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Math 10250 Activity 27: Optimization (Section 4.4 continued)
and Applied Optimization Problems (Section 4.5)

GOAL: To find maximum and minimum of a continuous function over an interval with one or both
endpoints excluded.

» Case 1: Optimizing f(z) on a closed interval (Done in last class)

Example 1| Find the global maximum and minimum of the function f(z) = ze~*/2 for [1,4]. Give a sketch
of the graph of f(x) clearly indicating where the global maximum and minimum are.
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» Case 2: Optimizing continuous f(x) on an interval with one or both endpoints excluded (i.e., on
(a,b], (—o0,b], [a,00), (—00,0),...) - Global maximum and minimum may or may not exist.

Example 2| Using the steps below, find the global maximum and minimum of the function

f(z) = 2=/ on [1,00).
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Step 1: Find all critical points in the domain of f(z) and the values of f(x) there. Classify them using the
first derivative test.
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Step 2: Find all the asymptotes of f(x) in its domain and determine its asymptotic behavior.
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Step 3: Find the values of f(z) at the endpoints (if any) of its domain. f(1) =e~

Step 4: Give a rough sketch of the graph of f(z) clearly indicating where the global maximum and minimum
are. State the global maximum and minimum of f(z) on [1, c0), if any.
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Q1: How does Example 2 contrast with Example 17

A1l: InExample 2, the right endpoint is 00 and the function f(x) approaches to0 asx — 0. So, f () has no minimum on [1,00).



Example 3 | Find the global maximum and minimum of f(z) = z* — 8z% on (o0, 1).

Step 1: Find all critical points in the domain of f(z) and the values of f(z) there. Classify them using the
first derivative test.
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Step 2: Find all the asymptotes of f(x) in its domain and determine its asymptotic behavior.
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Step 3: Find the values of f(z) at the endpoints (if any) of its domain. f(1)=1-8= -7

Step 4: Give a rough sketch of the graph of f(z) clearly indicating where the global maximum and minimum
are. State the global maximum and minimum of f(z) on (—oo, 1), if any.
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(NEXT GOAL: To use our optimization methods to solve word problems. )

Example 4 | A restaurant owner studied the sales of an octopus dish and determined that its average number

72
of orders g each night is given by p = ——, where p is the price in dollars of an order of the dish. Supposing
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each appetizer costs the restaurant $4 to make, help the owner of the restaurant with the following calculations:
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(a) Write down the revenue function: R=¢q-p= o
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(b) What is the largest amount of revenue the restaurant can make from the appetizer?
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(¢c) What price should the owner charge to maximize profit from the appetizer?
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