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ABSTRACT

A methodology is described for the computer -aided

design and modeling of electrochemical process flowsheets .

In this study , the design, costing , and economic analysis of

the electrochemical production of methyl ethyl ketone was
used example . The process steps include rigorous

distillations , absorbers, an electrochemical cell model,

pumps , flashes , and heat exchangers involving electrolyte

systems .

as an

The public version of ASPEN ( Advanced System for

Process Engineering ) was modified for use in the study .

ASPEN was chosen because of its electrolyte capability and

adaptable programming structure . Within the ASPEN

framework , enhancements made during the course of this work

are portable to the electrolytic industry .

While not in the scope of this work , process flowsheet

optimization is the ultimate goal for computer -aided process

simulation . This work will lay the foundation on which a

flowsheeting package capable of electrochemical process

optinization can be built .

INTRODUCTION

Recent technological advances coupled with rising energy costs and

environmental awareness have created many options for the electrolytic

industry . Improved cell and electrode materials can reduce capital and

energy costs for existing processes while opening avenues for new ones .

New reactor designs have been developed to increase further the

possibilities . New electrolytic routes have been identified for

products ranging from existing organic commodities to new specialty

chemicals ( such as agricultural and pharmaceutical chemicals ) .

With so many options available , electrolytic process development

can no longer be done cost effectively by experimentally verifying each

and every option . Computer -aided simulation and design techniques

provide mechanism to screen options while identifying sensitive

control variables and gaps in knowledge where more basic research is

a
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needed . Design alternatives for electrochemical process flowsheets can

be explored efficiently while providing feedback for further

developmental research . The best design can be chosen based on the

entire process rather than just the electrolytic cell .

While computer -aided simulation and design ( flowsheeting )

techniques have been available for the last two decades , their use has

generally been restricted to process flowsheets with nonelectrolytes .

The major restriction lack of adequate modeling of electrolyte

thermodynamics . Recent developments in electrolyte thermodynamics along

with advances in electrochemical reactor modeling have made

electrochemical flowsheeting possible.

was

uses a

This work describes a methodology for the computer-aided modeling

and design of electrochemical process flowsheets, and

modification of the public version of ASPEN ( Advanced System for Process

Engineering ). In this study , the design , costing , and economic analysis

of the electrochemical production of methyl ethyl ketone ( MEK ) is used

as an example . While not in the scope of this study , process flowsheet

optimization is the ultimate goal behind the framework developed here .

LITERATURE SURVEY

Process Flowsheeting .-- The computer-aided simulation and design

(flowsheeting ) of petrochemical process flowsheets is well - established .

Several reviews of the state of chemical process flowsheeting systems
are available [ 1-4 ] . Westerberg et al. ( 5 ) have written an excellent

introductory monograph on the subject . Many systems, such as CHESS ,

PROCESS , and FLOWTRAN , have been commercially available for years.

A process flowsheeting system solves the set of nonlinear equations

that describe a process flowsheet . This set may contain thousands to

tens of thousands of equations for a chemical process . The structure of

almost all existing process flowsheeting systems is sequential modular .

A sequential modular system divides the nonlinear equations into

nodule - level and flowsheet-level equations . A unit module consists of a

set of module - level equations describing a particular unit operation

( distillation , electrolytic cell , absorber , etc. ) . Given streams and

equipment parameters , the module will calculate output streams from the

unit . The units of a flowsheet are connected by stream connection

equations. Design contraints on an overall process , such as a product

purity requirement , are handled by design specification equations. A

design constraint is met by adjusting a designated variable (which may

be a stream flow rate , equipment parameter , etc. ) called free

variable . Stream connection and design specification equations comprise

the flowsheet-level set .

a

Modeling of Electrolyte Systems.-- There has been little use of

flowsheeting techniques for electrochemical processes until very
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recently . Advances in this area are being spurred on by intense

research in the modeling of electrolyte thermodynamics. Work by Criss

and Cobble [ 6 ] , Meissner and Tester ( 7 ) , Pitzer ( 8 ) , and 'Bromley ( 9 )

laid the foundation . From these earlier works, many electrolyte

activity coefficient models have been developed with the range of
applicability from dilute solutions to fused salts ( 10-15 ) . Several

articles show the extension of these models to mixed solvents ,

vapor - liquid - liquid systems , and vapor - liquid - solid systems ( 16-19 ) .

Mauer gives a survey of thermodynamic models proposed for electrolyte

systems ( 20 ) .

were in

no was

a

While general - purpose flowsheeting programs have been available for

about twenty years , these programs general limited to

petrochemical flowsheets . Though Zemaitis (21 ) had developed a

stand -alone program for certain separation operations involving

electrolytes , general -purpose flowsheeting program available

commercially for electrochemical flowsheets . The ASPEN project [ 22,23 ]

conducted at the Massachusetts Institute of Technology under

Department of Energy contract became the first attempt at such a system .

This public version of ASPEN ( not to be confused with Aspen Technology's

private system , ASPEN PLUS ) included electrolyte and solids handling

capabilities ( 24,25 ).

ASPEN was written to include Chen's local composition model for

electrolyte systems . Chen's electrolyte model ( 11 ) is designed to model

the excess Gibbs energy of electrolyte systems from dilute solutions to

fused salts . This approach predicts long-range forces between ions by a

Debye -Huckel term . Short -range forces between all other species are

modeled by the local composition approach similar to those used in

several nonelectrolyte models ( NRTL , UNIQUAC , UNIFAC ) . The model

requires two binary parameters for each solvent-ion or solvent - solvent

component pair . Ion-ion binary parameters are only needed when two

electrolytes are present with common ion . In the absence of

electrolytes , Chen's model reduces to the NRTL model ( 26 ) .

a

wasThis initial version capable of performing single stage

equilibrium of streams containing electrolytes . The electrolyte

capability was restricted to process units that didn't involve

multistage operations such as distillations and absorbers . This work

has resulted in a modified version of ASPEN capable of electrolyte

multistage simulation . Enhancements made to the rigorous

distillation module , RADFRC , and the equilibrium reactor , REQUIL . The

electrolyte implementation was corrected to default to the NRTL model

when no electrolyte was present . This correction became essential in

the rigorous distillation where electrolytes would not be present above

the feed tray .

were

Another serious drawback of ASPEN was the lack of an operational

data regression system for electrolyte data . Electrolyte models , such

as Chen's, involve binary parameters that must be regressed from
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vapor - liquid equilibrium ( VLE ) and heat of mixing data in the range of

interest . There is presently no method to select these parameters in

the absence of experimental data . For this reason , a data regression

system is essential for accurate representation . In this study , the

ASPEN Data Regression System ( DRS ) was modified to allow electrolyte

model parameter estimation from VLE and heat of mixing data . This

modification also corrected ASPEN'S inability to regress data to

estimate other binary parameters such as Henry's coefficients .

on

Electrolytic Cell and Process Design.-- Electrochemical science and

technology research in recent years has produced advances in

electrolytic cell modeling . Design models based scientific

principles have been developed for common electrochemical reactor

designs . Pickett ( 27 ) compiled much of this work in an electrochemical

reactor design monograph .

The most common industrial configurations are the parallel plate

reactor and the porous ( or three -dimensional) electrode reactor .

Savinell ( 28 ) and ' Oloman ( 29 ) recently outlined general aspects of

electrochemical reactor design . Several models have been developed for

parallel plate reactors ( 30-33 ) which account for ohmic , kinetic , and

concentration effects . Representation of gas evolving electrodes has

been formulated ( 34,35 ). Models for porous electrode reactors ( 36,37 ]

have arisen out of a need to increase surface area for low current

density reactions such as many electroorganic syntheses ( 38 ). Porous

electrode technology has been reviewed in recent publications ( 39,40 ) .

Research has broadened to consider optimal design of electrolytic

cells . Cera [ 41 ] explored optimization of a chlor - alkall cell using the

GRG algorithm . Soon (42 ) and Yung ( 43 ) have utilized successive

quadratic programming for cell optimization . The scope of optimization

will eventually expand to entire electrochemical process flowsheets ( 44 )
since interactions between the cell and recovery operations must be

considered [45 ,46 ) . Engineering costing methods for electrochemical

installations ( 47,48 ) are being established to allow analysis on

economic basis .

an

DEVELOPMENT OF AN EXAMPLE PROCESS FLOWSHEET

Process Selection.- Electroorganic processes were considered to

have two distinct advantages as example processes . First , many of the

new electrolytic processes in development stages are electroorganic .

Beck et al. ( 49,50 ) have reviewed several preliminary designs for

large - scale electroorganic processes . Jansson ( 51 ) recently outlined

electroorganic syntheses from bench - scale to production units .

Secondly , organic petrochemical simulation experience can be translated

to electroorganic process simulation .
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Electrochemical production of methyl ethyl ketone (MEK ) from

n-butenes was chosen as an example . Beck considered the electrochemical

route to be less energy intensive than the conventional petrochemical

route . Energy costs rising faster than capital costs would give

advantage to the electrochemical process . Worsham ( 52-54 ] and Griffin

et al. ( 55 ) outlined the details involved in MEK electrochemical

production . The MEK process had several attributes that made it

appropriate choice to illustrate computer-aided electrochemical process

design .

an

1. Alternative product recovery schemes could be developed and

compared .

2 . The process was closely related to the conventional route which

made capital and utility cost comparison straightforward .

3. Electrolytic cell operation data were readily available in the

literature .

4. Vapor - liquid equilibrium and heat of mixing data needed for

physical property modeling were available .

5 . The product recovery required multistage separations involving

electrolytes .

This study was based on Worsham's electrochemical process for MEK
( 53,55 ) . A simple electrolytic cell model was written to closely

represent Worsham's results . Two different product recovery
schemes

were developed during the course of this work .

Methodology Outline.-- The major goal of this study was to develop
a methodology for the computer-aided design , costing , and economic

analysis of an electrochemical flowsheet . The subsequent sections give

details involved in applying the methodology to the example process .

Additional information concerning the ASPEN system is available in

public documentation from the National Technical Information Center

( 56 ) . The following outline provides a general description of the

methodology .

2.

1 . Process Flowsheet Synthesis

Identify the general process flow diagram and operating

conditions .

ASPEN Flowsheet

Select ASPEN modules to represent the unit processes and

operations . Write additional FORTRAN subroutines to model

special units not covered by ASPEN modules ( such as an

electrolytic cell ) .

3. Physical Property Modeling

Select physical property models and obtain data needed to

represent the process stream . Perform regression of data for

binary parameter estimation .
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on

4. Design Specification and Convergence
Identify design specifications to be imposed the

flowsheet along with the free variables to be adjusted to meet

the specifications . Define an ASPEN convergence scheme .

5. Costing and Economic Analysis

Choose process unit construction materials and specify

cost module factors . Select parameters for desired economic

analysis .

Process Flowsheet Synthesis .-- Figures 1 and 2 show the two

flowsheet configurations used in this study . These flowsheets involved

absorbing n-butenes into sulfuric acid before entering the electrolytic
cell . These flow designs were developed from Worsham's flow diagram

( 53 ) . Figure 1 is designated as the Cell Liquor Recovery flowsheet

since the MEK was recovered from the cell liquor via a four column

distillation system . MEK was recovered from the cell off - gas in Figure
2 utilizing a condenser and a two column distillation system . This

plant is referred to as the Cell Gas Recovery flowsheet . The

distillation system designs in both flowsheets resulted from preliminary
distillation simulations done in the course of this study . The butene

absorber and electrochemical reactor closely followed Worsham's

specifications ( 53,55 ) .

Both configurations contacted n-butenes with 65 wt% sulfuric acid

in an absorber . Absorber conditions were set at 140 ° F and 100 psia

(53 ) . At these conditions , the n-butenes were sulfonated ( 1 ) and

subsequently hydrolyzed to 2 - butanol ( 2 ) . The overall reaction to

2 - butanol is a very fast second order reaction that proceeds quickly to

equilibrium in the absorber ( 57 ) .

( 1 ) C4H8 + H2SO4 -- > C4H9OSO3H

( 2 ) CuHgOSO3H + H20 --> C4H9OH + H2SO4

The 2 -butanol / sulfuric acid mixture proceeded to the

electrochemical reactor in both configurations. A two electron transfer
process yields MEK at the anode ( 3 ) and hydrogen at the cathode ( 4 ) .

The electrolytic cell design was based on monopolar undivided cells with

expanded Pt/Pto anodes (titanium substrate ) and steel cathodes .

( 3 ) C4H9OH C4H80 + 2H+ + 2e

( 4 ) 2H + 2e H2

Modeling of the electrochemical cell was based on Worsham's best

operating conditions with respect to current density . He achieved 120

amp / ft ? at 170° F with 20% conversion per pass of 2 -butanol ( 53 ) .

Worsham et al. ( 55 ) made successful runs up to 1 : 1 hydrogen ion to

2 -butanol mole ratio with 65 wt% sulfuric acid . Maximum cell voltage
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recommended was 1.65 volts ( 53 ) . Higher voltages resulted in loss of

product selectivity via overoxidation to produce carbon dioxide .

ASPEN Flowsheet .-- Figure 3 shows the ASPEN flowsheet for the Cell

Liquor Recovery plant. This configuration involved recovering MEK from

the cell liquor by a system of four distillations . The first

distillation separated an MEK / 2 -butanol /water mixture near the MEK /water

azeotrope ( 66% MEK ) from the sulfuric acid . The second distillation

involved drying the mixture with the addition of a small sulfuric acid

stream at the top of the column . An MEK / 2 - butanol stream with trace

water was taken from overhead to the third distillation which removed an

MEK /water azeotrope from the MEK / 2 - butanol . The final finishing column

achieved 99% MEK product by removing 2 - butanol . All other streams were

recycled to the butene absorber .

The ASPEN flowsheet for the Cell Gas Recovery is shown in Figure 4 .

This configuration involved building up the MEK concentration in the

recycle to increase MEK in the hydrogen gas . Worsham ( 53 ) found that

MEK concentrations of up to 22% did not adversely affect the

electrochemical reaction . The MEK /hydrogen gas mixture with minor

amounts of 2-butanol and water cooled by refrigeration to 5 ° C .

Liquid from the cooler proceeded to an azeotropic distillation to remove

water and to a finishing column to attain 99% purity MEK .

was

The effluent hydrogen stream was passed through a refrigerated

water absorber in both flowsheets . The absorber removed trace amounts

of MEK and 2 -butanol for recycle back into the process . The relatively

pure hydrogen stream was credited as by - product fuel gas .

Physical Property Modeling.-- Two physical property routines were

used in the MEK flowsheet . Both routines calculated vapor properties

from the Redlich -Kwong equation of state . The NRTL model was used for

liquid mixture properties in areas of the flowsheet that did not contain

electrolytes . Chen's local composition model was used for liquid

mixture properties in flowsheet sections involving electrolytes .

ourThe ASPEN Data Regression System ( DRS ) with modification

determined binary interaction parameters from literature data . Aqueous

sulfuric acid VLE and heat of mixing data were used to estimate

ion -water binary parameters ( 58,59 ) . Binary VLE data for each

solvent-solvent pair were used for solvent - solvent parameters with

ternary data used to " fine -tune " the regression (60,61).

an

Design Specification and Convergence.- The specifications for the

flowsheets were a 1 : 1 hydrogen ion to 2 -butanol mole ratio and 65 wt%

sulfuric acid in the cell feed . Immediately preceeding the REACT block ,

ASPEN Fortran Block adjusted the H2SO4 moleflow to maintain the

H+12-butanol ratio . This treatment handled the specification as

equipment parameter rather actual design specification . An

ASPEN Design Specification Block controlled the ABSR2 water flow to

than an

an
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achieve 65 wt% sulfuric acid entering the cell . The design

specification was considered converged when there was less than 0.001

kmol/hr change in the absorber water flow between iterations .

Costing and Economic Analysis.-- Capital and operating costswere

estimated using the ASPEN Cost Estimation System ( CES ). The CES was

designed to yield a " preliminary - study grade" estimate fron flowsheet
heat and mass balance results . The system was based on Guthrie's

modular concept for capital estimation [ 62 ) . The CES contained

information to determine process equipment costs (except for the

electrochemical section which is discussed later ) . Factors to estimate

the installation and indirect costs ( 62 ) were added in the ASPEN input

file . Economic analysis calculated the MEK product selling price based

on a 20 % discounted cash flow rate of return .

Common

The capital costs of the electrochemical reactor section were based

on the work of Keating and Sutlic ( 47 ) . Their cost module accounted for

the cell bank , rectifier and busing , pumps , and
facilities

associated with the electrochemical reactor section . Their design

involved a divided membrane cell with a chlorinated polyvinyl chloride

body, a precious metal oxide anode (titanium substrate ), and a nild

steel cathode . The costs were adjusted for this study since only an

undivided cell design was needed . The overall cost per square foot of

electrode surface was $ 1091 ( 1984 $ ) which included 40 % indirect field

costs .

Plant life was 20 years with declining balance depreciation , 13%

interest on borrowed capital, 10 % salvage value , and 5 % yearly

inflation . CES defaults ( 56 ) were used for other econonic parameters

such as tax rates . Construction year was 1985 in a Midwest location

with production beginning in 1987. Materials of construction were

Incoloy 825 and Hastelloy for all process units ( except the electrolytic
cells) with sulfuric acid present ( 63 ) . Units with no electrolytes were
constructed of carbon steel . Plant capacity ranged from 25 to 45

kton/yr MEK produced [ 64 ] .

RESULTS AND DISCUSSION

Table 1 lists several example runs made in this study . MEK selling
prices at 20 % discounted cash flow rate of return were calculated for

different plant configurations and capacities . These results are

compared with the 1984 MEK price of $0.36/1b . Capital and utility cost

comparisons were made with the conventional oxidation of n -butenes to

MEK ( Table 2 ) . These comparisons were based on conventional capital and

utility costs estimated by Rudd et al . ( 65 ) .

Typical computer run time statistics for the two flowsheet

configurations are shown in Table 3. Runs were made on an IBM 4341

model L10 computer at the University of Illinois . Core memory
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requirements were 4 megabytes running under the VM / SP Release 3

operating system . A simulation of Cell Liquor Recovery required 12

iterations to converge while taking 31 CPU minutes at a cost of $37 .

Cell Gas Recovery runs took 12 CPU minutes for 19 iterations at a cost

of $ 14 . Reduction of distillation computation time could bring

computations to the level of microcomputer simulation .

CONCLUSIONS AND RECOMMENDATIONS

A methodology was developed for the computer -aided simulation and

design of electrolytic process flowsheets . The electrochemical

production of methyl ethyl ketone (MEK ) was used as an example . The

methodology outlined opened avenues for detailed design and economic

evaluation of electrochemical processes . The framework constructed in

this study laid the foundation upon which a process flowsheet package

capable of electrolytic process optimization could be developed . This

work illustrated the use of user - supplied FORTRAN subroutine to

describe an electrolytic cell in an ASPEN flowsheet .

a

The public version of ASPEN with this study's enhancements provided

a great degree of reliability and portability while remaining adaptable

to future research . The enhancements included rigorous distillation

with electrolytes and data regression capability for electrolyte

thermodynamic model parameters. Future goals include microcomputing and

optimization capabilities .
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Table 1

ECONOMIC ANALYSIS RESULTS

MEK recoveryCapacity

(kton /yr )

MEK price

( $/1b )

25

45

25

45

cell liquor

cell liquor

cell gas

cell gas

0.424

0.406

0.406

0.391

1984 MEK Price $ 0.36

Table 2

CAPITAL AND UTILITY COST COMPARISON

( 1984 $ )

Capital

Cost

(MM $ )

Relative

Yearly

Utility Cost

Conventional oxidation of n -butenes

Cell liquor recovery

Cell gas recovery

36.66

51.40

48.47

1.00

1.06

0.65

Table 3

TYPICAL RUN TIME STATISTICS

Cell Liquor Recovery
12 iterations $ 37

2 electrolyte distillations

2 non -electrolyte distillations

all other computations

1397 ( 116/iteration )

372 ( 31 / iteration )

75

1844 CPU seconds

Cell Gas Recovery 19 iterations $ 14

2 non-electrolyte distillations

all other computations

631

99

( 33/iteration )

730 CPU seconds

COMPUTER : IBM 4341 Model
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