Practice B - Math 10250 Exam 3 Solutions

1.) The functions $P(t)=A e^{0.02 t}$ satisfy the differential equation $P^{\prime}(t)=0.02 P(t)$, where A is an arbitrary constant. Next, we need to impose the initial condition $P(0)=100$. Thus $P(0)=A e^{0}=A=100$. We therefore conclude that the solution to our initial value problem is $P(t)=100 e^{0.02 t}$.
2.) Recall that the marginal profit function is by definition the first derivative of the profit function, i.e. $M P(x)=P^{\prime}(x)$. In our problem $M P(x)=-x+100$, so that

$$
\int(-x+100) d x=-\frac{x^{2}}{2}+100 x+C
$$

where C is an arbitrary constant. We therefore conclude that $P(x)=-\frac{x^{2}}{2}+100 x+C$ for a well defined value of the constant C which has to be determined by the condition $P(0)=0$. We then have $C=0$ and $P(x)=-\frac{x^{2}}{2}+1000 x$. Finally, we compute that that $P(10)=-\frac{10^{2}}{2}+10000=-50+10000=9950$.
3.) The oil production is assumed to be $P(t)=30+t e^{-\frac{1}{50} t}$. By applying the product rule, we have $P^{\prime}(t)=e^{-\frac{1}{50} t}-\frac{t}{50} e^{-\frac{1}{50} t}=e^{-\frac{1}{50} t}\left(1-\frac{t}{50}\right)$. We therefore conclude that the only critical point is at $t=50$. Since the sign of P^{\prime} changes from positive to negative at the critical point $t=50$, we have that this is the maximum point. Thus, the production will peak in $2006+50=2056$.
4.) Observe that the function $y^{\prime \prime}(x)=\left(x^{2}-1\right)^{2}(2 x-3)^{2}$ is always ≥ 0. Therefore the second derivative of $y(x)$ never changes sign and then there are no inflection points.
5.) Given $f(x)=x^{3}-4 x^{2}+5 x-2$, we have that $f^{\prime}(x)=3 x^{2}-8 x+5$. Thus, we can find the critical points of $f(x)$ by solving the quadratic equation $3 x^{2}-8 x+5=0$. By applying the celebrated quadratic formula we then obtain:

$$
x=\frac{8+\sqrt{64-60}}{6}=\frac{5}{3}, \quad x=\frac{8-\sqrt{64-60}}{6}=1 .
$$

The critical points are $x=1$ and $x=\frac{5}{3}$.
6.) Since $f^{\prime \prime}(x)=e^{-x}\left(x^{2}-4 x+2\right)$ we have that the sign of $f^{\prime \prime}$ is the same as the sign of the polynomial $g(x)=x^{2}-4 x+2$. The zeros of the polynomial $g(x)$ are given by the points $x=2-\sqrt{2}$ and $x=2+\sqrt{2}$, in fact if we apply the quadratic formula we obtain

$$
x=\frac{4+\sqrt{16-8}}{2}=2+\sqrt{2}, \quad x=\frac{4-\sqrt{16-8}}{2}=2-\sqrt{2} .
$$

We then have that $g(x)>0$ for $x>2+\sqrt{2}$ and $x<2-\sqrt{2}$. We therefore conclude that for $x<2-\sqrt{2}$ the concavity of $f(x)$ is up since $f^{\prime \prime}(x)>0$. Thus part (a) must be false.
7.) Since $R^{\prime}(x)=50 e^{-x}$ is always positive, we conclude that $R(x)=50-50 e^{-x}$ is increasing on the infinite interval $[0, \infty)$. Thus, the minimum point is at $x=0$. Next, we observe that $\lim _{x \rightarrow \infty}\left(50-50 e^{-x}\right)=50$ so that the line $y=50$ is a horizontal asymptote. Since the function is approaching the asymptote from below we do not have a maximum.
8.) By definition $y(x)=\frac{x}{x-1}$, so that by applying the quotient rule we can compute both $y^{\prime}(x)$ and $y^{\prime \prime}(x)$. More precisely, we have

$$
y^{\prime}(x)=\frac{(x-1)-x}{(x-1)^{2}}=-\frac{1}{(x-1)^{2}}, \quad y^{\prime \prime}(x)=-\frac{0-2(x-1)}{(x-1)^{4}}=\frac{2}{(x-1)^{3}}
$$

Thus, for $x<1$ the concavity of $y(x)$ is down and therefore (c) must be false.
9.) By implicit differentiation, if we take the derivative with respect to x of the equation $x^{2}+y^{2}=4$ we obtain the identity

$$
2 x+2 y y^{\prime}=0
$$

which then implies $y^{\prime}=-\frac{x}{y}$. Next, let us substitute into this equation the point $(x, y)=$ $(\sqrt{2}, \sqrt{2})$. Thus, we obtain

$$
y^{\prime}=-\frac{\sqrt{2}}{\sqrt{2}}=-1
$$

10.) From looking at the graph of $f^{\prime}(x)$ we know that such a function has four zeros at $x=-1, x=1, x=2$ and $x=3$. By definition of critical points, we conclude that $f(x)$ has four critical points at $x=-1, x=1, x=2$ and $x=3$. Thus, (a) must be false.

11 i.) We have that $\int\left(x^{5}-e^{-3 x}+x+1\right) d x=\frac{x^{6}}{6}+\frac{e^{-3 x}}{3}+\frac{x^{2}}{2}+x+C$. Thus, the revenue function has to be of the form

$$
R(x)=\frac{x^{6}}{6}+\frac{e^{-3 x}}{3}+\frac{x^{2}}{2}+x+C
$$

where C is a constant which has to be defined by the condition $R(0)=0$. But then

$$
R(0)=0+\frac{1}{3}+0+0+C=0
$$

which implies $C=-\frac{1}{3}$. Concluding, the revenue function is given by

$$
R(x)=\frac{x^{6}}{6}+\frac{e^{-3 x}}{3}+\frac{x^{2}}{2}+x-\frac{1}{3} .
$$

11 ii.) By substituting $u=x^{6}+x^{2}+12$, we have that $d u=\left(6 x^{5}+2 x\right) d x$. We therefore compute:

$$
\int \frac{3 x^{5}+x}{x^{6}+x^{2}+12} d x=\frac{1}{2} \int \frac{6 x^{5}+2 x}{x^{6}+x^{2}+12} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln (u)+C=\frac{1}{2} \ln \left(x^{6}+x^{2}+12\right)+C
$$

12 i.) Since $y(x)=2 x^{3}-9 x^{2}+12 x+6$, we have that $y^{\prime}(x)=6 x^{2}-18 x+12=6\left(x^{2}-3 x+2\right)$. Thus, the only critical points of $y(x)$ are give by the zeros of the quadratic polynomial $x^{2}-3 x+2$. By applying the quadratic formula we obtain:

$$
x=\frac{3+\sqrt{9-8}}{2}=2, \quad x=\frac{3-\sqrt{9-8}}{2}=1
$$

In conclusion, $x=1$ and $x=2$ are the only critical points of $y(x)$.
12 ii.) Since the critical points are $x=0$ and $x=1$ which are both inside the closed interval $[-1,2]$, we have to evaluate $p(x)=2 x^{3}-3 x^{2}+10$ at those critical points and at the end points of the interval and then pick the maximum and minimum values. We have

$$
p(0)=0+0+10=10, \quad p(1)=2-3+10=9
$$

and

$$
p(-1)=-2-3+10=5, \quad p(2)=16-12+10=14 .
$$

We therefore conclude that the Max is at $x=2$ and the Min is at $x=-1$.
13) Since $V=20 \pi=\pi h r^{2}$, we have that $h(r)=\frac{20}{r^{2}}$. We can then express the cost function as a function of the radius only, more precisely we have

$$
C(r)=2\left(\pi r^{2}+\pi r^{2}\right)+3(2 \pi r h(r))=4 \pi r^{2}+6 \pi r \frac{20}{r^{2}}=4 \pi r^{2}+\frac{120 \pi}{r}
$$

Next, we compute $C^{\prime}(r)=8 \pi r-\frac{120 \pi}{r^{2}}$ so that the critical point is at

$$
C^{\prime}(r)=0 \quad \Rightarrow \quad 8 \pi r=\frac{120 \pi}{r^{2}} \Rightarrow \quad r^{3}=\frac{120}{8}=15
$$

which therefore implies $r=15^{\frac{1}{3}}$. Since the sign of C^{\prime} passes from being negative to positive at the critical point $r=15^{\frac{1}{3}}$ this is the minimum. Finally, the optimal height is $h\left(15^{\frac{1}{3}}\right)=\frac{20}{15^{\frac{2}{3}}}$.
14) The x-intercepts are the solution of the equation

$$
f(x)=\frac{e^{x}}{e^{x}-1}=0 \quad \Rightarrow \quad e^{x}=0
$$

which we know has no solutions since the exponential function is always strictly positive. Next, we observe that for $x=0$ we have $e^{0}-1=1-1=0$, so that the y-axis is a vertical asymptote for $f(x)$. In particular, we do not have a y-intercept as the function $f(x)$ is not defined for $x=0$. In conclusion: no x-intercepts or y-intercept.

Regarding the horizontal asymptotes we need to compute $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. First, since $\lim _{x \rightarrow-\infty} e^{x}=0$ we conclude that

$$
\lim _{x \rightarrow-\infty} \frac{e^{x}}{e^{x}-1}=\frac{0}{0-1}=0
$$

so that $y=0$ is a horizontal asymptote. Second, let us observe that

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}-1}=\lim _{x \rightarrow \infty} \frac{\frac{e^{x}}{e^{x}}}{\frac{e^{x}-1}{e^{x}}}=\lim _{x \rightarrow \infty} \frac{1}{1-\frac{1}{e^{x}}}=1
$$

since $\lim _{x \rightarrow \infty} e^{x}=\infty$. Thus, $y=1$ is a horizontal asymptote. In conclusion: $y=0$ and $y=1$ are the horizontal asymptotes.

Next, we want to compute the critical points. As a first step, we compute $f^{\prime}(x)$ by applying the quotient rule

$$
f^{\prime}(x)=\frac{e^{x}\left(e^{x}-1\right)-e^{x} \cdot e^{x}}{\left(e^{x}-1\right)^{2}}=-\frac{e^{x}}{\left(e^{x}-1\right)^{2}}
$$

No critical points since $f^{\prime}(x)$ is always strictly negative. This fact tells you that $f(x)$ is always a decreasing function.

Regarding the concavity we need to compute $f^{\prime \prime}(x)$. By applying the quotient rule we obtain:

$$
f^{\prime \prime}(x)=\frac{-e^{x}\left(e^{x}-1\right)^{2}-\left(-e^{x}\right) 2\left(e^{x}-1\right) e^{x}}{\left(e^{x}-1\right)^{4}}=\frac{-e^{2 x}+e^{x}+2 e^{2 x}}{\left(e^{x}-1\right)^{3}}=\frac{e^{2 x}+e^{x}}{\left(e^{x}-1\right)^{3}}
$$

so that $f^{\prime \prime}(x)>0$ for $x>0$ and $f^{\prime \prime}(x)<0$ for $x<0$. In conclusion, the concavity of $f(x)$ is up for $x>0$ and down for $x<0$. Summarizing, the graph of $f(x)$ is as follows:

