Practice B - Math 10250 Exam 1 Solutions

1.) We need to find the equation of the line passing from the point ($p=630, q=200,000$) and has slope $m=\frac{\Delta q}{\Delta p}=\frac{20,000}{-50}=-400$. Therefore using the point-slope formula we get: $q-20,000=-400(p-630)$, or $q=-400 p+452,000$.
2.) Since the minimum value of r is 4 and occurs when $t=2$ (years), we conclude that $h=2$ and $k=4$. Thus $r(t)=a(t-2)^{2}+4$. Since $6.1=r(0)=a(0-2)^{2}+4=4 a+4$ we get $a=(6.1-4) / 4=0.525$. Thus $r(t)=0.525(t-2)^{2}+4$. Letting $t=1$ (years) gives $r(1)=0.525(1-2)^{2}+4=0.525+4$, or $r(1)=4.525$.
3.) Using the identity $A^{2}-B^{2}=(A-B)(A+B)$ we have
$P(x)=-20(x-40)^{2}+2000=-20\left[(x-40)^{2}-(10)^{2}\right]=-20[(x-40-10)(x-40+10)]=-10(x-50)(x-30)$,
which shows that $P(x)>0$ if $30<x<50$. (Or, find the roots of $P(x)=0$ and then check the sign of $P(x)$ between them!)
4.) Using the identity $(A+B)^{2}=A^{2}+2 A B+B^{2}$ we have

$$
\lim _{h \rightarrow 0} \frac{4(5+h)^{2}-100}{h}=\lim _{h \rightarrow 0} \frac{4\left(25+10 h+h^{2}\right)-100}{h}=\lim _{h \rightarrow 0} \frac{40 h+4 h^{2}}{h}=\lim _{h \rightarrow 0}(40+4 h)=40+0=40 .
$$

5.) The function $f(x)$ is not continuous at $x=3$ since its value there is 80 , which is different from its limit as $x \rightarrow 3$. Note that this limit is 100 .
6.) Looking at the graph of $f(x)$ we see that $\lim _{x \rightarrow 3} f(x)=100$. Therefore, applying the limit law's we have

$$
\lim _{x \rightarrow 3} \frac{x^{2}+10 x+1}{\sqrt{f(x)}}=\frac{\lim _{x \rightarrow 3}\left[x^{2}+10 x+1\right]}{\lim _{x \rightarrow 3} \sqrt{f(x)}}=\frac{\lim _{x \rightarrow 3} x^{2}+10 \lim _{x \rightarrow 3} x+1}{\sqrt{\lim _{x \rightarrow 3} f(x)}}=\frac{9+30+1}{\sqrt{100}}=\frac{40}{10}=4 .
$$

7.) We have

$$
\lim _{x \rightarrow \infty} R(x)=\lim _{x \rightarrow \infty} \frac{800 x+2100}{2 x+7}=\lim _{x \rightarrow \infty} \frac{800+2100 / x}{2+7 / x}=\frac{800+\lim _{x \rightarrow \infty}[2100 / x]}{2+\lim _{x \rightarrow \infty}[7 / x]}=\frac{800+0}{2+0}=400 .
$$

Thus, if the company keeps spending more and more money in advertising then the revenue's limiting value is $\$ 400$ million.
8.) Writing $f(x)=\frac{x-8}{(x-8)(x-7)} \stackrel{x \neq 8}{=} \frac{1}{x-7}$, we see that $x=7$ is a vertical asymptote since $\lim _{x \rightarrow 7^{ \pm}} \frac{1}{x-7}=$ $\pm \infty$. Also, we have that $y=0$ is a horizontal asymptote, since $\lim _{x \rightarrow \pm \infty} \frac{1}{x-7}=0$. The natural domain of the function $f(x)$ consists of all numbers except $x=7$ and $x=8$, which are the zeros of the denominator. Note, however, that $x=8$ is not a vertical asymptote since $\lim _{x \rightarrow 8^{ \pm}} \frac{1}{x-7}=1$.
9.) Since temperature is a continuous function of time and the value 62 is between $H(2)=63$ and $H(4)=54$, and also between $H(8)=61$ and $H(10)=70$ by the intermediate value theorem the temperature assumes the value 62 in the time intervals $[2,4]$ and $[8,10]$ for certain.
10.) First we solve the equation $y=\frac{x+5}{x-3}$ for x. For this we multiply the equation by $x-3$ and get $x y-3 y=x+5$, or $x y-x=3 y+5$, or $(y-1) x=3 y+5$, or $x=\frac{3 y+5}{y-1}$. Next, we interchange x and y and obtain $y=\frac{3 x+5}{x-1}$. Thus the inverse of $f(x)$ is given by the function $g(x)=\frac{3 x+5}{x-1}$. Observe the natural domain of $f(x)$ consists of all numbers $x \neq 3$ and of $f(x)$ consists of all numbers $x \neq 1$.
11.) (Ai) The revenue function is: $R=x \cdot q=x(-0.2 x+100)$, or $R(x)=-0.2 x^{2}+100 x$.
(Aii) The profit function is: $P=R-C=-0.2 x^{2}+100 x-5 q-2500$. Taking the expression of q from demand and substituting it to the profit function we get: $P=-0.2 x^{2}+100 x-5(-0.2 x+100)-2500$, or $P(x)=-0.2 x^{2}+101 x-3000$.
(B) We need to find the equation of the line passing through the points ($p=10, q=5000$) and ($p=$ $15, q=3500)$. Since the slope is $m=\frac{\Delta q}{\Delta p}=\frac{3500-5000}{15-10}=-300$. Therefore using the point-slope formula we get: $q-5000=-300(p-10)$, or $q=-300 p+8000$.
12.) (A) For $h \neq 0$ we have

$$
\frac{\sqrt{16+h}-4}{h}=\frac{(\sqrt{16+h}-4)(\sqrt{16+h}+4)}{h(\sqrt{16+h}+4)}=\frac{(\sqrt{16+h})^{2}-4^{2}}{h(\sqrt{16+h}+4)}=\frac{k}{h(\sqrt{16+h}+4)}=\frac{1}{\sqrt{16+h}+4} .
$$

Therefore, the given limit is equal to

$$
\lim _{h \rightarrow 0} \frac{1}{\sqrt{16+h}+4}=\frac{1}{\sqrt{16+0}+4}=\frac{1}{8} .
$$

(B) Using the formula $F V=P V e^{r t}$ with $P V=17.76, r=0.04$ and $t=10$, we find that in 10 years the federal debt will be $F V=17.76 e^{0.04 \cdot 10}=17.76 e^{0.4}$ trillion dollars.
13.) (Ai) We have

$$
\begin{aligned}
H(t) & =-16 t^{2}+1600 t \\
& =-16\left[t^{2}-100 t\right] \\
& =-16\left[t^{2}-2 \cdot t \cdot 50\right] \\
& =-16\left[t^{2}-2 \cdot t \cdot 50+50^{2}-50^{2}\right] \\
& =-16\left[(t-50)^{2}-50^{2}\right] \\
& =-16(t-50)^{2}+16 \cdot 50^{2} \\
& =-16(t-50)^{2}+40,000
\end{aligned}
$$

(Note that there are other ways for completing square.)
(Aii) Since $H(t)=-16(t-50)^{2}+40,000$ it takes its maximum value 40,000 feet at $t=50$ seconds.
(B) Since $P(0)=10$ we have $P_{0} b^{0}=10$, which gives $P_{0}=10$. Furthermore, since $P(5)=320$ we have $10 b^{5}=320$, which gives $b=2$. Thus, the animal population is given by the formula $P(t)=10 \cdot 2^{t}$.
14.) (A) The function $f(x)$ is continuous everywhere except possibly at $x=4$, which is the zero of the denominator. Since $\lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x-4}=\lim _{x \rightarrow 4} \frac{(x-4)(x+5)}{x-4}=\lim _{x \rightarrow 4}(x+5)=9$, we see that $f(x)$ is continuous at $x=4$ too if we define $f(4)=9$, or choose $c=9$.
(B) The graph of such a function is shown in the next graph. (There are infinitely-many such functions. Choose yours!)

