Practice A - Math 10250 Exam 1 Solutions

1.) We need to find the equation of the line passing through the points ($t_{1}=0, E_{1}=20,000$) and $\left(t_{2}=5, E_{2}=140,000\right)$. The slope of this line is $\frac{\Delta E}{\Delta t}=\frac{140,000-20,000}{5-0}=\frac{120,000}{5}=24,000$. Therefore using the point-slope formula we get $E-20,000=24,000(t-0)$, or $E=24,000 t+20,000$.
2.) The demand function is decreasing and the supply function is increasing. To find the equilibrium point we set demand equal to suply, that is we solve the equation $-\frac{1}{2} p+8=\frac{2}{3} p-\frac{4}{3}$, which gives $8+\frac{4}{3}=\left(\frac{2}{3}+\frac{1}{2}\right) p$ or $p=8$. Setting $p=8$ into demand (or supply) we get $q=-\frac{1}{2} \cdot 8+8=4$. Thus the the equilibrium $\left(p_{e}, q_{e}\right)=(8,4)$.
3.) Using the identity $A^{2}-B^{2}=(A-B)(A+B)$ we have
$P(x)=-10(x-12)^{2}+250=-10\left[(x-12)^{2}-5^{2}\right]=-10[(x-12-5)(x-12+5)]=-10(x-17)(x-7)$, which shows that $P(x)>0$ if $7<x<17$.
4.) Using the identity $(A+B)^{2}=A^{2}+2 A B+B^{2}$ we have

$$
\lim _{h \rightarrow 0} \frac{5(3+h)^{2}-45}{h}=\lim _{h \rightarrow 0} \frac{5\left(9+6 h+h^{2}\right)-45}{h}=\lim _{h \rightarrow 0} \frac{30 h+5 h^{2}}{h}=\lim _{h \rightarrow 0}(30+5 h)=30+0=30 .
$$

5.) We have

$$
\lim _{x \rightarrow \infty} R(x)=\lim _{x \rightarrow \infty} \frac{400 x+1200}{2 x+5}=\lim _{x \rightarrow \infty} \frac{400+1200 / x}{2+5 / x}=\frac{400+\lim _{x \rightarrow \infty}[1200 / x]}{2+\lim _{x \rightarrow \infty}[5 / x]}=\frac{400+0}{2+0}=200 .
$$

Thus, if the company keeps spending more and more money in advertising then the revenue's limiting value is $\$ 200$ million.
6.) Writing $f(x)=\frac{x-5}{(x-5)(x-3)} \stackrel{x \neq 5}{=} \frac{1}{x-3}$, we see that $x=3$ is a vertical asymptote since $\lim _{x \rightarrow 3^{ \pm}} \frac{1}{x-3}=$ $\pm \infty$. Also, we have that $y=0$ is a horizontal asymptote, since $\lim _{x \rightarrow \pm \infty} \frac{1}{x-3}=0$. The natural domain of the function $f(x)$ consists of all numbers except $x=3$ and $x=5$, which are the zeros of the denominator.
7.) Since temperature is a continuous function of time and the value 63 is between $H(1)=64$ and $H(3)=55$, and also between $H(7)=61$ and $H(9)=70$, by the intermediate value theorem the temperature assumes the value 63 in the time intervals $[1,3]$ and $[7,9]$ for certain.
8.) The function $f(x)$ is continuous everywhere except possibly at $x=1$, which is the zero of the denominator. Since $\lim _{x \rightarrow 1} \frac{x^{2}+6 x-7}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+7)}{x-1}=\lim _{x \rightarrow 1}(x+7)=8$, we see that $f(x)$ is continuous at $x=1$ too if we define $f(1)=8$, or choose $c=8$.
9.) The function $f(x)$ is not continuous at $x=4$ since its value there is 50 , which is different from its limit as $x \rightarrow 4$. Note that this limit is 20 .
10.) Looking at the graph of $f(x)$ we see that $\lim _{x \rightarrow 4} f(x)=20$. Therefore, applying the limit laws we have

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x f(x)+20}}{x^{2}-3 x+1}=\frac{\lim _{x \rightarrow 4} \sqrt{x f(x)+20}}{\lim _{x \rightarrow 4}\left[x^{2}-3 x+1\right]}=\frac{\sqrt{\lim _{x \rightarrow 4} x \cdot \lim _{x \rightarrow 4} f(x)+20}}{\lim _{x \rightarrow 4} x^{2}-3 \lim _{x \rightarrow 4} x+1}=\frac{\sqrt{4 \cdot 20+20}}{4^{2}-3 \cdot 4+1}=\frac{10}{5}=2 .
$$

11.) (i) First we solve the equation $y=\frac{x+2}{x+1}$ for x. For this we multiply the equation by $x+1$ and get $x y+y=x+2$, or $x y-x=2-y$, or $(y-1) x=2-y$, or $x=\frac{2-y}{y-1}$. Next, we interchange x and y and
obtain $y=\frac{2-x}{x-1}$. Thus the inverse of $f(x)$ is given by the function $g(x)=\frac{2-x}{x-1}$. Observe the natural domain of $f(x)$ consists of all numbers $x \neq-1$.
(ii) In this case the slope is equal to $\Delta q / \Delta p=(-1000) / 5=-200$. Moreover, when $p=20$ then $q=5000$. Therefore, using the point-slope formula we get the equation: $q-5000=-200(p-20)$, or $q=-200 p+9000$.
12.) (Ai) The revenue function is: $R=x \cdot q=x(-0.5 x+95)=-0.5 x^{2}+95 x$.
(Aii) The profit function is: $P=R-C=-0.5 x^{2}+95 x-10 q-5000$. Taking the expression of q from demand and substituting it to the profit function we get: $P=-0.5 x^{2}+95 x-10(-0.5 x+95)-5000=$ $-0.5 x^{2}+100 x-5950$.
(B) Using the formula $F V=P V\left(1+\frac{r}{n}\right)^{n t}$, with $P V=10,000, r=0.05, n=365$ and $t=5$ we find the future value $F V=10,000\left(1+\frac{0.05}{365}\right)^{365 \cdot 10} \approx 16,487$ dollars.
13.) (i) We have

$$
\begin{aligned}
H(t) & =-16 t^{2}+1600 t \\
& =-16\left[t^{2}-100 t\right] \\
& =-16\left[t^{2}-2 \cdot t \cdot 50\right] \\
& =-16\left[t^{2}-2 \cdot t \cdot 50+50^{2}-50^{2}\right] \\
& =-16\left[(t-50)^{2}-50^{2}\right] \\
& =-16(t-50)^{2}+16 \cdot 50^{2} \\
& =-16(t-50)^{2}+40,000
\end{aligned}
$$

(Note that there are other ways for completing square.)
(ii) Since $H(t)=-16(t-50)^{2}+40,000$ we see that $H(t)$ takes its maximum value 40,000 at $t=50$.
(iii) The rock hits the ground when $H(t)=0$, or $16(t-50)^{2}+40,000=0$, or $(t-50)^{2}=40,000 / 16$, or $t-50= \pm 50$, or $t=100$ seconds.
14.) (A) For $h \neq 0$ we have $\frac{\sqrt{25+h}-5}{h}=\frac{(\sqrt{25+h}-5)(\sqrt{25+h}+5)}{h(\sqrt{25+h}+5)}=\frac{k}{h(\sqrt{25+h}+5)}=\frac{1}{\sqrt{25+h}+5}$.

Therefore, the given limit is equal to $\lim _{h \rightarrow 0} \frac{1}{\sqrt{25+h}+5}=\frac{1}{\sqrt{25}+5}=\frac{1}{10}=0.1$.
(B) We find the future value of federal debt in 10 years by applying the formula $F V=P V e^{r t}$ with $P V=21.5, r=0.04$ and $t=10$. Thus, we have $F V=21.5 e^{0.04 \cdot 10}=21.5 e^{0.4} \approx 32.07$ trillion dollars.
(C) The Laffer curve looks like the parabola below:

Note: This curve was popularized by Arthur Laffer (b. 1940) though its underlying principle was widely known long before that since the time of Ibn Khaldun's Muqaddimah (1377). See wikipedia.org/wiki/Laffer_curve.

