Practice A - Math 10250 Exam 3 Solutions

1.) Use implicit differentiation. $2 x+2 y \frac{d y}{d x}=x e^{y} \frac{d y}{d x}+e^{y}$. Hence $\frac{d y}{d x}\left[2 y-x e^{y}\right]=e^{y}-2 x$, so $\frac{d y}{d x}=\frac{e^{y}-2 x}{2 y-x e^{y}}$.
2.) Note that $f^{\prime}(x)=e^{x-2}(x)(x-1)(x+1)$ and that e^{x-2} is always positive. We get

So there is a local minimum at $x=-1$ and at $x=1$, and a local maximum at $x=0$.
3.) The instructions say that the domain of $f(x)$ is all x. The critical points are the points of the domain of $f(x)$ where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined. From the graph this is clearly $x=1,2,3$.
4.) The graph is concave up on intervals where $f^{\prime}(x)$ is increasing, so it is concave up on $(-\infty, 0)$ and on $(2, \infty)$.
5.) Since $f(x)$ is differentiable, $f^{\prime}(x)$ exists for all x and $f(x)$ is continuous; in particular, no asymptotes. The conditions say that $f(x)$ is increasing from $-\infty$ to 1 , then decreasing from 1 to 2 , then increasing from 2 to 3 , then decreasing from 3 to ∞. So there is a local max at $x=1$ and at $x=3$, but the one at $x=3$ is higher than the one at $x=1($ since $f(1)<f(3))$. Also there is a local min at $x=2$. From the shape just described, the highest point is at $x=3$, so there's a global max there. Since $f(x)$ is decreasing from $x=1$ to $x=2, f(2)<f(1)$. But since $\lim _{x \rightarrow \infty} f(x)=-\infty$, it can't be true that the local min at $x=2$ is actually a global min.
6.) Since $f^{\prime}(1)=0$ and $f^{\prime \prime}(1)>0$, there is a local min at $x=1$. Since $f^{\prime}(3)=0$ and $f^{\prime \prime}(3)<0$, there is a local max at $x=3$. Since $f^{\prime \prime}(x)$ changes from positive to negative at $x=2$, there is an inflection point there. Since there are no critical points between $x=1$ and $x=3$, and $f^{\prime}(2)>0, f(x)$ must be increasing from $x=1$ to $x=3$. Since $f(x)$ is increasing from $x=1$ to $x=3$ and $f(1)=2$, we must have $f(2)>f(1)=2$ so it can't be true that $f(2)<2$.
7.) The volume of a rectangular box, whose square base has a side of length x and whose height is y, is $x^{2} y$. Since the volume is 100 , we get $y=\frac{100}{x^{2}}$. Each side of the box has area $x y=x \cdot \frac{100}{x^{2}}=\frac{100}{x}$, but since there are four sides the contribution from the sides is $\frac{400}{x}$. The base and top each have area x^{2}. So the total area is $A(x)=2 x^{2}+\frac{400}{x}$.
8.) We want to find an indefinite integral for $x^{1 / 2}+\frac{1}{x}+e^{4 x}$. This is $\frac{2}{3} x^{3 / 2}+\ln x+\frac{1}{4} e^{4 x}+C$. Notice that since $x>0$, we don't need to write $\ln |x|$.
9.) If $u=x^{2}+1$ then $d u=2 x d x$, so $x d x=\frac{1}{2} d u$. We also have $x^{2}=u-1$. Thus our integral becomes

$$
\int x^{3} e^{x^{2}+1} d x=\int x^{2} e^{x^{2}+1} \cdot x d x=\frac{1}{2} \int(u-1) e^{u} d u
$$

10.) $f^{\prime}(x)=3 x^{2}-12$, so the critical points are $x=2,-2$. Notice that -2 is not in the interval! So we evaluate $f(x)$ at $x=-1,2,3: f(-1)=15, f(2)=-12, f(3)=-5$. Thus the maximum is 15 .
11.) (a) $\frac{d V}{d t}=\frac{4}{3} \pi \cdot 3 r^{2} \frac{d r}{d t}=4 \pi r^{2} \frac{d r}{d t}$. (b) Both are decreasing. (c) From (a) we have $-48 \pi=4 \pi r^{2}(-1 / 12)$, so $r^{2}=144$ and $r=12$.
12.) (a) Since x^{2} has degree 2 and x has degree $1, \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=0$, so the x-axis is a horizontal asymptote. Since $x^{2}+1$ is never zero, there is no vertical asymptote.
(b) Both $f(x)$ and $f^{\prime}(x)$ are defined for all x. Setting $f^{\prime}(x)=0$ we get that the only critical points are $x=-1,1$.
(c) We have

so $f(x)$ is decreasing on $(-\infty,-1)$ and on $(1, \infty)$, and increasing on $(-1,1)$.
(d) $f^{\prime \prime}(x)=0$ for $x=-\sqrt{3}, 0, \sqrt{3}$ and is defined everywhere. We have

so $f(x)$ is concave up on $(-\sqrt{3}, 0)$ and on $(\sqrt{3}, \infty)$, while it's concave down on $(-\infty,-\sqrt{3})$ and $(0, \sqrt{3})$. (e) From (c) we get local minimum at $x=-1$ and a local maximum at $x=1$.
13.) (a) We have $\frac{d y}{d x}=x^{-1 / 2}-x e^{x^{2}}$, so integrating we get $y=2 x^{1 / 2}-\int x e^{x^{2}} d x+C$. To find the remaining integral, we use the substitution $u=x^{2}$, so $d u=2 x d x$ and $\frac{1}{2} d u=x d x$. Then

$$
\int x e^{x^{2}} d x=\frac{1}{2} \int e^{u} d u=\frac{1}{2} e^{u}+C=\frac{1}{2} e^{x^{2}}+C .
$$

Putting them together, we get $y=2 x^{1 / 2}-\frac{1}{2} e^{x^{2}}+C$. But we have $y(1)=4$, so

$$
4=2(1)^{1 / 2}-\frac{1}{2} e^{1^{2}}+C=2-\frac{1}{2} e+C,
$$

i.e. $C=2+\frac{1}{2} e$, and $y=2 x^{1 / 2}-\frac{1}{2} e^{x^{2}}+2+\frac{1}{2} e$.
(b) Use the substitution $u=x^{2}+1, d u=2 x d x$, so $\frac{1}{2} d u=x d x$. Then we get

$$
\int \frac{x \ln \left(x^{2}+1\right)}{x^{2}+1} d x=\frac{1}{2} \int \frac{\ln (u)}{u} d u .
$$

Now we make a new substitution $v=\ln (u)$, so $d v=\frac{1}{u} d u$. Then the latter integral becomes

$$
\frac{1}{2} \int v d v=\frac{1}{4} v^{2}+C=\frac{1}{4}(\ln (u))^{2}+C=\frac{1}{4}\left(\ln \left(x^{2}+1\right)\right)^{2}+C .
$$

14.)

(a) $0 \leq x \leq 2$.
(b) $R=p q=q e^{8-2 q^{2}}$.
(c) We have

$$
\frac{d R}{d q}=q\left[e^{8-2 q^{2}}(-4 q)\right]+e^{8-2 q^{2}}(1)=e^{8-2 q^{2}}\left(1-4 q^{2}\right)=e^{8-2 q^{2}}(1-2 q)(1+2 q)
$$

(d) No power of e is ever zero, so the critical points are when $1-4 q^{2}=0$, i.e. $q=\frac{1}{2}$ and $q=-\frac{1}{2}$. However, $-\frac{1}{2}$ is outside the domain, so the only critical point is $q=\frac{1}{2}$.
(e) We have

so R is maximized at $q=\frac{1}{2}$.

