenyl and CO2,

9 the SLV line 

proceeds through a minimum in temperature (SLV curve II in Figure 1) before reaching the 

UCEP.  For these systems, simply remaining below the UCEP temperature does not guarantee 

working in a SFE region; one must be below the minimum in the SLV curve.  

Cubic equations of state (EOS) can describe all of the types of phase behavior mentioned 

above.  However, we have shown previously that there can exist multiple solubility roots to the 

equifugacity equations for solid-fluid equilibrium when using cubic EOS at temperatures near 

the SLV lines.7  The key to identifying the correct root(s), and, thus, the correct type of phase 

equilibrium (SFE, SLE or SLV), is testing the roots for thermodynamic stability.  If there is no 

solubility root that is both stable and feasible (based on overall solute loading and material 

balance), then there is no solid phase present at equilibrium, and a multiphase flash calculation 

can be done to determine the number and composition of fluid phases present.  Xu et al.7 

demonstrate that their solution strategy can correctly deal with all these cases, thus determining 

the correct behavior.  This is extremely useful in modeling experimental data to ensure that one 

does not regress parameters that predict the existence of phases that are not observed 
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experimentally.  This is also important in alerting experimentalists a priori to the possibility of 

unanticipated phase transitions.  Obviously, a priori predictions are only as good as the models 

(and interaction parameters) employed, but they can at least qualitatively indicate the phase 

behavior to be expected.  Whether one assumes SFE, or includes the possible existence of liquid 

phases,20,21,22 and whether there are single or multiple roots to the equifugacity equation, the key 

step in computing the correct phase behavior is performing a completely reliable phase stability 

test.  This is all the more important for the high-pressure multicomponent case, as discussed next.   

2.2 Ternary Phase Behavior 

In ternary mixtures, as occurs when a cosolvent is added to a supercritical fluid to 

enhance the solubility or selectivity of a solid solute, the possibility of liquid phase formation is 

greatly enhanced in comparison to the binary case.  According to the Gibbs phase rule, a third 

component extends SLV equilibrium from a line to a region of pressure and solubility at a given 

temperature.  This is represented in Figure 2, which shows a typical scenario encountered when a 

gaseous or liquid cosolvent is added to a supercritical fluid at a certain initial concentration.  At 

low pressures, PA in Figure 2, solid-vapor (SVE) equilibrium exists, with the solute solubility 

(mole fraction) y2 in the vapor shown by the solid curve, assuming an overall solute loading of at 

least y2 (otherwise there will be a single vapor phase mixture).  As pressure is increased, the SLV 

region is encountered, bounded at its lowest pressure by the first melting line, and at its highest 

pressure by the first freezing line.  In this region, PB in Figure 2, if there is a sufficiently large 

solute loading, then there is SLV equilibrium.  At lower solute loadings, VLE would exist, and at 

still lower solute loadings, a single vapor phase mixture would exist.  If the solute loading is such 

that VLE occurs, then the compositions of the liquid and vapor phases depend on the loading.  

This is shown in the figure by the three different curves at low, “critical” and high loadings, ψlow 
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< ψcrit < ψhigh.  Only at one particular loading, designated ψcrit, does the curve close at higher 

pressure.  At the other loadings, the overall mixture composition point is simply no longer in the 

VLE region as the pressure is increased (note that Figure 2 is a two-dimensional representation 

of a three component system).  Beyond the SLV region, PC in Figure 2, one can observe SLE, 

single-phase liquid, VLE, or single-phase vapor, depending on the solute loading.  If SLE exists 

(high solute loading) then the liquid phase composition (solute solubility) is given by the solid 

line at high mole fraction.  At high pressures, PD in Figure 2, SLE exists for high solid loadings; 

at lower loadings one would observe a single fluid phase.   

The phase behavior explained above can be further visualized using the triangular ternary 

phase diagrams in Figures 3-6, corresponding to the pressures PA, PB, PC and PD shown 

schematically in Figure 2.  Although certainly not to scale, the reader might think of the system 

as being naphthalene (solute) and CO2 (solvent), where propane has been added as a cosolvent.  

On each plot, there is a dashed straight line that extends from the pure naphthalene vertex to the 

CO2/propane edge of the triangle.  This line represents a constant solvent/cosolvent loading, as 

one would encounter with a premixed CO2/propane mixture, such as that used by Smith and 

Wormald.18  The position of the initial overall composition point along that straight line depends 

on how much solute (naphthalene) is loaded. 

Figure 3 illustrates the low-pressure condition, PA from Figure 2.  Each of the sides of the 

triangle represents the conditions if the third component were absent: SLE for naphthalene and 

propane (assuming that PA is greater than the vapor pressure of propane), SVE for naphthalene 

and CO2, and a single phase for CO2 and propane (which assumes that the pressure is above the 

mixture critical point of this binary).  Since the constant solvent/cosolvent ratio line only passes 

through the SV equilibrium and single-phase vapor sections of the diagram, these are the only 
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types of phase behavior that can exist at this pressure.  There will be a single vapor phase if the 

solute loading is very low, and SVE if the solute loading is high enough to put the overall 

mixture composition point into the SV region.  If the cosolvent to solvent ratio were to be 

increased, thus shifting the constant solvent/cosolvent ratio line to the right, then one might 

observe other kinds of phase behavior, including SLV, VLE, SLE, single-phase liquid or single-

phase vapor, depending on the solute loading.   

Figure 4 illustrates pressure PB, which cuts through the SLV region in Figure 2.  SLV 

equilibrium is found within a triangular region where the compositions of the phases are found at 

the vertices of the SLV triangle, which includes pure solid naphthalene.  At high solute loadings 

(anywhere within the SLV triangle) SLV equilibrium occurs, while at smaller solute loadings 

along the constant solvent/cosolvent ratio line, VLE is encountered.  Note that, even though there 

is an overall constant solvent/cosolvent ratio, in SLV and VLE the solvent/cosolvent ratio in 

each phase is different.  From this diagram it is also easy to see why the vapor and liquid 

compositions in VLE depends on the solute loading, as this determines the tie line representing 

the equilibrium. 

A common feature of Figures 3-6 is the “S” shaped curve that extends from the 

naphthalene/propane side of the triangle to the naphthalene/CO2 side.  Notice its movement 

towards the naphthalene/CO2 side with an increase in pressure, as seen from Figure 3 to Figure 6.  

As the “S” shaped curve (and its associated phase equilibrium features) moves towards the 

naphthalene/CO2 side the constant solvent/cosolvent ratio line passes through increasingly more 

complex phase behavior, as shown by the triangular diagram for pressure PC in Figure 5.  For the 

solvent/cosolvent ratio shown by the straight dashed line, one can observe SLE, single-phase 

liquid, VLE, or single-phase vapor, depending on the solute loading.  Note that the phase 
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behavior would be SVE if the propane cosolvent were not present.  However, with the propane 

present there is the possibility of liquid phase formation.  From Figure 5 it is also easy to see why 

some of the VLE curves in Figure 2 terminate.  For example, one can identify loadings on the 

constant solvent/cosolvent ratio line that were in the VLE envelope in Figure 4 but that are in the 

single phase liquid region in Figure 5.  Thus, the VLE envelope of these loadings would 

“terminate” at a pressure between PB and PC, as shown by ψhigh in Figure 2. 

As shown in Figure 6 (neglecting box a for now), with a further increase in pressure to 

PD the constant solvent/cosolvent ratio line no longer intersects the VLE envelope, and there 

remains only one dense liquid-like state for SFE at high solute loading, and a single fluid phase 

at lower solute loading.  However, if the temperature of the system is changed to above the 

binary SLV line of the naphthalene/CO2 system, then a VLE dome will appear emanating from 

the naphthalene/CO2 side of the triangle, as shown in box a in Figure 6. 

Thus, ternary and higher multicomponent systems exhibit many possibilities for complex 

phase behavior, including the formation of liquid phases.  As a result, there is a strong need for 

reliable techniques to compute the high-pressure phase behavior of such systems.  We will 

demonstrate here a technique based on interval analysis that can provide a guarantee that the 

phase equilibrium computations give correct results. 

3. PROBLEM FORMULATION 

To solve the phase equilibrium problem, it is first assumed that there is solid-fluid 

equilibrium and then the corresponding equifugacity conditions are solved for all roots.  The 

roots are then tested using tangent plane analysis to determine if any represents a stable phase 

equilibrium state.  If no stable roots are found, then this indicates that at the specified 

temperature, pressure, and overall composition, there is no solid-fluid equilibrium.  In this case, 
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the problem is treated as a general multiple-fluid-phase flash with possible solid phase.  In this 

section, we summarize the formulation of each of these parts of the overall computation. 

3.1 Equifugacity Conditions 

The formulation used for the equifugacity conditions is developed in detail by Xu et al.7, 

and is summarized briefly here.  The species in the multicomponent system are designated as 

solvent (component 1), solute (component 2), and cosolvent (components 3, 4, …, C).  Assuming 

a pure solid solute phase in equilibrium with a single fluid phase containing all components, then 

the equifugacity conditions are: 
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Here Eq. (1) is the equifugacity equation for the solute, with S
2f  indicating the fugacity of the 

solute in the pure solid phase, F2f̂  the fugacity of the solute in the fluid-phase solution, v the 

molar volume of the fluid phase, and y = (y1, y2, ..., yC)T the vector of fluid-phase mole fractions.  

Equation (3) is the equation of state (EOS) for the fluid phase, and indicates the use of the Peng-

Robinson (PR) EOS.  Here am and bm are the mixture attractive energy and co-volume 

parameters of the PR EOS, and these are determined using standard (van der Waals) mixing 

rules.  Equation (4) specifies the molar solvent to cosolvent ratios iα  for each cosolvent.  The 
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ratios iα  are specified, as are the system temperature T and pressure P.  Equations (1-4) thus 

represent a system of C+1 equations that can be solved for the C+1 variables y and v.  Once y 

has been determined, the molar phase fraction β 
S of the solid phase can be determined from the 

solute material balance 

   ,)1( 2
S

2
S ψββ =−+ y  (5) 

where ψ2 is the specified overall mole fraction of solute (overall solute loading).  In solving Eqs. 

(1-4) it is important to realize that there may be multiple solutions.  To ensure that the phase 

equilibrium problem is correctly solved, it is necessary to find all the equifugacity roots.  A 

solution method, based on interval mathematics, that can deal rigorously with the issue of 

multiple solutions is discussed below. 

There are alternative methods for determining the pure solid phase fugacity S
2f , based on 

the type of physical property data that is available.  In the examples below, unless otherwise 

noted, an expression based on sublimation pressure data is used: 
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Here sub
2P  is the solute sublimation pressure and S

2v  is the molar volume of the pure solid 

(assumed constant).  An alternative expression18, used in some cases for consistency in making 

comparisons to the literature, is 

( ) ∫ −−





−∆=







 P

TP
dP

RT

vPTv

TTR

h

vPTf

PTf

)(sub
2

SL

m

fus
2

LL
2

S
2 ),(11

),,(

,
ln  (7) 

Here L
2f  and Lv  refer to a hypothetical subcooled pure liquid solute and are based on the fluid-

phase EOS, and fus
2h∆  and Tm are the experimental molar heat of fusion and normal melting 

temperature. 
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3.2 Stability Analysis 

Solutions to the equifugacity conditions may represent stable, metastable or unstable 

states.  Since carefully measured equilibrium data most likely represent thermodynamically 

stable data, it is desirable to deal exclusively with stable computational results.  For this purpose, 

tangent plane analysis23 is widely used.  A fluid phase of composition (mole fraction) y0 is not 

stable (i.e., unstable or metastable) if the Gibbs energy vs. composition surface ever falls below a 

(hyper)plane tangent to the surface at y0.  The Gibbs energy surface here consists of two parts, 

one corresponding to the fluid phase (or phases), and another corresponding to the solid phase.  

For the fluid case, we will express the Gibbs energy surface using gm(y,v), the (molar) Gibbs 

energy of mixing (i.e., the Gibbs energy relative to pure component fluids at the system 

temperature and pressure).  Here v and gm are determined using the fluid-phase EOS; if there are 

multiple volume roots, then the one yielding the smallest value of gm must be used.  For the solid 

case, since a solid phase is assumed to consist of pure solute, its part of the Gibbs energy vs. 

composition surface consists of only a single point, which lies on the pure solute axis.  Relative 

to pure fluid solute at the system temperature and pressure (to be consistent with the reference 

state used for the fluid-phase surface gm), this point has a (molar) Gibbs energy value  
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Here S
2f  is determined from either Eq. (6) or (7), and F

2f  is computed using the EOS with y2 = 

1.  This representation of the Gibbs energy surface is discussed in much more detail by Xu et al.7 

and Marcilla et al.24   

The distance between the Gibbs energy surface and the tangent plane is referred to as the 

tangent plane distance.  A plane tangent to the Gibbs energy surface at the fluid phase 
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composition y0 is given by 
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Relative to the fluid phase Gibbs energy surface, the tangent plane distance is then  
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and relative to the solid phase it is  

( )12
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m
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If DF is negative for any value of y, or if DS is negative, then this indicates that the Gibbs energy 

surface is below the tangent plane and thus the phase of composition y0 being tested is not stable. 

 If y0 is a solution to the equifugacity conditions for solid-fluid equilibrium, then the 

tangent plane will pass through S2g  (see Xu et al.7 and Marcilla et al.24 for discussion) and thus 

DS is zero.  Otherwise, the sign of DS can be checked by a straightforward point evaluation.  To 

determine if DF ever becomes negative is a much more challenging problem.  This is typically 

done by seeking the minimum of DF with respect to y by finding its stationary points in the space 

constrained by the yi summing to one.  However, it is common for there to be multiple local 

minima in DF, and thus it is critical that the global minimum be found.  If the global minimum of 

DF is negative, then the phase being tested is not stable; otherwise it is stable.  While only the 

global minimum needs to be found for purposes of the stability analysis, it is in fact useful to 

find the other stationary points as well, since as noted below, when the phase being tested is not 

stable, the stationary points are useful in initializing subsequent phase split computations.  A 

solution method, again based on interval mathematics, that can deal rigorously 
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(deterministically) with the issue of the global minimization, as well as finding all the stationary 

points, is discussed below. 

3.3 Multiple-Fluid-Phase Flash with Possible Solid Phase 

 If it is determined that there are no solutions of the equifugacity conditions for solid-fluid 

equilibrium that correspond to a stable equilibrium state, then there is no solid-fluid equilibrium 

at the specified temperature, pressure, and overall composition.  In this case, the problem is now 

treated as a general multiple-fluid-phase flash with a possible solid phase.  There are now many 

flash algorithms for multi-fluid-phase equilibrium, of which the algorithm of Lucia et al.25 is 

especially reliable (though not guaranteed).  However, there are few flash algorithms for the case 

of multiple fluid phases in equilibrium with a solid phase at high-pressures, using an EOS model 

for the fluid phases; see Zhou et al.26 for example. 

The method used here is a two-stage approach that alternates between phase split and 

phase stability calculations.  In the phase split problem, the number of fluid phases and whether 

or not a solid phase is present is first postulated, generally based on information from a 

preceding phase stability analysis, and then the corresponding Gibbs energy minimization 

problem is solved for a potential equilibrium state.  If there are NP fluid phases, labeled I, II, …, 

NP, and a pure solid solute phase, labeled S, then the minimization problem is: 

( ) ( ) ( ){ }S
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subject to the mole fractions summing to one in each phase, the EOS in each phase, and the 

overall material balance 
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where β 
j is the molar phase fraction for phase j and zi indicates the overall mole fraction of 

species i.  Note that 1S
2 =y  and that 0S =iy , i ≠ 2, since the solid phase is pure solute.  For the 

solute, z2 equals ψ2, the specified fractional loading of solute in the system being studied.  For 

the solvent and cosolvents, the zi are readily determined from the specified solvent to cosolvent 

ratios αi together with the summation of the zi to one.  In solving this optimization problem, one 

needs to find only a local minimum, since if the global optimum is not found, this will be 

detected in the subsequent phase stability analysis, which in effect is a global optimality test.  

Good initial guesses for the local optimization can generally be obtained by using stationary 

points from the preceding stability analysis.  For solving this optimization problem, we use the 

successive quadratic programming (SQP) approach described and implemented by Chen and 

Stadtherr.27  However, there are many other approaches that could be used to perform this local 

optimization, and that may perform better than SQP in this context.  Furthermore, there are 

alternative problem formulations that could be used; for example, the use of mole numbers rather 

than mole fractions as independent variables.  It is not critical in the phase split computation 

what approach is used, as long as it converges to a local minimum in the Gibbs energy. 

Once a potential equilibrium state is found by locating a minimum in the optimization 

problem, then it is tested using phase stability analysis, as described above.  If this indicates that 

the state is not stable, then either 1) the phase-split optimization problem is solved again with the 

same number and type of phases, but with new initial guesses based on the newly found 

stationary points, or 2) the phase-split optimization problem is reformulated by adding a new 

phase.  This type of two-stage strategy that alternates between phase split and phase stability 

calculations is widely used for the case in which there are fluid phases only25,28,29, and can be 
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shown30  to converge in a finite number of steps to the equilibrium solution, provided that the 

phase stability problem is solved to global optimality. 

4. SOLUTION METHODOLOGY 

 To correctly solve the problems formulated above, it is necessary to have a procedure that 

is capable of reliably locating all the solutions of a nonlinear equation system and to have a 

deterministic procedure that is capable of locating the global optimum of a nonlinear function.  

These capabilities can be provided through the use of interval analysis. 

4.1 Interval Analysis 

Good introductions to interval analysis, as well as to interval arithmetic and computing 

with intervals, include those of Neumaier31, Hansen32 and Kearfott.33  Of particular interest here 

is the interval-Newton/generalized bisection (IN/GB) technique.  Given a nonlinear equation 

system with a finite number of real roots in some specified initial interval, this technique 

provides the capability to find (or, more precisely, to enclose within a very narrow interval) all 

the roots of the system within the given initial interval.  This can be applied directly to the 

solution of the equifugacity conditions, as formulated above.  To apply this technique to the 

minimization problem of interest in phase stability analysis, IN/GB is used to solve a nonlinear 

equation system for all the stationary points in the optimization problem.  Alternatively, this can 

be done in combination with a simple branch-and-bound scheme, so that all the stationary points 

do not need to be found, only the one corresponding to the global minimum.  However, as noted 

above, knowledge of the stationary points may be useful for initializing the phase split 

computations, so we typically use IN/GB to find all the stationary points.  These procedures are 
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outlined in more detail by Xu et al.7, and further details are given by Hua et al.34,35 and 

Schnepper and Stadtherr.36  

Properly implemented, the IN/GB technique provides the power to find, with 

mathematical and computational certainty, enclosures of all solutions of a system of nonlinear 

equations, or to determine with certainty that there are none, provided that initial upper and 

lower bounds are available for all variables.31,33  This is made possible through the use of the 

powerful existence and uniqueness test provided by the interval-Newton method.  The technique 

can also be used to enclose with certainty the global minimum of a nonlinear objective 

function32, again assuming an initial interval is provided for all variables.  Note that unlike 

standard local equation-solving and optimization routines, which require a point initialization, 

the IN/GB approach requires only an initial interval.  Since this initial interval can be made 

sufficiently large to include all physically feasible possibilities, this makes the methodology 

essentially initialization independent.  The interval methodology has been successfully applied to 

solve a wide variety of thermodynamic phase behavior problems.7,37,38  The overall strategy for 

solving the phase behavior problem of interest here is outlined below. 

4.2 Problem-Solving Strategy 

 It is first assumed that there is solid-fluid equilibrium, so the equifugacity conditions, 

Eqs. (1-4), are solved using the interval methodology.  From Eq. (5), it is clear that 0 ≤ y2 ≤ ψ2, 

thus the initial interval for y2 is [0, ψ2].  Initial intervals for the remaining fluid-phase mole 

fractions yi can then be determined from Eqs. (2) and (4), using interval arithmetic and the initial 

interval for y2.  In the initial interval for v, the lower bound is taken to be the smallest of the pure 

component co-volume parameters, that is, mini bi, and the upper bound is taken to be 2RT/P 
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(compressibility factor of 2).  Application of the IN/GB approach will now determine all roots, if 

any, within these initial intervals.   

 One possibility is that there could be one or more equifugacity roots.  In this case, each 

root is tested for phase stability as described above, using the interval methodology to assure 

correct results.  For solving the phase stability problem, each mole fraction yi has the initial 

interval [0, 1], and the initial volume interval is the same as used in solving the equifugacity 

condition.  If there is a root that tests stable, then a solid-fluid equilibrium state has been found.  

It is also possible that more than one equifugacity root will test as stable; this indicates an 

equilibrium state with a solid phase and multiple fluid phases (corresponding to the multiple 

stable equifugacity roots).  If none of the roots test as stable then there is no solid-fluid 

equilibrium state.  In this case, we postulate two fluid phases plus a solid phase, and initiate the 

two-stage procedure described in section 3.3 that alternates between phase split and phase 

stability calculations until the correct number and type of phases and phase compositions are 

found.  The result will be multiple-fluid-phase equilibrium that may or may not include a solid 

phase.  The procedure used is a modification of the INTFLASH routine described by Hua39 and 

also applied by Stradi et al.40 and Xu et al.7  The original INTFLASH performs multiple-fluid-

phase flash calculations; the modification accounts for the possibility of a pure solid phase also 

present.   

Alternatively, another possibility is that there could be no equifugacity roots.  This 

indicates that the solute loading ψ2 was sufficiently small that all the solid dissolved.  Thus, a 

single fluid phase with y2 = ψ2 is next postulated, and this is tested for phase stability as 

described above.  If the test indicates stability, then the equilibrium state is a single fluid phase 

with y2 = ψ2; otherwise two fluid phases are next postulated, and we again initiate the two-stage 
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procedure described in section 3.3 that alternates between phase split and phase stability 

calculations until the correct number of phases and phase compositions are found. 

5. RESULTS AND DISCUSSION 

5.1 _ Example 1:  Naphthalene and CO2 with Gaseous Cosolvents Ethane and Propane 

The solubility of naphthalene in the solvent/cosolvent mixtures CO2/C2H6 and CO2/C3H8 

has been investigated by Smith and Wormald.18  Both systems were measured at temperatures 

from 35 °C to 60 °C, and at pressures from 60 to 250 bar.  They also determined the SLV 

equilibrium (first melting line) for these systems, and modeled the data using the Peng-Robinson 

EOS with van der Waals mixing rules.  Their model computations were based on the 

equifugacity condition, using Eq. (7) for the solid fugacity, but without stability analysis.  For 

their model, they took values of the binary interaction parameters k12 and k13 from the literature, 

and fit values of k23 to their experimental solubility versus pressure data.  Exactly the same 

model is used for the computations done in this example.  The binary interaction parameter 

values18 used are k12 = 0.090, k13 = 0.131 (3 = ethane), k13 = 0.125 (3 = propane), k23 = 0.040 (3 = 

ethane) and k23 = 0.041 (3 = propane).  Other physical property data used in the model are given 

in Table 1. 

Using the strategy described in Section 4.2, the solubility y2 of naphthalene in CO2/C2H6 

(α3 = 0.7) and CO2/C3H8 (α3 = 5.6) was computed at several temperatures over a pressure range 

that includes the range studied by Smith and Wormald.  Figure 7 shows the computed results for 

CO2/C2H6 at T = 307.9 K, along with the data of Smith and Wormald18.  As shown, at each 

pressure there is a single solubility root to the equifugacity condition, which was confirmed to be 

stable using the interval method.  Figure 8 shows the results for T = 323 K.  Here there is a large 
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range of pressure for which there are three equifugacity roots.  The roots representing stable 

equilibrium are denoted by the solid curve.  At lower pressures (below about 100 bar), the 

smallest solubility root is stable, implying solid-vapor equilibrium.  Then, according to Smith 

and Wormald’s model18, around 100 bar, a very small region (which appears in Figure 8 as a 

heavy vertical line) of SLV equilibrium appears, bounded by the first melting and last freezing 

pressures.  In this pressure region, Smith and Wormald’s model18 indicates that large solute 

loadings result in SLV equilibrium, i.e., liquid phase formation, and at lower loadings VLE 

exists, with phase compositions determined by the solute loading (see Section 2.2).  At pressures 

above the SLV region, the highest solubility root is stable, implying solid-liquid equilibrium 

provided that the solute loading is sufficient.  At lower solute loadings there can be VLE with the 

phase compositions varying according to the loading.  In Figure 8, the VLE region is shown as a 

dashed-dotted line for the case of a near critical loading.  Figure 9 shows the results for T = 

333 K for the Smith and Wormald model18, which are qualitatively similar to the 323 K case.  

Here the SLV region is again very narrow, from about 61.75 to 62.25 bar.  Clearly, for the 

situations depicted in Figures 8 and 9, reliable stability analysis is critical in determining the 

nature of the phase behavior predicted by the model.   

For the 323 K and 333 K cases (Figures 8 and 9) there is a discrepancy between the SFE 

data of Smith and Wormald18 and the stable SFE predicted by their model.  In other words, there 

is an inconsistency between Smith and Wormald’s reported experimental data and their model.18  

This means one of two things.  One possibility is that the model is simply inadequate.  This could 

be due to a fundamental inability of the simple Peng-Robinson equation to model this system, or, 

perhaps, it could be due to a significant temperature dependence of one or more of the binary 

interaction parameters that is not taken into account.  Another possibility is that the experimental 
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SFE results reported are not really SFE.  We have some additional insight into this system 

because Smith and Wormald18 also measured the SLV equilibrium (first melting curves).  

Interestingly, the experimental SLV lines that Smith and Wormald18 report confirm that portions 

of their SFE data actually reside inside the VLE region, similar to the results obtained by their 

model.  However, since the measurements were taken in a flow apparatus, they may not be 

meaningful VLE data.  For ternary systems, VLE is dependent on the overall loading of the 

components, with different loadings producing different compositions in each phase.  Thus for 

VLE data to be meaningful, the overall composition it corresponds to must be known.  However, 

in a flow system the loadings are constantly changing, and so in principle the overall 

composition is not known.  In practice it may be that the loadings will undergo only insignificant 

changes, though, if so, this should be determined a priori. 

 Figures 10 and 11 show the results for the case of propane as cosolvent with α3 = 5.6.  At 

T = 308.3 K, as shown in Figure 10, there is a single stable solubility root to the equifugacity 

condition, similar to the situation in Figure 7 for the ethane cosolvent.  At T = 328.3 K, as shown 

in Figure 11, there are multiple equifugacity roots, and the situation is similar to that shown in 

Figures 8 and 9 for the ethane cosolvent.  In this case, however, the SLV region is much wider, 

ranging from about 62 to 78 bar, due to the fact that CO2 and propane are chemically less similar 

than CO2 and ethane.  Again, there is an inconsistency between the data and the model used by 

Smith and Wormald.18  Either the model is totally inadequate or the experimental phase 

equilibrium has been misidentified.  If the latter is the case, then it would mean that the 

experimental data reported as SFE by Smith and Wormald18 might actually be VLE which is 

predicted by their model, assuming an appropriate solute loading. 
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5.2 Example 2:  Naproxen and CO2 with a Liquid Cosolvent 

The solubility of naproxen in supercritical CO2 with various cosolvents was measured 

and modeled by Ting et al.41  They studied the cosolvents acetone, ethyl acetate, methanol, 

ethanol, 1-propanol and 2-propanol.  These cosolvents are liquids at ambient conditions and are 

different than the nonpolar gases that served as cosolvents in the previous example.  The 

presence of a highly asymmetric cosolvent (whose polarity and critical properties are very 

different than those of CO2) provides for even richer phase behavior than that shown 

schematically in Figures 2-6.  Due to the possible association between the cosolvent and the 

solute, naproxen, the experimental solubility enhancement was considerable compared with the 

cosolvent-free case.  They qualitatively represent the solubility enhancement by using the 

concept of the cosolvent effect, which is defined as the ratio of the solubility obtained with the 

cosolvent to that obtained without cosolvent at the same temperature and pressure.  It was 

demonstrated that the cosolvent effect (increase in solubility with the cosolvent) increases in the 

order ethyl acetate, acetone, methanol, ethanol, 2-propanol and 1-propanol. 

Ting et al.41 believed that no liquid phase formed throughout their experiments, 

substantiated by no evident melting in their samples after depressurization.  Therefore, they 

assumed a solid-fluid equilibrium model and then regressed interaction parameters for the Peng-

Robinson EOS with van der Waals mixing rules.  As discussed above, if two-phase solid-fluid is 

the true equilibrium state, then the fluid phase itself must be thermodynamically stable.  

However, using the procedure for stability analysis described above demonstrates that this is not 

true for all temperatures and pressures investigated.  In other words, there is an inconsistency or 

mismatch between the data and the model presented by Ting et al.41  As described in Example 1, 

this means one of two things.  One possibility is that the model presented by Ting et al.41 is 
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inadequate, i.e., it is not able to describe the real phase behavior with the parameters they used.  

A second possibility is that the experimental data, which was presented as SFE, was actually not 

SFE.   

As a specific example, consider the case of acetone as cosolvent (α3 = 96.5/3.5) at T = 

333.1 K.  Using the binary interaction parameter values k12 = 0.229, k13 = 0 and k23 = -0.196 

regressed by Ting et al.41, the physical property values estimated by Ting et al.41 (see Table 1), 

and the computational procedure given above, the true equilibrium state predicted by the Peng-

Robinson EOS with van der Waals mixing rules has multiple fluid phases, except at the two 

highest pressures considered (165.5 and 179.3 bar).  Table 2 shows results for the case in which 

the initial solute loading is ψ2 = 0.25, which is sufficiently high to give SLV equilibrium.  If the 

solute loading is lower, the results are VLE (except at 165.5 and 179.3 bar), with the phase 

compositions dependant on the specific solute loading.  The experimental data, identified by 

Ting et al.41 as solid-fluid equilibrium, are also listed for comparison.  The fact that the 

experimental solubilities are fairly close to the computed solubilities for the SLV case, suggests 

that experimentally there might have been a liquid phase present.  If experimental SLV data were 

available, better interaction parameters values could then be regressed from this data.  If in fact 

there was small amount of liquid phase present in the experimental measurements, then this 

could have a significant impact on the physical interpretation of the cosolvent effect, since the 

concentration of solute in this phase is quite high.  While we have focused in this example on the 

acetone cosolvent case, the same issue (model predicts that the fluid phase is not stable) occurs 

with the other cosolvents studied as well. 

One can learn from this example that, without reliable computation of phase stability, 

experimental data may end up being fit to an unstable solution of a thermodynamic model, thus 
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leading to misinterpretation of both experimental and modeling results.  The investigators of this 

system inferred from their observations that there was no liquid phase present, though liquid 

phase formation might be difficult to observe due to the small liquid phase fraction and 

insufficient equilibration time for melting.  With the current parameters, this model predicts SLV 

equilibrium, not SFE as the modelers intended.  This suggests the need for further studies into 

this cosolvent system in a static high-pressure view cell to ascertain its true phase behavior.  

Once determined, interaction parameters that predict the true stable equilibrium could be 

regressed, which would lend greater confidence to  process design and simulation.  

5.3 Example 3:  ββββ–Naphthol and CO2 with Methanol Cosolvent  

The system of β–naphthol/CO2 with a methanol cosolvent was investigated by Dobbs et 

al.,42 Dobbs and Johnston,43 and Lemert and Johnston.44  The solubility of β-naphthol in CO2 

mixtures with as much as 9.0 mole % methanol were measured by Dobbs and Johnston43, and 

SLV equilibrium was measured and modeled by Lemert and Johnston44 up to 4.0 mole % 

methanol.  Lemert and Johnston44 calculated the SLV equilibrium (“first melting” line) by 

specifying the pressure and determining the lowest temperature yielding SLV equilibrium.  In 

other words, for a given pressure and solvent/cosolvent ratio, the system is a solid phase in 

equilibrium with a single vapor or fluid phase until the temperature is raised high enough to 

cause melting; this is the temperature corresponding to the “first melting” line found by Lemert 

and Johnston.44  Especially when cosolvents are present, this SLV line can be significantly below 

the normal melting point of the solid.  The SLV line was computed from the equifugacity 

relationship using the Peng-Robinson equation of state for the vapor phase, Regular Solution 

Theory for the liquid phase fugacity, Eq. (7) for the solid phase, and the physical property data 

given in Table 1.  The experimental SLV equilibrium and the model agreed well.   
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The computational procedure that we have described above can also be used to detect the 

SLV equilibrium (“first melting” line) in a typical extraction situation, such as this, that involves 

cosolvents.  Our model is similar to that of Lemert and Johnston44 except that we use the 

equation of state for both the liquid and vapor phases.  For a given pressure we found the lowest 

temperature that yielded three roots to the equifugacity equation with two roots being 

thermodynamically stable, thus indicating two fluid phases in equilibrium with the solid phase.  

Figure 12 illustrates the experimental SLV data from Lemert and Johnston44 with increasing 

concentrations of methanol from right to left.  Also shown are the corresponding first-melting 

SLV curves from our Peng-Robinson model using parameters of k12=0.0230, k13=-0.0475, and 

k23=0.1675.  The model can be seen to be in good agreement with the experimental 

measurements, and it matches closely the model results of Lemert and Johnston44.  Note that the 

SLV lines with cosolvent slope upward (positive slope) so that at temperatures greater than and 

pressures less than the first melting SLV lines, one could observe a stable liquid phase.   

We also performed the calculations for higher methanol concentrations, such as the 7.0 

mole % methanol first-melting SLV curve shown in Figure 12.  Based on these calculations, 

using a 7 mole % methanol/CO2 solution at 35°C to extract β-naphthol should result in liquid 

phase formation at any pressure less than about 250 bar.  The type of phase behavior, i.e., SLVE 

or VLE, would depend on the loading of solute.  Yet, measurements identified as solid-fluid 

equilibrium by Dobbs and Johnston,43 were as low as 120 bar for the 7.0 mole % methanol case.  

Once again, there are two possibilities.  One possibility is that the model we have used gives a 

good representation of the SLV curves at 0, 2 and 4 mole % methanol but is not able to predict 

the 7 mole % methanol curve correctly; i.e., the model is wrong.  The second possibility is that 

the data of Dobbs and Johnston43 for 7.0 mole % methanol at 120 and 200 bar are not stable 
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solid-fluid equilibria.  Rather, they may represent VLE data, which is not particularly meaningful 

without knowing the solute loading, as was discussed above in Example 1.  Whichever is the 

case, one would certainly want to re-examine the phase behavior of the β-naphthol/CO2/7 mole 

% methanol system at the lower pressures with a view cell to confirm which phases are actually 

present before designing an actual separation process for this system.   

5.4 Computational Performance 

As might be expected, the guarantee of complete reliability in computing the equilibrium 

state comes at some computational expense.  However, for these three-component problems, the 

cost is actually quite small.  The computation times required vary somewhat from problem to 

problem due to differences in the number of equilibrium phases and the number of stationary 

points in the phase stability analysis.  The case of the CO2-naproxen-acetone system at 333.1 K 

is typical.  Here for the pressures yielding SLV equilibrium, the CPU times are around 30 

seconds, and for pressures yielding SFE around 10 seconds (all CPU times based on using a Dell 

WorkStation 530MT at 2 GHz).  These times are certainly much higher than what would be 

required by standard local methods for computing phase equilibrium.  However, such standard 

methods offer no guarantee that the equilibrium state has actually been found.  Thus, there is a 

trade-off between computation time and reliability, and the modeler must decide how important 

it is to know for certain that the correct answer has been obtained. 

In the approach used here, essentially all the CPU time is spent in the phase stability 

analysis stage of the problem, for which, as discussed above, the interval methodology of Hua et 

al.35 is used.  Another approach for reliable determination of phase stability from cubic EOS 

models is that of Harding and Floudas45, who use a global optimization method based on branch-

and-bound using convex underestimating functions.  However, this approach will not find all of 
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the stationary points of the tangent plane distance (useful to initialize the phase split 

computations) and so is not directly comparable to the approach of Hua et al.35 

6. CONCLUSIONS 

We have presented a completely reliable solution strategy for computing high-pressure, 

solid-multiphase equilibria, using cubic equations of state.  The key to this technique is the use of 

interval analysis to implement the thermodynamic stability test.  This is an extension of our 

previous work on the reliable computation of solid-fluid equilibria7 to include the presence of 

cosolvents.  Gaseous or liquid cosolvents are frequently used in supercritical fluid extraction 

processes, and are integral in processes such as the gas anti-solvent process (GAS) to precipitate 

uniform solid particles.  Identifying the correct stable high-pressure phase equilibrium predicted 

by a particular model can be very problematic for commonly used local solvers.  This situation is 

only further exacerbated when cosolvents are present.  The presence of even chemical similar 

cosolvents can induce complex phase behavior that may not be intuitive to either the 

experimentalist or the modeler.  Using several examples from the literature, we have 

demonstrated how our new solution technique, based on interval analysis, can be used to identify 

experimental data that may have been misinterpreted and to identify models that do not predict 

what the modeler intended. 
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Table 1.  Physical property values. 
 
 

 Tc Pc ω vS ∆hfus Tm 
Compound [K] [bar]  [cm3/mol] [kJ/mol] [K] 

CO2 304.25 73.8 0.225    

C2H6 305.35 48.8 0.098    

C3H8 369.82 42.5 0.154    

Acetone 508.20 46.6 0.318    

Methanol 512.60 80.9 0.556    

Naphthalene 748.40 40.5 0.302 109.1 189.98 353.45 

Naproxena 807.00 24.2 0.904 178.3   

β–Naphthol 824.85 42.9 0.468 116.7 107.44 395.65 

 
a Sublimation pressure sub

2P = 38.8 x 10-8 bar at 333.1 K. 
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Table 2.  Phase equilibrium of naproxen in CO2 with acetone cosolvent (α3 = 96.5/3.5) at 333.1 K and solute loading ψ2 = 0.25. 
 
 

  Computed Phase Equilbriumb 

     
Pressure Experimentala Fluid Liquid Solid 

         
[bar] y2×105 y2×105 vV βV x2 vL βL βS 

         
110.3 2.03 0.70 113.3 0.72321 0.411 133.4 0.04549 0.23130 

124.1 3.42 2.17 88.63 0.73213 0.402 131.6 0.02991 0.23796 

137.9 5.37 4.30 76.85 0.74035 0.394 130.0 0.01598 0.24367 

151.7 6.96 6.57 70.46 0.74707 0.387 128.6 0.00485 0.24807 

165.5 8.55 8.24 66.59 0.75006 - - - 0.24994 

179.3 10.8 9.16 63.90 0.75007 - - - 0.24993 

 
 

a Fluid phase solubility [mole fraction] of naproxen in the “solid-fluid equilibrium” measured by Ting et al.41 with 
unspecified solute loading. 
 
b Here y2 and x2 are the solubilities [mole fraction] of naproxen in the fluid and liquid phases, respectively; vV and vL are the 
molar volumes [cm3/mol] of the fluid and liquid phases, respectively; β V, β L , β S are the phase fractions for the fluid, 
liquid and solid phases, respectively. 
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Figure Captions 

 
Figure 1.  Pressure-temperature (PT) projection of a typical asymmetric system in supercritical fluid 

extraction.  I and II represent two different possibilities for the upper SLV equilibrium. 

 
Figure 2.  One typical scenario for liquid phase formation in solid-fluid extraction using a cosolvent. 

 
Figure 3.  A ternary composition diagram illustrating pressure PA (see Fig. 2).  The dashed line 

represents overall feed compositions with a constant solvent/cosolvent loading.  Diagram is not to 

scale. 

 
Figure 4.  A ternary composition diagram illustrating pressure PB (see Fig. 2).  The dashed line 

represents overall feed compositions with a constant solvent/cosolvent loading.  Diagram is not to 

scale. 

 
Figure 5.  A ternary composition diagram illustrating pressure PC (see Fig. 2).  The dashed line 

represents overall feed compositions with a constant solvent/cosolvent loading.  Diagram is not to 

scale. 

 
Figure 6.  A ternary composition diagram illustrating pressure PD (see Fig. 2).  The dashed line 

represents overall feed compositions with a constant solvent/cosolvent loading.  Box a shows the case 

if the temperature of the system is changed to above the binary SLV line of the naphthalene/CO2 

system.  Diagram is not to scale. 

 
Figure 7.  Computed solubility of naphthalene in CO2/C2H6 (α3 = 0.7) at T = 307.9 K, along with the 

data of Smith and Wormald.18  
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Figure 8.  Computed solubility of naphthalene in CO2/C2H6 (α3 = 0.7) at T = 323 K, along with the 

data of Smith and Wormald.18  See text for discussion. 

 
Figure 9.  Computed solubility of naphthalene in CO2/C2H6 (α3 = 0.7) at T = 333 K, along with the 

data of Smith and Wormald.18  See text for discussion. 

 
Figure 10.  Computed solubility of naphthalene in CO2/C3H8 (α3 = 5.6) at T = 308.3 K, along with the 

data of Smith and Wormald.18  

 
Figure 11.  Computed solubility of naphthalene in CO2/C3H8 (α3 = 5.6) at T = 328.3 K, along with the 

data of Smith and Wormald.18  See text for discussion. 

 
Figure 12.  PT projection for β–naphthol and CO2 with methanol cosolvent, illustrating SLV 

equilibrium (“first melting” lines) at various cosolvent loadings, as measured by Lemert and 

Johnston44 (open squares at 4% methanol; open diamonds at 2% methanol; solid squares at 0% 

methanol) and as computed from the Peng-Robinson EOS (solid lines).  Also shown (open circles) 

are points where Dobbs and Johnston43 report making “solid-fluid equilibrium” measurements at 7% 

methanol.  See text for discussion. 
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Figure 1.  Pressure-temperature (PT) projection of a typical asymmetric system in supercritical fluid extraction.  I and II represent two 
different possibilities for the upper SLV equilibrium. 
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Figure 2.  One typical scenario for liquid phase formation in solid-fluid extraction using a cosolvent. 
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Figure 3.  A ternary composition diagram illustrating pressure PA (see Fig. 2).  The dashed line represents overall feed compositions 
with a constant solvent/cosolvent loading.  Diagram is not to scale. 
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Figure 4.  A ternary composition diagram illustrating pressure PB (see Fig. 2).  The dashed line represents overall feed compositions 
with a constant solvent/cosolvent loading.  Diagram is not to scale. 
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Figure 5.  A ternary composition diagram illustrating pressure PC (see Fig. 2).  The dashed line represents overall feed compositions 
with a constant solvent/cosolvent loading.  Diagram is not to scale. 
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Figure 6.  A ternary composition diagram illustrating pressure PD (see Fig. 2).  The dashed line represents overall feed compositions 
with a constant solvent/cosolvent loading.  Box a shows the case if the temperature of the system is changed to above the binary SLV 
line of the naphthalene/CO2 system.  Diagram is not to scale. 
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Figure 7.  Computed solubility of naphthalene in CO2/C2H6 (α3 = 0.7) at T = 307.9 K, along with the data of Smith and Wormald.18  
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Figure 8.  Computed solubility of naphthalene in CO2/C2H6 (α3 = 0.7) at T = 323 K, along with the data of Smith and Wormald.18  See 
text for discussion. 
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Figure 9.  Computed solubility of naphthalene in CO2/C2H6 (α3 = 0.7) at T = 333 K, along with the data of Smith and Wormald.18  See 
text for discussion. 
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Figure 10.  Computed solubility of naphthalene in CO2/C3H8 (α3 = 5.6) at T = 308.3 K, along with the data of Smith and Wormald.18  
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Figure 11.  Computed solubility of naphthalene in CO2/C3H8 (α3 = 5.6) at T = 328.3 K, along with the data of Smith and Wormald.18  
See text for discussion. 
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Figure 12.  PT projection for β–naphthol and CO2 with methanol cosolvent, illustrating SLV equilibrium (“first melting” lines) at 
various cosolvent loadings, as measured by Lemert and Johnston44 (open squares at 4% methanol; open diamonds at 2% methanol; 
solid squares at 0% methanol) and as computed from the Peng-Robinson EOS (solid lines).  Also shown (open circles) are points 
where Dobbs and Johnston43 report making “solid-fluid equilibrium” measurements at 7% methanol.  See text for discussion. 


