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Abstract

With an eye towards index theoretic applications we describe a Schubert like stratification on the Grass-
mannian of hermitian lagrangian spaces in Cn ⊕ Cn. This is a natural compactification of the space of
hermitian n × n matrices. The closures of the strata define integral cycles, and we investigate their in-
tersection theoretic properties. We achieve this by blending Morse theoretic ideas, with techniques from
o-minimal (or tame) geometry and geometric integration theory.
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Introduction

A hermitian lagrangian subspace is a subspace L of the complex Hermitian vector space
C2n = Cn ⊕ Cn satisfying L⊥ = JL, where J : Cn ⊕ Cn → Cn ⊕ Cn is the unitary operator
with the block decomposition

J =
[

0 −1Cn

1Cn 0

]
.
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We denote by Lagh(n) the Grassmannian of such subspaces. This space can be identified with a
more familiar space.

Denote by F± ⊂ C2n the ±i eigenspace of J , F± = {(e,∓ie); e ∈ Cn}. V.I. Arnold has
shown in [2] that L ⊂ C2n is a hermitian lagrangian subspace if and only if, when viewed as a
subspace of F+ ⊕ F−, it is the graph of a unitary operator F+ → F−. Thus we have a natural
diffeomorphism Lagh(n)→U(n). The space Hermn of hermitian operators Cn ×Cn embeds in
Lagh(n) via the graph map, and the restriction of the Arnold diffeomorphism to Hermn is none
other that the classical Cayley transform

Hermn �A 	→ (1− iA)(1+ iA)−1 ∈U(n).

The unitary groups are arguably some of the most investigated topological spaces and much
is known about their cohomology (see [14, Chap. IV], [46, VII.4, VIII.9]). One could fairly
ask what else is there to say about these spaces. To answer this, we need to briefly explain the
question which gave the impetus for the investigations in this paper.

Atiyah and Singer [3] have shown that a certain component FS0 of the space of bounded
Fredholm self-adjoint operators on a separable complex Hilbert space H is a classifying space
for the (complex) K-theoretic functor K1. The graph of an operator A ∈ FS0, defines a hermitian
lagrangian ΓA in the hermitian symplectic space H ⊕ H which intersects the horizontal axis
H⊕0 along a finite dimensional subspace. We denote by Lagh(∞) the space of such lagrangians.
In [36] we have shown that the graph map FS0 → Lagh(∞) is a homotopy equivalence.

The integral cohomology of Lagh(∞) is an exterior algebra Λ(x1, x2, . . .), where degxi =
2i − 1. If X is a compact, oriented smooth manifold, dimX = n, then the results of [36] imply
that any smooth1 family (Ax)x∈X Fredholm self-adjoint operators defines a smooth map A :
X→ Lagh(∞). We thus obtain cohomology classes A∗xi ∈H 2i−1(X,Z).

We are interested in localization formulæ, i.e., in describing concrete geometric realizations
of cycles representing the Poincaré duals of these classes. Some of the most interesting situations
arise when X is an odd dimensional sphere X = S2m−1. In this case, the Poincaré dual of A∗xm is
a 0-dimensional homology class, and we would like to produce an explicit 0-cycle representing
it.

For example, in the lowest dimensional case, X = S1, we have such a geometric realization
because the integer

∫
S1 A

∗x1 is the spectral flow of the loop of self-adjoint operators, and as is
well known, in generic cases, it can be computed by counting with appropriate multiplicities the
points θ ∈ S1 where kerAθ = 0. Thus, the Poincaré dual of A∗x1 is represented by a certain
0-dimensional degeneracy locus.

Equivalently, we could view the family (Aθ )θ∈S1 as a loop in Lagh(∞). Adopting this point of
view, we can interpret the integer

∫
S1 A

∗x1 as a Maslov index, and using the techniques developed
by Arnold in [1] one can explicitly describe a 0-cycle dual to the class A∗x1; see [32].

To the best of our knowledge there are no such degeneracy loci descriptions of the Poincaré
dual of A∗xm in the higher dimensional cases A : S2m−1 → U(∞), m > 1, and the existing
descriptions of the cohomology ring of U(n) do not seem to help in this respect.

With an eye towards such applications, we describe in this paper a natural, Schubert-like,
Whitney regular stratification of Lagh(n), and we investigate its intersection theoretic properties.

1 We will not elaborate here on the precise meaning of differentiability of a family of possibly unbounded operators.
This rather delicate issue is addressed by D. Cibotaru in his dissertation [5].
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As in the case of usual Grassmannians, this Schubert-like stratification of Lagh(n) has a Morse
theoretic description. Many of the ideas involved are classical, going back to the pioneering work
of Pontryagin, [40]. We recommend the nice presentation by Dynnikov and Vesselov in [12].

We denote by (ei) the canonical unitary basis of Cn, and we define the hermitian operator

A :Cn→Cn, Aei =
(
i − 1

2

)
ei, ∀i = 1, . . . , n.

The operator A defines a function f = fA : U(n)→ R, f (S) = −Re tr(AS) + n2

2 . This is a
Morse function with one critical point SI ∈U(n) for every subset I ⊂ {1, . . . , n}. More precisely

SI ei =
{
ei, i ∈ I,
−ei, i /∈ I.

Its Morse index is ind(SI )= f (SI )=∑i∈I c (2i − 1), where I c denotes the complement of I in
{1,2, . . . , n}. In particular, this function is self-indexing.

We denote by W±
I the stable/unstable manifold of SI with respect to the (negative) gradient

flow Φt of fA. These unstable manifolds are loci of certain Schubert-like incidence relations
and they can be identified with the orbits of a real algebraic group acting on Lagh(n). Basic
facts of real algebraic geometry imply that the stratification given by these unstable manifolds
is Whitney regular. In particular, this implies that our gradient flow satisfies the Morse–Smale
transversality condition. We can thus define the Morse–Floer complex, and it turns out that the
boundary operator of this complex is trivial.

The collection of strata has a natural Bruhat-like partial order given by the inclusion of a
stratum in the closure of another. In Section 4 we give a purely combinatorial description of
this partial order, and we relate it to the natural partial order on the critical set of a gradient
Morse–Smale flow. In [38] we carry a deeper investigation of the combinatorics of this poset.

Given that the Morse–Floer complex of the gradient flow Φt is perfect, it is natural to ask if the
unstable manifolds W−

I define geometric (co)cycles in any reasonable way, and if so, investigate
their intersection theory. Several possibilities come to mind.

One possible approach, used by Vassiliev in [44], is to produce resolutions of W−
I , i.e., smooth

maps f :XI → Lagh(n), where XI is a compact oriented manifold, f (XI )= cl(W−
I ), and f is

a diffeomorphism over the smooth part of cl(W−
I ). As explained in [44], this approach reduces

the computation of the intersection cycles f∗[XI ] • f∗[XJ ] to classical Schubert calculus on
Grassmannians, but the combinatorial complexity seems to hide the simple geometric intuition.

M. Goresky [17] has explained how to associate (co)cycles to Whitney stratified (co)oriented
objects and perform intersection theoretic computations with such objects. While the closures of
W−

I are stratified cycles in the sense of Goresky, this possible approach seems difficult to use in
concrete computations due to the stringent transversality conditions needed for such a calculus.

G. Ruget [42] proposed another technique2 of associating a cocycle to a (possibly) singular
analytic subvariety. This seems the ideal approach for infinite dimensional situations, but has one
small finite dimensional problem: it does not mesh well with the Poincaré duality.

Instead, we chose the most basic approach, and we looked at the integration currents defined
by orienting the semi-algebraic sets W−

I . This seems to be an ideal compromise between the

2 U. Koschorke uses a very similar idea in [27].
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approaches of Goresky [17] and Ruget [42] afforded by the elegant theory of intersection of
subanalytic cycles developed by R. Hardt [18–20]. In these papers R. Hardt lays the foundations
of a geometric intersection theory over the reals. The cycles are integration currents supported
by subanalytic sets. A key fact in this theory is a slicing theorem which is essentially a real
analytic version of the operation of pullback of complex cycles via flat holomorphic maps. For
the reader’s convenience, we have included in Appendix B a short survey of Hardt’s main results
in a topologists’ friendly language.

The manifolds W−
I are semi-algebraic, have finite volume, and carry natural orientations

orI , and thus define integration currents [WI ,orI ]. In Proposition 33 we show that the clo-
sure of W−

I is a naturally oriented pseudo-manifold, i.e., it admits a stratification by smooth
manifolds, with top stratum oriented, while the other strata have (relative) codimension at
least 2. Using the fact that the current [W−

I ,orI ] is a subanalytic current as defined in [20],
it follows that ∂[W−

I ,orI ] = 0 in the sense of currents. These cycles define homology classes
αI ∈H•(U(n),Z).

The currents [W−
I ,orI ] define a perfect subcomplex of the complex of integrally flat currents.

This subcomplex is isomorphic to the Morse–Floer complex of the gradient flow Φt , and via the
finite-volume-flow technique of Harvey–Lawson [21] we conclude that the cycles αI form an
integral basis of H•(U(n),Z). This basis coincides with the basis described in [14, IV, §3], and
by Vassiliev in [44].

The cycle αI has codimension w(I) =∑i∈I (2i − 1). We denote by α
†
I ∈ H •(U(n),Z) its

Poincaré dual. When I is a singleton, I = {i}, we use the simpler notation αi and α
†
i instead of

α{i} and respectively α
†
{i}. We call the cycles αi the basic Arnold–Schubert cycles. Let us point

out that α
†
1 is the hermitian analogue of the real Maslov class described in [1].

It is well known that the cohomology of U(n) is related via transgression to the cohomology
of its classifying space BU(n). We prove that the basic class α

†
i is obtainable by transgression

from the Chern class ci .
More precisely, denote by E the rank n complex vector bundle over S1 × U(n) obtained

from the trivial complex vector bundle of rank n over the cylinder [0,1] × U(n) by identifying
the point 
z ∈ Cn in the fiber over (1, g) ∈ [0,1] × U(n) with the point g
z in the fiber over
(0, g) ∈ [0,1] ×U(n). We denote by p : S1 ×U(n)→U(n) the natural projection, and by

p! :H •(S1 ×U(n),Z
)→H •−1(U(n),Z

)
the induced Gysin map. The first main result of this paper is a transgression formula (Theo-
rem 37) asserting that

α
†
i = p!

(
ci(E)

)
. (†)

We prove the above equality at the level of currents by explicitly representing ci(E) as a Thom–
Porteous degeneracy current.

This shows that the integral cohomology ring is an exterior algebra with generators α
†
i , i =

1, . . . , n, so that an integral basis of H •(U(n),Z) is given by the exterior monomials

α
† ∪ · · · ∪ α

†
, 1 � i1 < · · ·< ik � n, 0 � k � n.
i1 ik
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The second main result of this paper, Theorem 47 gives a description of the Poincaré dual of
α

†
i1
∪ · · · ∪ α

†
ik

as a degeneracy cycle. More precisely, if I = {i1 < · · ·< ik}, then

α†
I = α†

i1
∪ · · · ∪ α†

ik
. (‡)

The last equality completely characterizes the intersection ring of Lagh(n) in terms of the integral
basis α

†
I .

The intersection theory investigated in this paper is closely related to the traditional Schubert
calculus on complex Grassmannians, but we used very little of the traditional Schubert calculus.
In the complex case the difficulties have mostly a combinatorial nature, while in this case the
difficulties are essentially geometric in nature. Given that the cycles involved are represented
by singular real semi-algebraic objects, there are some orientation issues to deal with, and the
general position arguments are considerably more delicate.

We deal with the transversality problems in a novel way. Unlike the case of complex Grass-
mannians, we do not move cycles in general position by using the rich symmetry of Lagh(n) as a
homogeneous space. Instead, we use the unitary group incarnation, Lagh(n)∼=U(n), and we rely
on the following simple observation: any degree 1 semi-algebraic continuous map Φ : S1 → S1

induces via functional calculus a semi-algebraic continuous map

U(n) � T 	→Φ(T ) ∈U(n)

semi-algebraically homotopic to the identity. These maps may not even be Lipschitz continuous,
but the push-forward of semi-algebraic currents by semi-algebraic maps is still a well defined
operation according to the results of R. Hardt [19,20]. By using certain maps Φ which are not
homeomorphisms, but still are semi-algebraic and homotopic to the identity, we can deform
the Schubert–Arnold cycles to semi-algebraic cycles for which the transversality issues become
trivial.

These cycles, although homologous to AS-cycles, they have a rather different description, as
spectral loci consisting of unitary matrices whose spectra have certain types of degeneracies.

As an application of this Schubert calculus we discuss a spectral multiplicity problem closely
related to the recent K-theoretic investigations by R. Douglas and J. Kaminker in [7]. In Propo-
sition 49 we show that the locus Σk,n ⊂ U(n) consisting of unitary matrices which have at least
one eigenvalue with multiplicity � k defines a cycle representing the homology class −nα2,...,k .

The factor n above becomes a serious issue when n =∞. The Maslov class α
†
1 is an ob-

struction to renormalization in the following sense. Suppose X is a smooth compact real analytic
oriented manifold, and g : X→ U(n) is a smooth subanalytic map. If g∗α†

1 = 0 then, under
certain generic transversality conditions we can find continuous subanalytic maps

λ1, . . . , λn :X→R

such that for every x ∈X the spectrum of gx , including multiplicities, is {eiλk(x); 1 � k � n} and
λ1(x)� · · ·� λn(x). Then the locus

Sk,n =
{
x ∈X; λ1(x)= · · · = λk(x)

}
determines a closed subanalytic integration current [Sk,n] and n[Sk,n] = [g−1Σk,n]. When k = 2,
the Poincaré dual of [Sk,n] is a 3-dimensional cohomology class μ2(g) ∈H 3(X,Z). We believe
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that this is the finite dimensional analogue of the 3-dimensional class constructed by Douglas
and Kaminker [7, Sect. 6]. We will investigate this in more detail elsewhere.

In Proposition 52, Corollary 53 and Proposition 57 we describe the various compatibilities
between the above Schubert calculus and the operation of symplectic reduction, while in Propo-
sition 54 we show that the symplectic reduction can be interpreted as an asymptotic limit of a
natural Morse–Bott flow on Lagh(n). This type of Morse–Bott flow appears under a different
guise in the work of D. Quillen, [41, §5.B]. In fact, Quillen’s transgression formulæ are special
cases of our formulæ in Corollary 55.

The sought for localization formulæ are built in our Morse theoretic approach. More precisely,
if Φt denotes the (downward) gradient flow of the Morse function f , then Φt is a tame flow in
the sense of [37], and in particular, it is a finite volume flow in the sense of Harvey–Lawson [21].
If we denote by 	 the (matrix valued) Maurer–Cartan form on U(n), and by B(x, y)= Γ (x)Γ (y)

Γ (x+y)
the Euler Beta function, then the results in [21] imply that the closed forms

Θk(t)= (−1)k+1B(k, k)

(2πi)k
Φ∗t tr

(
	∧(2k−1)) ∈Ω2k−1(U(n)

)
,

converge as currents when t→−∞ to the currents αk .
Since the basics of tame geometry do not seem to be familiar to many geometers, we felt

compelled to outline the most salient features of this theory in Appendix A.
The infinite dimensional extension and the index theoretic applications of the above Schubert

calculus were developed by Daniel Cibotaru in his PhD dissertation [5]. There he observes that
any Hilbert basis of H determines a similar Schubert-like stratification of Lagh(∞) with strata
of finite codimension. Moreover, one can associate an increasing filtration by open subsets

Lagh(∞,1)⊂ Lagh(∞,2)⊂ · · · .

The open set Lagh(∞, n) is a finite union of Schubert strata, and the symplectic reduction process
defines smooth fiber bundles Rn,∞ : Lagh(∞, n)→ Lagh(n) with contractible fibers. The maps
Rn,∞ are compatible with the stratifications, and the canonical inclusions Lagh(n) ↪→ Lagh(∞)

are sections of these fibrations.
If S2k−1 � x L	−→ Lx ∈ Lagh(∞) is a smooth map, then L(S2k−1)⊂ Lagh(∞, n), for all suf-

ficiently large n. If we set Ln := Rn,∞ ◦ L : S2k−1 → Lagh(n), then L∗xk ∈ H 2k−1(S2k−1) is
represented by a 0-dimensional co-oriented submanifold Dk(L) (degeneracy locus) of S2k−1

which is the preimage via Ln of a certain Schubert-like variety in Lagh(n) of codimension 2k−1.
The set Dk(L) is independent of n, but depends on a (generic) choice of a (k−1)-dimensional

subspace V ⊂H . In fact

Dk(L)=Dk(L,V )=
{
x ∈ S2k−1; 0 �= (Lx ∩ (H ⊕ 0)

)⊂ (V ⊕ 0)⊥
}
.

There is an equivalent way of looking at the Grassmannian Lagh(n) which has proved quite
useful in K-theoretic problems, [24,33].

Denote by Cln the complex Clifford algebra with n-generators, i.e., the C-algebra with gen-
erators u1, . . . , un and relations

uiuj + ujui =−2δij , ∀1 � i, j � n.
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A hermitian Cln-module is a representation ρ : Cln → EndC(Ê) of Cln on a hermitian vector
space Ê, such that the endomorphisms Ji := ρ(ui) are skew-hermitian. A (Z/2-)grading of this
module is a hermitian involution R of Ê which anticommutes with each Ji . Note that such a
grading induces isomorphisms

ker(i − Jk)
R−→ ker(i + Jk), ∀1 � k � n.

In the simplest case, n = 1, we see that a hermitian Cl1-module is a pair (Ê,J ), where J is a
skew-hermitian operator such that J 2 = −1. Such a Cl1-module admits a grading if and only
if the eigenspaces (i ± J ) have the same dimension. Moreover, a hermitian involution R of Ê
is a grading if and only if the fixed subspace of R, L = ker(1 − R), is a hermitian lagrangian
subspace, i.e., L⊥ = JL. The relationship between this point of view and the Cayley transform
is nicely explained by D. Quillen in [41, §2].

In [33] we used methods borrowed from symplectic geometry to investigate the homotopy
theory of the spaces of gradings of Cln-modules and their K-theoretic relevance. In this paper
we look only at the case n= 1, but we have a different goal in mind: describe a natural geometric
homology theory for the space of gradings of Cl1-modules, or equivalently, a geometric homol-
ogy theory for the unitary group. However, the techniques in this paper extend to arbitrary n.

Notations and conventions

• For any finite set I , we denote by #I or |I | its cardinality.
• In := {−n, . . . ,−1,1, . . . , n}, I+n = {1, . . . , n}.
• i := √−1.
• For an oriented manifold M with boundary ∂M , the induced orientation on the boundary is

obtained using the outer-normal first convention.
• For a fiber bundle F ↪→ E→ B with orientable base, fiber and total space, we orient the

total space by using the fiber-first convention.
• For any subset S of a topological space X we denote by cl(S) its closure in X.
• For any complex hermitian vector space we denote by End+(E) the space of hermitian linear

operators E→E.
• For every complex vector space E and every nonnegative integer m� dimCE we denote by

Grm(E) (respectively Grm(E)) the Grassmannian of complex subspaces of E of dimension
m (respectively codimension m).

• Suppose E is a complex vector space of dimension n and

Fl• := {F 0 ⊂ F 1 ⊂ · · · ⊂ F n}

is a complete increasing flag of subspaces of E, i.e., dimF i = i, ∀i = 0, . . . , n.
For every integer 0 � m � n, and every partition μ = μ1 � μ2 · · · such that μ1 � m and
μi = 0, for all i > n−m, we define the Schubert cell Σμ(Fl•) to be the subset of Grm(E)
consisting of subspaces V satisfying the incidence relations dim(V ∩F j )= i, ∀i = 1, . . . ,m,
∀j , m+ i −μi � j �m+ i −μi+1.
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1. Hermitian lagrangians

In this section we collect a few basic facts concerning hermitian lagrangian spaces which we
will need in our study. All of the results are due to V.I. Arnold, [2]. In this section all vector
spaces will be assumed finite dimensional.

Definition 1. A hermitian symplectic space is a pair (Ê, J ), where Ê is a complex hermitian
space, and J : Ê→ Ê is a unitary operator such that

J 2 =−1Ê, dimC ker(J − i)= dimC ker(J + i).

An isomorphism of hermitian symplectic spaces (Êi , Ji), i = 0,1, is a unitary map T : Ê0 → Ê1
such that T J0 = J1T .

If (Ê,R,J ) is a hermitian symplectic space, and h(•,•) is the hermitian metric on Ê, then
the symplectic hermitian form associated to this space is the form

ω : Ê × Ê→C, ω(u,v)= h(Ju,v).

Observe that ω is linear in the first variable and conjugate linear in the second variable. Moreover,

ω(u,v)=−ω(v,u), ∀u,v ∈ Ê.

The R-bilinear map

q : Ê × Ê→R, q(u,v) :=Reh(iJu,v)

is symmetric, nondegenerate and has signature 0. We denote by Sph(Ê, J ) the subgroup of
GLC(Ê) consisting of complex linear automorphisms of Ê which preserve ω, i.e.,

ω(T u,v)= ω(u,v), ∀u,v ∈ Ê.

Equivalently,

Sph(Ê, J )=
{
T ∈GLC(Ê); T ∗JT = J

}
.

Observe that Sph(Ê, J ) is isomorphic to the noncompact Lie group U(n,n), n= 1
2 dimC Ê. We

denote by sp
h
(Ê, J ) its Lie algebra. We set

F± := ker(±i − J ).

We fix an isometry T : F+ → F− and we define

Ê+ :=
{

1
(f + Tf );f ∈ F+

}
, Ê− :=

{
1
(f − Tf );f ∈ F+

}
.

2 2i
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Observe that Ê− is the orthogonal complement of Ê+, and the operator J induces a unitary
isomorphism Ê+ → Ê−. Thus, we can think of Ê± as two different copies of the same hermitian
space E.

Conversely, given a hermitian space E, we form Ê = E ⊕ E, and we define J : Ê→ Ê by
with reflection

J =
[

0 −1E
1E 0

]
.

Note that

F± = {(ix,±x) ∈E ⊕E; x ∈E},
and we have a canonical isometry F+ � (ix,x) T	−→ (ix,−x) ∈ F−.

For this reason, in the sequel we will assume that our hermitian symplectic spaces have the
standard form

Ê =E ⊕E, J =
[

0 −1E
1E 0

]
.

We set Ê+ :=E⊕ 0, Ê− := 0⊕E. We say that Ê+ (respectively Ê−) is the horizontal (respec-
tively vertical) component of Ê.

Definition 2. Suppose (Ê,J ) is a hermitian symplectic space. A hermitian lagrangian subspace
of Ê is a complex subspace L ⊂ Ê such that L⊥ = JL. We will denote by Lagh(Ê) the set of
hermitian lagrangian subspaces of Ê.

Remark 3. If ω is the symplectic form associated to (Ê,J ), then a subspace L is hermitian
lagrangian if and only if

L= {u ∈ Ê; ω(u,x)= 0, ∀x ∈ L}.
This shows that the group Sph(Ê, J ) acts on Lagh(Ê), and it is not hard to prove that the action
is transitive.

Observe that if L ∈ Lagh(Ê) then we have a natural isomorphism L⊕ JL→ Ê. It follows
that dimCL = 1

2 dimC Ê. We set 2n := dimC Ê and we deduce that Lagh(Ê) is a subset of the
Grassmannian Grn(Ê) of complex n-dimensional subspaces of Ê. As such, it is equipped with
an induced topology.

Example 4. Suppose E is a complex hermitian space. To any linear operator A : E→ E we
associate its graph

ΓA =
{
(x,Ax) ∈E ⊕E; x ∈E}.

Then ΓA is a hermitian lagrangian subspace of E⊕E if and only if the operator A is self-adjoint.
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More generally, if L is a lagrangian subspace in a hermitian symplectic vector space Ê,
and A : L→ L is a linear operator, then the graph of JA : L→ JL viewed as a subspace
in L⊕ JL= Ê is a lagrangian subspace if and only if A is a hermitian operator.

The following elementary observation will play a central role in this paper. We refer to [2] for
a proof.

Lemma 5 (Arnold). Suppose E is a complex hermitian space, and S :E→E is a linear operator.
Define

LS :=
{(

i(1+ S)x, (1− S)x
); x ∈E}⊂E ⊕E. (1.1)

Then LS ∈ Lagh(E ⊕E) if and only if S is a unitary operator.

Lemma 6. If L ∈ Lagh(Ê) then L∩ F± = {0}.

Proof. Suppose f ∈ F± ∩L. Then Jf ∈ L⊥ so that 〈Jf,f 〉 = 0. On the other hand, Jf =±if

so that

0= 〈Jf,f 〉 = ±i|f |2 �⇒ f = 0.

Using the isomorphism Ê = F+ ⊕ F− we deduce from the above lemma that L can be rep-
resented as the graph of a linear isomorphism TL : F+ → F−, i.e.,

L=Graph(TL)=
{
f ⊕ TLf ; f ∈ F+

}
.

Denote by I± :E→ F± the unitary map

E � x 	→ 1√
2
(ix,−x) ∈ F±.

We denote by SL :E→E the linear map given by the commutative diagram

E

I+

SL

E

I−

F+
TL

F−

, i.e., Graph(TL)= (I+ × I−)Graph(SL).

A simple computation shows that L = LSL
. From Lemma 5 we deduce that the operator SL is

unitary, and that the map

Lagh(Ê) � L S	−→ SL ∈U(E)

is the inverse of the map S 	→LS . This proves the following result. �
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Proposition 7 (Arnold). Suppose E is a complex hermitian space, and denote by U(E) the group
of unitary operators S :E→E. Then the map

L :U(E)→ Lagh(E ⊕E), S 	→LS

is a homeomorphism. In particular, we deduce that Lagh(Ê) is a smooth, compact, connected,
orientable real manifold of dimension dimR Lagh(Ê)= (dimCE)2.

Suppose A : E→ E is a self-adjoint operator. Then its graph ΓA is a lagrangian subspace of
Ê =E ⊕E, and thus there exists a unitary operator S ∈U(E) such that

ΓA =LS =
{(

i(1+ S)x, (1− S)x
); x ∈E}.

Note that the graph ΓA intersects the “vertical axis” Ê− = 0⊕E only at the origin, so that the
operator 1+ S is invertible.

Next observe that for every x ∈E we have (1− S)x = iA(1− S)x so that

A=−i(1− S)(1+ S)−1 =−2i(1+ S)−1 + i. (1.2)

We conclude

S = SΓA = C(iA) := (1+ iA)(1− iA)−1 = 2(1+ iA)−1 − 1. (1.3)

The expression C(iA) is the so called Cayley transform of iA. For this reason, we will refer
to the inverse diffeomorphism S= L−1 : Lagh(E ⊕E)→ U(E), as the Cayley transform (of a
hermitian lagrangian space).

Observe that we have a left action “∗” of U(E)×U(E) on U(E) given by

(T+, T−) ∗ S = T−ST ∗+, ∀T+, T−, S ∈U(E).

To obtain a lagrangian description of this action we need to consider the symplectic unitary
group

U(Ê,J ) :=U(Ê)∩ Sph(Ê,J )=
{
T ∈U(Ê); T J = JT

}
.

The subspaces F± are invariant subspaces of any operator T ∈ U(Ê,J ) so that we have an
isomorphism U(Ê,J )∼=U(F+)×U(F−). Now identify F± with E using the isometries

1√
2
I± :E→ F±, IJ :E ⊕E→ F+ ⊕ F−.

We obtain an isomorphism

U(Ê,J ) � T 	→ (T+, T−) ∈U(E)×U(E).

Moreover, for any lagrangian L ∈ Lagh(Ê), and S ∈U(E), and any T ∈U(Ê,J ) we have

ST L = (T+, T−) ∗ SL, L(T+,T−)∗S = TLS. (1.4)
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2. Morse flows on the Grassmannian of hermitian lagrangians

In this section we will describe a few properties of some nice Morse functions on the Grass-
mannian of complex lagrangian subspaces. The main source for all these facts is the very nice
paper by I.A. Dynnikov and A.P. Vesselov [12].

Suppose E is complex hermitian space of complex dimension n. We equip the space Ê =
E ⊕E with the canonical complex symplectic structure. Recall that

Ê+ :=E ⊕ 0, Ê− := 0⊕E.

For every symmetric operator A : Ê+ → Ê+ we denote by Â : Ê→ Ê the symmetric operator

Â :=
[
A 0
0 −A

]
: Ê→ Ê.

Let us point out that Â ∈ sp
h
(Ê,J ). Define

fA :U
(
Ê+
)→R, fA(S) :=Re tr(AS),

and

ϕA : Lagh(Ê)→R, ϕA(L)=Re tr(ÂPL),

where PL denotes the orthogonal projection onto L. An elementary computation shows that

PLS
= 1

2

[
1+ 1

2 (S + S∗) i
2 (S − S∗)

i
2 (S − S∗) 1− 1

2 (S + S∗)

]
, (2.1)

and we deduce

ϕA(LS)= fA(S), ∀S ∈U(Ê+).
The following result is classical, and it goes back to Pontryagin, [40].

Proposition 8. If kerA= {0}, then a unitary operator S ∈U(Ê+) is a critical point of fA if and
only if there exists a unitary basis e1, . . . , en of E consisting of eigenvectors of A such that

Sek =±ek, ∀k = 1, . . . , n.

We can reformulate the above result by saying that when kerA �= 0, then a unitary operator S
is a critical point of fA if and only if S is an involution and both ker(1− S) and ker(1+ S) are
invariant subspaces of A. Equivalently this means

S = S∗, S2 = 1E, SA=AS.

To obtain more detailed results, we fix a unitary basis e1, . . . , en of E. For any 
α ∈Rn such that

0 < α1 < · · ·< αn, (2.2)
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we denote by A=A
α the symmetric operator E→E defined by Aek = αkek , ∀k. We set f
α :=
fA
α , and we denote by Cr
α ⊂ U(Ê+) the set of critical points of f
α . For every 
ε ∈ {±1}n we
define S
ε ∈U(Ê+) by

S
εek = εkek, k = 1,2, . . . , n.

Then

Cr
α =
{
S
ε; 
ε ∈ {±1}n}.

Note that this critical set is independent of the vector 
α satisfying (2.2). For this reason we will
use the simpler notation Crn when referring to this critical set.

To compute the index of f
α at the critical point S
ε we need to compute the Hessian

Q
ε(H) := d2

dt2

∣∣∣∣
t=0

Re tr
(
AS
εetH

)
, H ∈ u(E)= the Lie algebra of U(E).

We have

Q
ε(H)=Re tr
(
A
αS
εH 2)=−Re tr

(
A
αS
εHH ∗).

Using the basis (ei) we can represent H ∈ u(E) as H = iZ, where Z is a hermitian matrix
(zjk)1�i,j�n, zjk = z̄kj . Note that zjj is a real number, while zij can be any complex number if
i �= j . Then a simple computation shows

Q
ε(iZ)=−
∑
i,j

(εiαi + εjαj )|zij |2 =−
∑
i

εiαi |zii |2 − 2
∑
i<j

(εiαi + εjαj )|zij |2. (2.3)

Hence, the index of f
α at S
ε is

μ
α(
ε) := #{i; εi = 1} + 2#
{
(i, j); i < j, εiαi + εjαj > 0

}
.

Observe that if i < j then εiαi + εjαj > 0 if and only if εj = 1. Hence

μ
α(
ε)=
∑
εj=1

(2j − 1).

In particular, we see that the index is independent of the vector 
α satisfying the conditions (2.2).
It is convenient to introduce another parametrization of the critical set. Recall that

I+n := {1, . . . , n}.

For every subset I ⊂ I+n we denote by SI ∈U(Ê+) the unitary operator defined by

SI ej =
{
ej , j ∈ I,

−ej , j /∈ I.
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Then Crn := {SI ; I ⊂ I+n }, and the index of SI is

ind(SI )=
∑
i∈I

(2i − 1). (2.4)

The co-index is

coind(SI )= ind(SIc )= n2 −μI , (2.5)

where I c denotes the complement of I , I c := I+n \ I .

Definition 9. We define the weight of a finite subset I ⊂ Z>0 to be the integer

w(I ) :=
{

0, I = ∅,∑
i∈I (2i − 1), I �= ∅.

Hence ind(SI )=w(I ). Let us observe a remarkable fact.

Proposition 10. Let


ξ =
(

1

2
,

3

2
, . . . ,

2n− 1

2

)
∈Qn,

and set f0 := f
ξ , ϕ0 := ϕ
ξ . Then for every I ⊂ I+n we have

w(I )= f0(SI )+ n2

2
= ϕ0(ΛI )+ n2

2
.

In other words the gradient flow of fξ is self-indexing, i.e.,

f0(SI )− f0(SJ )=w(J )−w(I ).

Proof. We have

f0(SI )= 1

2

(
w(I )−w

(
I c
))
.

On the other hand, we have

1

2

(
w(I )+w

(
I c
))= 1

2
w
(
I+n
)= n2

2
.

Adding up the above equalities we obtain the desired conclusion. �
The positive gradient flow of the function fA has an explicit description. More precisely, we

have the following result [12, Proposition 2.1].
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Proposition 11. Suppose A = A
α where 
α ∈ Rn satisfies (2.2). We equip U(Ê+) with the left
invariant metric induced from the inclusion in the Euclidean space EndC(E) equipped with the
inner product

〈X,Y 〉 =Re tr
(
XY ∗

)
.

We denote by ∇fA the gradient of fA : U(Ê+)→ R with respect to this metric, and we denote
by

ΦA :R×U
(
Ê+
)→U

(
Ê+
)
, S 	→Φt

A(S),

the flow defined by ∇fA, i.e., the flow associated to the o.d.e. Ṡ = ∇fA(S). Then, for any S ∈
U(Ê+) and any t ∈R, we have

Φt
A(S)=

(
sinh(tA)+ cosh(tA)S

)(
cosh(tA)+ sinh(tA)S

)−1
. (2.6)

It is convenient to have a lagrangian description of the above results via the diffeomorphism
L : U(Ê+)→ Lagh(Ê). First, we use this isomorphism to transport isometrically the metric on
U(Ê+). Next, for every I ⊂ I+n we set ΛI :=LSI . For every i ∈ I+n we define

ei := ei ⊕ 0 ∈E ⊕E, f i = 0⊕ ei ∈E ⊕E.

Then

ΛI = ker(1− SI )⊕ ker(1+ SI )= span{ei; i ∈ I } + span
{
f j ; j ∈ I c

}
.

The lagrangians ΛI are the critical points of the function ϕA : Lagh(Ê)→ R. Using (1.1) and
(2.6) we deduce that for every S ∈U(Ê+) we have

LΦt (S) = etÂLS. (2.7)

The above equality describes the (positive) gradient flow of ϕA on Lagh(Ê). We denote this flow
by Ψ t

A.
We can use the lagrangians ΛI to produce the Arnold atlas as in [1]. Define

Lagh(Ê)I :=
{
L ∈ Lagh(Ê); L∩Λ⊥I = 0

}
.

Then Lagh(Ê)I is an open subset of Lagh(Ê), and

Lagh(Ê)=
⋃
I

Lagh(Ê)I .

Denote by End+
C
(ΛI ) the space of self-adjoint endomorphisms of ΛI . We have a diffeomorphism

End+
C
(ΛI )→ Lagh(Ê)I ,

which associates to each symmetric operator T :ΛI →ΛI the graph ΓJT of the operator JT :
ΛI →Λ⊥ regarded as a subspace in ΛI ⊕Λ⊥ ∼= Ê.
I I
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More precisely, if the operator T is described in the orthonormal basis {ei ,f j ; i ∈ I, j ∈ I c}
by the hermitian matrix (tij )1�i,j�n, then the graph of JT is spanned by the vectors

ei (T ) := ei +
∑
i′∈I

ti′if i′ −
∑
j∈I c

tj iej , i ∈ I, (2.8a)

f j (T ) := f j +
∑
i∈I

tijf i −
∑
j ′∈I c

tj ′jej ′ , j ∈ I c. (2.8b)

We will refer to the inverse map AI : Lagh(Ê)I → End+
C
(ΛI ) as the Arnold coordinatization

map on Lagh(Ê)I .
Let I ⊂ I+n . If L ∈ Lagh(Ê)I has Arnold coordinates AI (L) = T , i.e., T is a symmetric

operator T :ΛI →ΛI , and L= ΓJT , then Ψ t
AL= etÂΓJT is spanned by the vectors

etαiei +
∑
i′∈I

ti′ie
−tαi′f i′ −

∑
j∈I c

tj ie
tαj ej , i ∈ I,

e−tαj f j +
∑
i∈I

tij e
−tαif i −

∑
j ′∈I c

tj ′j e
tαj ′ ej ′ , j ∈ I c,

or, equivalently, by the vectors

ei +
∑
i′∈I

ti′ie
−t (αi′+αi)f i′ −

∑
j∈I c

tj ie
t (αj−αi)ej , i ∈ I, (2.9a)

f j +
∑
i∈I

tij e
t (αi−αj )f i −

∑
j ′∈I c

tj ′j e
t (αj ′+αj )ej ′ , j ∈ I c. (2.9b)

This shows that etÂΓJT ∈ Lagh(Ê)I , so that Lagh(Ê)I is invariant under the flow Ψ t
A.

If we denote by AI the restriction of Â to ΛI , and we regard AI as a symmetric operator
ΛI →ΛI , then we deduce from the above equalities that

etÂΓJT = ΓJ etAI T etAI .

We can rewrite the above equality in terms of Arnold coordinates as

AI

(
Ψ tL

)= etAI AI (L)e
tAI , ∀L ∈ Lagh(Ê)I . (2.10)

3. Unstable manifolds

The unstable manifolds of the positive gradient flow of ϕA have many similarities with the
Schubert cells of complex Grassmannians, and we want to investigate these similarities in great
detail.

The stable/unstable variety of ΛI with respect to the positive gradient flow Ψ t
A is defined by

W±
I :=

{
L ∈ Lagh(Ê); lim e±tÂL=ΛI

}
(2.10)=

{
L ∈ Lagh(Ê)I ; lim etAI AI (L)e

tAI = 0
}
.

t→∞ t→±∞
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If AI (L)= (tij )1�i,j�n, then the equalities (2.9a) and (2.9b) imply that

lim
t→−∞ etAI AI (L)e

tAI = 0 ⇐⇒ tij = 0, if i, j ∈ I, or j ∈ I c, i ∈ I and j < i.

We can rewrite the last system of equalities in the more compact form

W−
I =

{
T ∈ End+(ΛI ); tj i = 0, ∀1 � j � i, i ∈ I}. (3.1)

This shows that W−
I has real codimension

∑
i∈I (2i − 1). This agrees with our previous compu-

tation (2.5) of the index of ΛI . Thus

codimRW−
I =w(I ), dimRW−

I = n2 −w(I )= 1

2
dimR Lagh(Ê)− ϕ0(ΛI ).

For any L ∈ Lagh(Ê) we set

L± := L∩ Ê±.

The dimension of L+ is called the depth of L, and will be denoted by δ(L). From the description
(3.1) of the unstable variety W−

I , #I = k we deduce the following result.3

Proposition 12. Let L ∈ Lagh(Ê), I ⊂ {1, . . . , n}, k = #I . We denote by S ∈U(Ê+) the unitary
operator corresponding to L. The following statements are equivalent.

(a) L ∈W−
I .

(b) L ∈ Lagh(Ê)I and limt→∞ e−tAL+ =Λ+I .
(c) dimL+ = k and limt→∞ e−tAL+ =Λ+I .
(d) dim ker(1− S)= k and limt→∞ e−tA ker(1− S)=Λ+I .

Proof. The description (3.1) shows that (a) ⇒ (b) ⇒ (c). Suppose that L satisfies (c) and let
ΛJ = limt→∞ e−tÂL, i.e., L ∈W−

J . Then using the implication (a) ⇒ (b) for the unstable man-
ifold W−

J we deduce limt→∞ etAL+ =Λ+J .
On the other hand, since L satisfies (c) we have limt→∞ etAL+ = Λ+I . This implies I = J

which proves the implication (c) ⇒ (a). Finally, observe that (d) is a reformulation of (c) via the
Cayley diffeomorphism S : Lagh(Ê)→U(Ê+). �

The condition limt→∞ e−tAL+ =Λ+I can be rephrased as an incidence condition. We arrange
the elements of I in decreasing order, I = {ν1 > · · ·> νk}. Then limt→∞ e−tAL+ =Λ+I if and
only if L+ is the graph of a linear map

X :Λ+I →Λ+I c , Xei =
∑
j∈I c

x
j
i ej , ∀i ∈ I,

such that xji = 0, ∀i ∈ I , j ∈ I c , j < i.

3 The characterization in Proposition 12 depends essentially on the fact that the eigenvalues of A satisfy the inequalities
0 < α1 < · · ·< αn. This corresponds to a choice of a Weyl chamber for the unitary group.
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We consider the complete decreasing flag Fl• = {Ê+ = F 0 ⊃ F 1 ⊃ · · · ⊃ F n = 0} of sub-
spaces of Ê+,

F � := spanC{ei; i > �},
and we form the associated increasing flag Fl• = {F 0 ⊂ · · · ⊂ F n}, F j := F n−j . Then
limt→∞ e−tAL+ →Λ+I if and only if

∀i = 0,1, . . . , k : dimC

(
L+ ∩F �

)= i, ∀�, νi+1 � � < νi,

or, equivalently,

∀i = 0,1, . . . , k : dimC

(
L+ ∩F ν

)= i, ∀ν, n+ 1− νi � ν � n− νi+1, ν0 = n+ 1.

We define μi so that

n− k+ i −μi = n+ 1− νi ⇐⇒ μi = νi − (k + 1− i),

and we obtain a partition μI = (μ1 � μ2 � · · · � μk � 0). We deduce that L+ ∈ ΣμI
(Fl•),

where ΣμI
(Fl•) ⊂ Grk(Ê+) denotes the Schubert cell associated to the partition μ, and the

increasing flag Fl•.

Remark 13. The partition (μ1, . . . ,μk) can be given a very simple intuitive interpretation. We
describe the set I by placing •’s on the positions i ∈ I , and ◦’s on the positions j ∈ I c. If
I = {ν1 > · · ·> νk}, then μi is equal to the number of ◦’s situated to the left of the • located on
the position νi . Thus

μ{k} = (k − 1,0, . . . ,0), μ{1,...,k−1,k+1,...,n} = 1n−k = (1, . . . ,1)︸ ︷︷ ︸
n−k

.

A critical lagrangian ΛI is completely characterized by its depth k = δ(ΛI ) = #I , and the
associated partition μ. More precisely,

I = {μ1 + k > μ2 + k− 1 > · · ·>μk + 1}. (3.2)

The Ferres diagram of the partition μI fits inside a k × (n− k) rectangle. We denote by Cn the
set

Cn =
{
(k,μ); k ∈ {0, . . . , n}, μ ∈ Pk,n−m

}
,

where Pk,n−k is the set of partitions whose Ferres diagrams fit inside a k× (n− k) rectangle. We
have a bijection

I+n ⊃ I 	→ πI = (#I,μI ) ∈ Cn.

For every π = (m,μ) ∈ Cn there exists a unique I ⊂ I+n such that πI = (m,μ). We set

Λ(m,μ) :=ΛI , W± :=W±.
(m,μ) I
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Observe that

codimRW−
(m,μ) =m2 + 2|μ|, where |μ| :=

∑
i

μi, (3.3)

and

dimRW−
(m,μ) = n2 −m2 − 2|μ| = (n−m)2 + dimRΣμ. (3.4)

The involution I 	→ I c on the collection of subsets of I+n is mapped to the involution

Cn � π = (m,μ) 	→ π∗ := (n−m,μ∗
) ∈ Cn,

where μ∗ is the transpose of the complement of μ in the k × (n− k) rectangle. In other words,
πIc = π∗I .

Remark 14. There is a remarkable involution in this story. More precisely, the operator
J : Ê→ Ê defines a diffeomorphism J : Lagh(Ê)→ Lagh(Ê), L 	→ JL.

If we use the depth-partition labelling, then to every pair π = (k,μ) ∈ Cn we can associate a
Lagrangian Λk,μ and we have JΛπ =Λπ∗ . We list some of the properties of this involution.

• fA(JL)=−fA(L), ∀L ∈ Lagh(Ê), because PJL = 1Ê − PL and Â and tr Â= 0.

• etÂJ = J e−tÂ because J Â=−ÂJ .
• JL± = (JL)∓, ∀L ∈ Lagh(Ê).
• JΛI =ΛIc , ∀I ⊂ I+n .
• JW±

I =W∓
I c , ∀I ⊂ {1, . . . , n}.

The involution is transported by the diffeomorphism S : Lagh(Ê)→ U(E) to the involution
S 	→ −S on U(E).

Proposition 12 can be rephrased as follows.

Corollary 15. Let L ∈ Lagh(Ê) and set S := S(L) ∈U(E). Then the following hold.

(a) L ∈W−
(m,μ) if and only if dim ker(1− S)=m and ker(1− S) ∈Σμ(Fl•)⊂Grm(E).

(b) L ∈W+
(k,λ) if and only if dim ker(1+ S)= n− k and ker(1+ S) ∈Σλ∗(Fl•)⊂Grk(E).

Finally, we can give an invariant theoretic description of the unstable manifolds W−
I .

Definition 16.

(a) We define the symplectic annihilator of a subspace U ⊂ Ê to be the subspace U† := JU⊥,
where U⊥ denotes the orthogonal complement.

(b) A subspace U ⊂ Ê is called isotropic (respectively coisotropic) if U ⊂ U† (respectively
U† ⊂U ). (Observe that a lagrangian subspace is a maximal isotropic space.)
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(c) A decreasing isotropic flag of Ê is a collection of isotropic subspaces

I0 ⊃ I1 ⊃ · · · ⊃ In = 0, dim Ik = n− k, n= 1

2
dimC Ê.

The top space I0 is called the lagrangian subspace associated to I•.

Consider the decreasing isotropic flag I• given by I� = span{ei; i > �}. If

I = {νk < · · ·< ν1},

then

L ∈W−
I ⇔ ∀i = 0,1, . . . , k : dimC

(
L∩ Ir

)= i, ∀r, νi+1 � r < νi, ν0 = n+ 1.

(3.5)

Define the (real) Borel subgroup

B=B
(
I•
) := {T ∈ Sph(Ê,J ); T I� ⊂ I�, ∀1 � �� n

}
.

Proposition 17. The unstable manifold W−
I coincides with the B-orbit of ΛI .

Proof. Observe that W−
I is B-invariant so that W−

I contains the B-orbit of ΛI . To prove the
converse, we need a better understanding of B.

Using the unitary basis e1, . . . , en,f 1, . . . ,f n we can identify B with the group of (2n) ×
(2n) matrices T which, with respect to the direct sum decomposition Ê+ ⊕ Ê−, have the block
description

T =
[
T T S

0 (T ∗)−1

]
,

where T is a lower triangular invertible n× n matrix, and S is a hermitian n× n matrix. The Lie
algebra of B is the vector space X consisting of matrices X of the form

X =
[
Ṫ Ṡ

0 −Ṫ ∗
]
,

where Ṫ is lower triangular, and Ṡ is hermitian. In particular, we deduce that

dimR B= n(n+ 1)+ n2 = 2n2 + n.

Observe that the matrix Â defining the Morse flow Ψ t on Lagh(Ê) belongs to the Lie algebra
of B, and for any open neighborhood N of ΛI in W−

I we have

W−
I =

⋃
Ψ t(N).
t∈R
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Thus, to prove that BΛI = W−
I , it suffices to show that the orbit BΛI contains a tiny open

neighborhood of ΛI in W−
I . To achieve this we look at the smooth map

B→W−
I , g 	→ g ·ΛI ,

and it suffices to show that its differential at 1 ∈B is surjective.
The kernel of this differential is the Lie algebra of the stabilizer of ΛI with respect to the

action of B. Thus, if we denote by StI this stabilizer, it suffices to show that

dimB− dim StI = dimW−
I =w

(
I c
)
.

Observe that X belongs to the Lie algebra of StI if and only if the subspace XΛI is contained
in ΛI , or equivalently, any vector in Λ⊥I =ΛIc is orthogonal to XΛI . If we denote by 〈•,•〉 the
hermitian inner product on Ê we deduce that X belongs to the Lie algebra of StI if and only if

〈ej ,Xei〉 = 〈f i′,Xei〉 = 〈f i ,Xf j ′ 〉 = 〈ej ′ ,Xf j 〉 = 0, ∀i, i′ ∈ I, j, j ′ ∈ I c.
If we write X in bloc form[

Ṫ Ṡ

0 −Ṫ ∗
]
, Ṫ = (ṫ ji )1�i,j�n

, Ṡ = (ṡji )1�i,j�n
,

then we deduce that X is in the Lie algebra of StI if and only if

ṫ
j
i = ṡ

j

j ′ = 0, ∀i ∈ I, j, j ′ ∈ I c.

Suppose I = {ik < · · ·< i1}. The equalities ṡj
j ′ = 0, j, j ′ ∈ I c impose (n− k)2 real constraints

on the matrix Ṡ. For an i� ∈ I , the equalities ṫ
j
i�
= 0, j ∈ I c, i� < j impose (n − i� − � + 1)

complex constraints on Ṫ . The vector space of lower triangular complex n× n matrices has real
dimension n(n+ 1) so that the Lie algebra of StI has real dimension

n(n+ 1)− 2
k∑

�=1

(n− i� − �+ 1)+ n2 − (n− k)2 = n2 + n− k2 + 2
k∑

�=1

(i� + �− 1)

= n2 + n− k+ 2
k∑
�1

i� = n2 + n+w(I ).

We deduce that dimR B− dimR StI = n2 −w(I )= dimW−
I . �

Corollary 18. The collection of unstable manifolds (W−
I )I⊂I

+
n

defines a Whitney regular stratifi-

cation of Lagh(Ê). In particular, the flow Ψ t satisfies the Morse–Smale transversality condition.

Proof. The statement about the Whitney regularity follows immediately from Proposition 17
and the results of Lander [28]. For the reader’s convenience, we include an alternate argument.

The unstable varieties W−
I are the orbits of a smooth, semi-algebraic action of the

semi-algebraic group B on Lagh(Ê). If W− ⊂ cl(W−) then, according to the results of
J I
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C.T.C. Wall [45], the set R of points in W−
J where the pair (W−

I ,W
−
J ) is Whitney regular is

nonempty. Since B acts by diffeomorphisms of Lagh(Ê) the set R is a B-invariant subset of
W−

J , so it must coincide with W−
J .

Since the stratification by the unstable manifolds of the flow Ψ t satisfies the Whitney regular-
ity condition we deduce from [37, Thm. 8.1] that the flow satisfies the Morse–Smale transversal-
ity condition. �
4. Tunnellings

The main problem we want to investigate in this section is the structure of tunnellings of the
flow Ψ t = etÂ on Lagh(Ê). Given M,K ⊂ I+n , then a tunnelling from ΛM to ΛK is a gradient
trajectory

t 	→ Ψ t
AL= etÂL, L ∈ Lagh(Ê),

such that

lim
t→∞Ψ−t

A L=ΛM, lim
t→∞Ψ t

AL=ΛK.

We denote by T(M,K) the set of tunnellings from ΛM to ΛK , and we say that M covers K , and
write this K ≺M , if T(M,K) �= ∅. Equivalently, K ≺M if and only if W−

M ∩W+
K �= ∅. Observe

that

L ∈W+
K ⇐⇒ JL ∈W−

Kc .

Hence

W−
M ∩W+

K =W−
M ∩ JW−

Kc,

so that

K ≺M ⇐⇒ W−
M ∩ JW−

Kc �= ∅.

Let us observe that, although the flow Ψ t
A depends on the choice of the hermitian operator

A : Ê+ → Ê+, the equality (3.1) shows that the unstable manifolds W−
I are independent of

the choice of A. Thus, we can choose A such that

Aei = 1

2
(2i − 1)ei , ∀i = 1, . . . , n.

Using Proposition 10 on self-indexing we obtain the following result.

Proposition 19. If J ≺ I , then w(J ) >w(I ) so that dimW− < dimW−.
J I
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Definition 20.

(a) For any nonempty set K ⊂ I+n of cardinality k we denote by νK the unique strictly decreasing
function νK : {1, . . . , k}→ I+n whose range is K , i.e.,

K = {νK(k) < · · ·< νK(1)
}
.

(b) We define a partial order � on the collection of subsets of I+n by declaring J � I if either
I = ∅, or #J � #I , and for every 1 � �� #I we have νI (�)� νJ (�).

We have the following elementary fact whose proof is left to the reader.

Lemma 21. Let K,M ⊂ I+n . Then the following statements are equivalent.

(a) K �M .
(b) For ever � ∈ I+n we have #(K ∩ [�,n])� #(M ∩ [�,n]).
(c) Mc �Kc .

Proposition 22. Suppose K,M ⊂ I+n . Then K ≺M if and only if K �M .

Proof. Suppose L ∈W−
M . Then (JL)+ = JL−, and we deduce that

L ∈W−
M ∩W+

K ⇐⇒ lim
t→∞ e−tAL+ =Λ+M and lim

t→∞ e−tAJL− =Λ+Kc .

In other words,

L ∈W−
M ∩W+

K ⇐⇒ L+ ∈ΣM

(
Fl∗

)
, JL− ∈ΣKc

(
Fl∗

)
.

We denote by U+ = U+L the orthogonal complement of L+ in Ê+, and by T = (tij )1�i,j the
Arnold coordinates of L in the chart Lagh(Ê)M .

Observe that U+ contains JL−, the subspace L+ is spanned by the vectors

vi = ei −
∑

j∈Mc, j>i

tj iej , i ∈M,

and U+ is spanned by the vectors

uj = ej +
∑

i∈M,i<j

tijei = ej +
∑

i∈M,i<j

t̄j iei , j ∈Mc.

If we write

Mc = {jn−m < · · ·< j1}, Kc = {�n−k < · · ·< �1},
then the condition JL− ∈ΣKc is equivalent with the existence of linearly independent vectors
of the form

wk = ek +
∑

askes , k ∈Kc, (4.1)

s>k
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which span JL−. Arguing exactly as in [29, §3.2.2] we deduce that the inclusion

JL− = span
{
wk; k ∈Kc

}⊂U+ = span
{
uj ; j ∈Mc

}
can happen only if

n−m= dimU+ � dimL− = n− k and ji � �i, ∀i = 1, . . . , n− k, (4.2)

i.e., Mc �Kc , so that K �M .
Conversely, if (4.2) holds, then arguing as in [29, §3.2.2] we can find vectors wk as in (4.1)

and complex numbers τij i ∈M , j ∈Mc , i < j , such that

span
{
wk; k ∈Kc

}⊂ span

{
ej +

∑
i∈M,i<j

τijei; j ∈Mc

}
.

Next complete the collection (τij ) to a collection (tij )1�i,j�n such that tij = t̄j i , ∀i, j , and tij = 0
if i ∈M and j < i. The collection (tij ) can be viewed as the Arnold coordinates in the chart
Lagh(Ê)M of a Lagrangian L ∈W−

M ∩W+
K . �

Remark 23. Proposition 22 implies that if K ≺M and M ≺N then K ≺N , so that ≺ is a partial
order relation. This fact has an interesting consequence.

If K0,K1, . . . ,Kν ⊂ I+n are such that for every i = 1, . . . , ν there exists tunnelling from ΛKi−1

to ΛKi
, then there must exist tunnelling from ΛK0 to ΛKν .

Proposition 24. Suppose M,K ⊂ I+n . The following statements are equivalent.

(a) K ≺M .
(b) W−

K ⊂ cl(W−
M).

Proof. The implication (b) ⇒ (a) follows from the above remark. Conversely assume K ≺M .
Then we deduce ΛK ⊂ cl(W−

M). Since cl(W−
M) is B invariant, where B is the real Borel group

defined at the end of Section 3, we deduce that BΛK ⊂ cl(W−
M). We now conclude by invoking

Proposition 17. �
Corollary 25. For any M ⊂ I+N we have cl(W−

M)=⊔K�M W−
K .

Corollary 26. Let K,M ⊂ I+n , and set k = #K , m= #M . The following statements are equiva-
lent.

• W−
K ⊂ cl(W−

M) and dimW−
K = dimW−

M − 1.
• {1} ∈K and M =K \ {1}.

Remark 27. The poset defined by ≺ has many beautiful combinatorial properties which makes
it resemble the Bruhat poset of Schubert varieties of a complex Grassmannian. For more details
we refer to [38].
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5. Arnold–Schubert cells, varieties and cycles

We want to use the results we have proved so far to describe a very useful collection of subsets
of Lagh(Ê). We begin by describing this collection using the identification Lagh(Ê)∼=U(Ê+).

For every complete decreasing flag Fl• = {Ê+ = F 0 ⊃ F 1 ⊃ · · · ⊃ F n = 0} of Ê+, and for
every subset I = {νk < · · ·< ν1} ⊂ I+n , we set ν0 = n+ 1, νk+1 = 0, and we denote by W−

I (Fl•)
the set

= {g ∈U(Ê+); dimC F � ∩ ker(1− g)= j, νj+1 � � < νj , j = 0, . . . , k
}
.

We say that WI (Fl•) is the Arnold–Schubert (AS) cell of type I associated to the flag Fl•. Its
closure, denoted by XI (Fl•) is called the AS variety of type I , associated to the flag Fl•. We
want to point out that

g ∈W−
I

(
Fl•

) �⇒ dimC ker(1− g)= #I.

If we fix a unitary basis e= {e1, . . . , en} of Ê+ we obtain a decreasing flag

Fl•(e),Flν(e) := spanC{ej ; j > ν}.

We set

W−
I (e) :=W−

I

(
Fl•(e)

)
.

As we know, the unitary symplectic group U(Ê,J )∼=U(Ê+)×U(Ê+) acts on U(Ê+), by

(g+,g−) ∗ h=U−SU∗+,

and we set

W−
I

(
Fl•,g+,g−

) := (g+,g−) ∗W−
I (Fl•).

We denote by XI (Fl•,g+,g−) the closure of W−
I (Fl•,g+,g−). When I is a singleton,

I = {ν}, we will use the simpler notation W−
ν and Xν instead of W−

{ν} and X{ν}. For every unit
complex number ρ we set

W−
I

(
Fl•, ρ

) :=W−
I

(
Fl•, ρ̄1,1

)=W−
I

(
Fl•,1, ρ1

)
= {

g ∈U(Ê+); dimC F � ∩ ker(ρ − g)= j, νj+1 � � < νj , j = 0, . . . , n
}
.

When Fl• = Fl•(e) we will use the alternative notation

W−
I (e, ρ) :=W−

I

(
F l•(e, ρ)

)
, XI (e, ρ)=XI

(
F l•(e, ρ)

)
. (5.1)
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Example 28. Suppose e = {e1, . . . , en} is an orthonormal basis of Ê+. For every ν ∈ I+n and
every unit complex number ρ we have

W−
ν (e, ρ)=

{
g ∈U(Ê+); ∃zν+1, . . . , zn ∈C: ker(ρ − g)= span

{
eν +

∑
j>ν

zjej

}}
.

Moreover

Xν(e, ρ)=
{
g ∈U(Ê+); ker(ρ − g)∩ span{eν, . . . , en} �= 0

}
.

Definition 29. Let I ⊂ I+n . We say that a subset Σ ⊂ Lagh(Ê) = U(E) is an Arnold–Schubert
(AS) cell, respectively variety, of type I if there exists a flag Fl• of E, and g± ∈U(E) such that
Σ =W−

I (Fl•,g+,g−), respectively Σ = XI (Fl•,g+,g−). We will refer to Xν as the basic
AS varieties.

Note that an AS cell of type I is a non-closed, smooth, semi-algebraic submanifold of
Lagh(Ê), semi-algebraically diffeomorphic to Rn2−w(I ). The AS cells can be given a description
as incidence loci of lagrangian subspaces of Ê.

We denote by FLAGiso(Ê) the collection of isotropic flags of Ê. The unitary symplectic
group

U(Ê,J )= {T ∈U(Ê); T J = JT
}
,

maps isotropic subspaces to isotropic subspaces and thus acts on FLAGiso. It is easily seen that
this action is transitive.

For any decreasing isotropic flag I• ∈ FLAGiso, and any subset I = {ν1 > · · ·> νk} ⊂ I+n we
set ν0 := n+ 1, νk+1 := 0, and we define

W−
I

(
I•
) := {L ∈ Lagh(Ê); dimL∩ Iν = i, ∀i, ννi+1 � ν < νi

}
.

If we choose a complete decreasing flag Fl• of Ê+, then Fl• is also a decreasing isotropic flag,
and we observe that the diffeomorphism L : U(Ê+)→ Lagh(Ê) sends W−

I (Fl•) to W−
I (Fl•).

If e is a unitary basis, then we will write

W−
I (e) :=W−

I

(
Fl•(e)

)
.

As we explained earlier, the unitary symplectic group U(Ê,J ) is isomorphic to U(Ê+) ×
U(Ê+), so that every T ∈ U(Ê,J ) can be identified with a pair (T+, T−) ∈ U(Ê+)× U(Ê+),
such that for every S ∈U(Ê+) we have TLS =LT−ST ∗+ . We deduce that

W−
I

(
Fl•, T+, T−

) L←→ TW−
I

(
Fl•

)
.

Since U(Ê,J ) acts transitively on FLAGiso we conclude that any AS cell is of the form WI (I
•)

for some flag I• ∈ FLAGiso.
✍ In the sequel we will use the notation W−

I when referring to AS cells viewed as subsets of
the unitary group U(Ê+), and the notation W−

I when referring to AS cells viewed as subsets of
the Grassmannian Lagh(Ê).
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Remark 30. We have a real algebraic version of Kleiman’s transversality result, [26]. Suppose
X is a smooth manifold and f : X→ Lagh(Ê) is a smooth map. Then there exists an isotropic
flag I• ∈ FLAGiso such that f is transversal to W−

I (I
•), for all I .

To prove this, we fix an isotropic flag I• and we consider the smooth map

F : Sph(Ê, J )×X→ Sph(Ê, J )× Lagh(Ê), Sph(Ê, J )×X � (g, x) 	→ (
g,g · f (x)).

The transitivity of the action Sph(Ê, J ) on FLAGiso implies that for every I the map F is
transversal to the submanifold Sph(Ê, J ) × W−

I (I
•) of Sph(Ê, J ) × Lagh(Ê). Thus, the set

ZI = F−1(Sph(Ê, J ) × W−
I ) is a smooth submanifold of Sph(Ê, J ) × Lagh(Ê). A generic

g ∈ Sph(Ê, J ) is a regular value of the natural map

π : ZI ⊂ Sph(Ê, J )× Lagh(Ê)→ Sph(Ê, J ).

For such a g the map

fg :X→ Lagh(Ê), x 	→ g · f (x)
is transversal to W−

I (I
•) and thus f is transversal to W−

I (g
−1I•).

We would like to associate cycles to the AS cells and, to do so, we must first fix some orien-
tation conventions. First, we need to fix an orientation on U(Ê+). Via the Cayley map we then
transport this orientation to Lagh(Ê).

To fix an orientation on U(Ê) it suffices to pick an orientation on the Lie algebra u(Ê+) =
T1U(Ê+). This induces an orientation on each tangent space TSU(Ê) via the left translation
isomorphism

T1U
(
Ê+
)→ TSU

(
Ê+
)
, T1U

(
Ê+
) �X 	→ SX ∈ TSU

(
Ê+
)
.

To produce such an orientation we first choose a unitary basis of Ê+,

e := {e1, . . . , en}.
We can then describe any X ∈ u(Ê+) as a skew-hermitian matrix

X = (xij )1�i,j�n.

We identify u(Ê+) with the space of hermitian operators Ê+ → Ê+, by associating to the skew-
hermitian operator X the hermitian operator Z =−iX. Hence X = iZ, and we write

zij (X) := −ixij .

Note that zii ∈ R, ∀i, but zij are not real if i �= j . The functions (zij )1�i�j define linear coor-
dinates on u(Ê+) which via the exponential map define coordinates on an open neighborhood
of 1 in U(Ê+). More precisely, to any sufficiently small hermitian matrix Z = (zij )1�i,j�n one
associates the unitary operator eiZ .

Using the above linear coordinates we obtain a decomposition of u(Ê+), as a direct sum
of a n-dimensional real vector space with coordinates zii , 1 � i � n, and a

(
n
)
-dimensional
2
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complex vector space with complex coordinates zij , 1 � i < j � n. The complex summand has
a canonical orientation, and we orient the real summand using the ordered basis

∂z11, . . . , ∂znn .

Equivalently, if we set

θij :=Re zij , ϕij := Im zij , θ i := zii ,

then the linear functions θi, θ ij , ϕij : u(Ê+)→ R form a basis of the real dual of u(Ê+). The
functions zij : u(Ê+)→C are R-linear and we have

θij ∧ ϕij = 1

2i
zij ∧ z̄ij = 1

2i
zij ∧ zji .

The above orientation of u(Ê+) is described by the volume form

Ωn =
(

n∧
i=1

θi

)
∧
( ∧

1�i<j�n

θ ij ∧ ϕij
)
.

The volume form Ωn on u(Ê+) is uniquely determined by the unitary basis e, and depends
continuously on e. Since the set of unitary bases is connected, we deduce that the orientation
determined by Ωn is independent of the choice of the unitary basis e. We will refer to this as
the canonical orientation on the group U(Ê+). Note that when dimC Ê+ = 1, the canonical
orientation of U(1) ∼= S1 coincides with the counterclockwise orientation on the unit circle in
the plane.

Using the Cayley diffeomorphism we transport the above orientation to an orientation on
Lagh(Ê). We will need to have a description of this orientation in terms of Arnold coordinates.
For a lagrangian Λ ∈ Lagh(Ê) we denote by Lagh(Ê)Λ the Arnold chart

Lagh(Ê)Λ :=
{
L ∈ Lagh(Ê); L∩Λ⊥ = 0

}
.

The Arnold coordinates identify this open set with the space End+
C
(Λ) of hermitian operators

Λ→Λ. By choosing a unitary basis of Λ we can identify such an operator A with a hermitian
matrix (aij )1�i,j�n, and we can coordinatize End+

C
(Λ) using the functions (aij )1�i�j�n. We

want to prove that the orientation of Lagh(Ê) is described on Lagh(Ê)Λ by the form

(−1)n
2

(
n∧

i=1

daii

)
∧
( ∧

1�i<j�n

1

2i
daij ∧ daji

)
. (+)

The relationship between the Arnold coordinates on the chart Lagh(Ê)Ê+ = Lagh(Ê)I+n and the

above coordinates on U(Ê+) is given by the Cayley transform. More precisely, if g = eiZ , Z her-
mitian matrix, and A are the Arnold coordinates of the associated lagrangian LS , the according
to (1.2) we have

1+ g = 2(1+ iA)−1 ⇐⇒ iA= 2(1+ g)−1 − 1.
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To see whether this correspondence is orientation preserving we compute its differential at g = 1,
i.e., A= 0. We set

gt := etiZ, iAt = 2(1+ gt )
−1 − 1

we deduce upon differentiation at t = 0 that Ȧ0 =−2Z.
Thus, the differential at 1 of the Cayley transform is represented by a negative multiple of

identity matrix in our choice of coordinates. This shows that the orientation (+) on the chart
Lagh(Ê)Ê+ agrees with the canonical orientation on the group U(Ê+).

To show that this happens for any chart Lagh(Ê)Λ we choose T = (T+, T−) ∈U(Ê,J ) such
that T Ê =Λ. Then

Lagh(Ê)Λ = T Lagh(Ê)Ê+ .

We fix a unitary basis {e1, . . . , en} of Ê+ and we obtain unitary basis e′i = T ei of Λ. Using these
bases we obtain the Arnold coordinates

A : Lagh(Ê)Ê+ → End+
C

(
Cn
)
, A′ : Lagh(Ê)Λ→ End+

C

(
Cn
)
.

Let L ∈ Lagh(Ê)Ê+ ∩ Lagh(Ê)Λ. The Arnold coordinates of L in the chart Lagh(Ê)Λ are equal
to the Arnold coordinates of L′ = T −1L in the chart Lagh(Ê)Ê+ , i.e.,

A′(L)=A
(
T −1L

)
.

Using (1.4) we deduce

ST −1L = T ∗−SLT+ = T −1 ∗ SL.

From (1.2) and (1.3) we deduce

SL = Ci

(
A(L)

) := (1− iA(L)
)(

1+ iA(L)
)−1

,

iA′(L)= iA
(
T −1L

)= 2
(
1+ T ∗−SLT+

)−1 − 1= C−1
i

(
T ∗−SLT+

)
.

We seen that the transition map

End+
C

(
Cn
) �A(L) 	→A′(L) ∈ End+

C

(
Cn
)

is the composition of the maps

End+
C

(
Cn
) Ci−→U(n)

T ∗−→U(n)
C−1

i−→ End+
C

(
Cn
)
.

This composition is orientation preserving if and only if the map g 	→ T ∗ g is such. Now we
remark that the latter is indeed orientation preserving because it is homotopic to the identity map
since U(Ê+) is connected.
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Fix I = {νk < · · · < ν1} ⊂ I+n , and a unitary basis e = {e1, . . . , en} of Ê+. We want to de-
scribe a canonical orientation on the AS cell W−

I =W−
I (e). We will achieve this by describing

a canonical co-orientation.
The cell W−

I is contained in the Arnold chart Lagh(Ê)I , and it is described in the Arnold
coordinates (tpq)1�p�q�n on this chart by the system of linearly independent equations

tj i = 0, i ∈ I, j � i.

We set

upq =Re tpq, vpq = Im tpq, ∀1 � p < q.

The conormal bundle T ∗
W−

I

Lagh(Ê) of W−
I ⊂ Lagh(Ê) is the kernel of the natural restriction

map T ∗ Lagh(Ê)|W−
I
→ T ∗W−

I . This bundle morphism is surjective and thus we have a short

exact sequence of bundles over W−
I ,

0→ T ∗
W−

I

Lagh(Ê)−→ T ∗ Lagh(Ê)|W−
I
−→ T ∗W−

I → 0. (5.2)

The 1-forms duji , dvji , dtii , i ∈ I , j < i, trivialize the conormal bundle. We can orient the
conormal bundle T ∗

W−
I

Lagh(Ê) using the form

ωI = (−1)w(I ) dtI ∧
( ∧

j<i, i∈I
duji ∧ dvji

)
, (5.3)

where dtI denotes the wedge product of the 1-forms dtii , i ∈ I , written in increasing order,

dtI = dtνkνk ∧ · · · ∧ dtν1ν1 .

We denote by or⊥I this co-orientation, and we will refer to it as the canonical co-orientation.
As explained in Appendix B this co-orientation induces a canonical orientation orI on W−

I . We
denote by [W−

I ,or⊥I ] the current of integration thus obtained.
To understand how to detect this co-orientation in the unitary picture we need to give a unitary

description of the Arnold coordinates on W−
I (e)⊂U(Ê+).

Definition 31. Fix a unitary basis e of Ê+. For every subset I ⊂ I+n we define UI ∈ U(Ê,J ) to
be the symplectic unitary operator defined by

UI (ek)=
{

ek, k ∈ I,
Jek, k /∈ I, UI (f k)=

{
f k, k ∈ I,
Jf k, k /∈ I.

Via the diffeomorphism

U(Ê,J ) � T 	→ (T+, T−) ∈U
(
Ê+
)×U

(
Ê−
)
,
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the operator UI corresponds to the pair of unitary operators U+I = TI , U−I = T∗I , where

TI (ek)=
{

ek, k ∈ I,
iek, k /∈ I. (5.4)

Observe that UI Ê
+ = ΛI , and that the Arnold coordinates AI on Lagh(Ê)I are related to the

Arnold coordinates A on Lagh(Ê)Ê+ via the equality AI = A ◦ U−1
I . We deduce that if S ∈

U(Ê+) is such that LS ∈ Lagh(Ê
+)I , then

AI (LS)= Ci

(
U−1
I ∗ S)= Ci(TI STI ).

Example 32. Let us describe the orientation of W−
I ⊂ U(Ê+) at certain special points. To any

map 
ρ : I c → S1 \ {1}, j 	→ ρj , we associate the diagonal unitary operator D = D 
ρ ∈ W−
I

defined by

Dej =
{

1, j ∈ I,
ρj , j ∈ I c.

Every tangent vector ġ ∈ TDU(Ê+) can be written as ġ = iDZ, Z hermitian matrix, so that

Z =−iD−1ġ.

The cotangent space T ∗DU(Ê+) has a natural basis given by the R-linear forms

θp, θpq,ϕpq : TDU(Ê)→R, θp(Z)= (Zep, ep),

θpq(Z)=Re(Zeq, ep), ϕpq = Im(Zeq, ep).

To describe the orientation of the conormal bundle TSI U(Ê+) we use the above prescription.
The Arnold coordinates on W−

I are given by

W−
I � g 	→AI (g) := Ci(TIgTI )=−i(1− TIgTI )(1+ TIgTI )

−1 ∈ End+
(
Ê+
)
.

Using the equality

Ci(TIgTI )=−2i(1+ TIgTI )
−1 + i1

we deduce

d

dt

∣∣∣∣
t=0

AI

(
DeitZ

)=−2i
d

dt

∣∣∣∣
t=0

(
1+ TIDeitZTI

)−1 =−2i
d

dt

∣∣∣∣
t=0

(
1+ TID(1+ itZ)TI

)−1

=−2i(1+ TIDTI )
−1 d

dt

∣∣∣∣
t=0

(
1+ tiTIDZTI (1+ TIDTI )

−1)−1

=−2(1+ TIDTI )
−1TIDZTI (1+ TIDTI )

−1 = Ȧ.
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Hence

Z =−1

2
D∗T∗I (1+ TIDTI )Ȧ(1+ TIDTI )=−1

2
D∗T∗I

(
1+ T2

ID
)
Ȧ
(
1+ T2

ID
)
.

Note that

T2
I ej =

{
ej , j ∈ I,
−ej , j ∈ I c.

If i ∈ I , then for every j � i we have

〈Żej , ei〉 = −1

2

(
Ȧ
(
1+ T2

ID
)
ej ,TID

(
1+ T2

ID
)
ei
)
,

−(Ȧ(1+ T2
ID
)
ej , ei

)= {−(Ȧej , ei ), j ∈ I,
1
2 (ρj − 1)(Ȧej , ei ). j ∈ I c.

For i ∈ I , j ∈ I c, j < i we set

ui(Ȧ) := (Ȧei , ei ), uij (Ȧ) :=Re(Ȧej , ei ), vij (Ȧ) := Im(Ȧej , ei ).

We deduce

ui =−ϕi, uij ∧ vij = kj θ
ij ∧ ϕij ,

where kj is the positive constant

kj =
{

1, j ∈ I,
1
4 |ρj − 1|2, j ∈ I c.

Using (5.3) we conclude that the conormal bundle to W−
I is oriented at D by the exterior mono-

mial

θI ∧
( ∧

j<i,i∈I
θji ∧ ϕji

)
,

where θI denotes the wedge product of {θi}i∈I written in increasing order.
In particular, if I = {ν} and D = Sν , i.e., ρj =−1, ∀j ∈ I c , then the conormal orientation of

W−
ν is given at Sν = S{ν} by the exterior monomial

ω⊥ = θν ∧ (θ1ν ∧ ϕ1ν)∧ · · · ∧ (θν−1,ν ∧ ϕν−1,ν).
The tangent space TS{ν}W

−
{ν} is oriented by the exterior monomial

ω$ = (−1)ν−1θ1 ∧ · · · ∧ θν−1 ∧ θν+1 ∧ · · · ∧ θn ∧
( ∧

θjk ∧ ϕjk
)
, (5.5)
j<k, k �=ν
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because

ω⊥ ∧ω$ =Ωn =
(

n∧
i=1

θi

)
∧
( ∧

1�i<j�n

θ ij ∧ ϕij
)
.

Proposition 33. We have an equality of currents

∂
[
W−

I ,orI
]= 0.

In other words, using the terminology of Definition 67, the pair (W−
I ,or⊥I ) is an elementary

cycle.

Proof. The proof relies on the theory of subanalytic currents developed by R. Hardt [20]. For
the reader’s convenience we have gathered in Appendix B the basic properties of such currents.

Here is our strategy. We will prove that there exists an oriented, smooth, subanalytic subman-
ifold YI of Lagh(Ê) with the following properties.

(a) W−
I ⊂ YI ⊂ cl(W−

I )=XI .
(b) dim(XI \ YI ) < dimW−

I − 1.
(c) The orientation on YI restricts to the orientation orI on W−

I .

Assuming the existence of such a YI we observe first that, dimYI = dimW−
I , and that we

have an equality of currents [W−
I ,orI ] = [YI ,orI ]. Moreover

supp ∂[YI ,orI ] ⊂ cl(YI ) \ YI =XI \ YI ,

so that,

dim supp ∂[YI ,orI ]< dimYI − 1.

This proves that

∂
[
W−

I ,orI
]= ∂[YI ,orI ] = 0.

To prove the existence of an YI with the above properties we recall that we have a stratification
of XI (see Corollary 25)

XI =
⊔
J≺I

W−
J , (5.6)

where

dimW−
J = dimW−

I +w(I )−w(J ).

We distinguish two cases.
A. 1 ∈ I . In this case, using Corollary 26 we deduce that all the lower strata in the above strati-
fication have codimension at least 2. Thus, we can choose YI =W−

I , and the properties (a)–(c)
above are trivially satisfied.
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B. 1 /∈ I . In this case, Corollary 26 implies that the stratification (5.6) had a unique codimension
1-stratum, W−

I∗ , where I∗ := {1} ∪ I . We set

YI :=W−
I ∪W−

I∗ .

We have to prove that this YI has all the desired properties. Clearly (a) and (b) are trivially
satisfied. The rest of the properties follow from our next result.

Lemma 34. The set YI is a smooth, subanalytic, orientable manifold.

Proof. Consider the Arnold chart Lagh(Ê)I∗ . For any L ∈ Lagh(Ê)I∗ we denote by tij (L) its
Arnold coordinates. This means that tij = t̄j i and that L is spanned by the vectors

ei (L)= ei +
∑
i′∈I∗

ti′if i′ −
∑
j∈I c∗

tj ieji , i ∈ I∗,

f j (L)= f j +
∑
i∈I∗

tj if i −
∑
j ′∈I c∗

tj ′jej ′ , j ∈ I c∗ .

The AS cell W−
I∗ is described by the equations

tj i = 0, ∀i ∈ I∗, j � i.

We will prove that

W−
I ∩ Lagh(Ê)I∗ =Ω := {L ∈ Lagh(Ê)I∗ ; tj i (L)= 0, ∀i ∈ I, j � i, t11(L) �= 0

}
. (5.7)

Denote by A ∈ End+
C
(Ê+) the hermitian operator defined by Aei = αi , ∀i ∈ I+n , where the real

numbers αi satisfy 0 < α1 < · · ·< αn.
Extend A to Â : Ê→ Ê by setting Âf i =−αif i . Note that L ∈W−

I if and only if

lim
t→∞ e−tÂL=ΛI .

Clearly, if L ∈Ω , then Lt = e−tÂL is spanned by the vectors

e1(L)= e1 + t11e
2α1tf 1 −

∑
j∈I c, j �=1

tj1e
t(α1−αj )ej ,

ei (Lt )= ei −
∑

j∈I c∗ , j>i
tj ie

t (αi−αj )ei , i ∈ I,

f j (Lt )= f j +
∑

i∈I∗,i<j
tij e

t (αi−αj )f i −
∑
j ′∈I c∗

tj ′j e
−t (αj+αj ′ )ej ′ , j ∈ I ∗c .

We note that as t→∞ we have
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span
{
e1(Lt )

}→ span{f 1}, span
{
ei (Lt )

}→ span{ei}, ∀i ∈ I,
span

{
f j (Lt )

}→ span{f j }, ∀j ∈ I c∗ .

This proves Lt →ΛI so that Ω ⊂W−
I ∩ Lagh(Ê)I∗ .

Conversely, let L ∈W−
I ∩ Lagh(Ê)I∗ . Then

lim
t→∞Lt =ΛI , where Lt = e−tÂL.

The space Lt is spanned by the vectors

e1(Lt )= e1 + t11e
2α1tf 1 +

∑
i∈I

ti1e
t(α1+αi)f i −

∑
j∈I c∗

tj1e
t(α1−αj )ej ,

ei (Lt )= ei + t1ie
t (αi+α1)f i +

∑
i′∈I

ti′ie
t (αi+αi′ )f i′ −

∑
j∈I c∗

tj ie
t (αi−αj )ej , i ∈ I,

f j (Lt )= f j + t1j e
t (α1−αj )f 1 +

∑
i∈I

tij e
t (αi−αj )f i −

∑
j ′∈I c∗

tj ′j e
−t (αj+αj ′ )ej ′ , j ∈ I c∗ .

Observe that

e1(Lt ),f j (Lt )⊥ span{ei; i ∈ I }, ∀j ∈ I c∗ ,

and using the condition Lt →ΛI ⊃ span{ei; i ∈ I } we deduce

span
{
e1(Lt ),f j (Lt ); j ∈ I c∗

}→ span
{
f j ; j ∈ I c

}⊂ΛI .

On the other hand, the line spanned by e1(Lt ) converges as t →∞ to either the line spanned
by e1, or to the line spanned by f i , for some i ∈ I∗. Since the line spanned by e1, and the line
spanned by f i , i ∈ I , are orthogonal to ΛI we deduce

span
{
e1(Lt )

}→ span{f 1},

which implies

t11 �= 0, ti1 = 0, ∀i ∈ I.

Hence

ei (Lt )= ei +
∑
i′∈I

ti′ie
t (αi+αi′ )f i′ −

∑
j∈I c∗

tj ie
t (αi−αj )ej , ∀i ∈ I.

Now we observe that ei (Lt )⊥ f j , ∀j ∈ I c , and we conclude that

span
{
ei (Lt ); i ∈ I

}→ span{ei; i ∈ I }.
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Since (ei (Lt )−ei )⊥ ei′ , ∀i, i′ ∈ I , i �= i′, we deduce that span{ei (Lt )}→ span{ei}. This implies
that

tii′ = 0, tj i = 0, ∀i, i′ ∈ I, j ∈ I c, j < i.

This proves that W−
I ∩ Lagh(Ê)I∗ ⊂Ω and thus, also the equality (5.7). In particular, this im-

plies that YI =W−
I ∪W−

I∗ is smooth, because in the Arnold chart Lagh(Ê)I∗ which contains the

stratum W−
I∗ is described by the linear equations

tj i = 0, i ∈ I, j � i. (5.8)

To prove that YI is orientable, we will construct an orientation orI∗ on YI ∩ Lagh(Ê)I∗ with the
property that its restriction to

YI ∩ Lagh(Ê)I ∩ Lagh(Ê)I∗ ⊂W−
I

coincides with the canonical orientation orI on W−
I .

We define an orientation orI∗ on YI ∩ Lagh(Ê)I∗ by orienting the conormal bundle of this
submanifold using the conormal volume form

ωI∗ = (−1)w(I )dtI ∧
( ∧

i∈I,j�i

(
1

2i
dtji ∧ dtij

))
,

where tij (L) are the Arnold coordinates in the chart Lagh(Ê)I∗ . Let

L ∈ Lagh(Ê)I ∩ Lagh(Ê)I∗ ⊂W−
I .

Then L is spanned by the vectors

e1(L)= e1 + t11f 1 +
∑
i∈I

ti1f i −
∑
j∈I c∗

tj1ej ,

ei (L)= ei + t1if 1 +
∑
i′∈I

ti′if i′ −
∑
j∈I c∗

tj iej , i ∈ I∗,

f j (L)= f j + t1jf 1 +
∑
i∈I

tijf i −
∑
j ′∈I c∗

tj ′jej ′ , j ∈ I c∗ .

The space L belongs to Lagh(Ê)I if and only if

L∩Λ⊥I = L∩ span
{
ej ,f i; i ∈ I, j ∈ I c

}= 0.

This is possible if and only if t11 �= 0. We set
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f ′1(L) :=
1

t11
e1(L)= f 1 +

1

t11
e1 +

∑
i′∈I

ti′1
t11︸︷︷︸
=:xi′1

f i′ −
∑
j∈I c∗

tj1

t11︸︷︷︸
=:xj1

ej ,

e′i (L) := ei (L)− t1if 1(L)

= ei +
∑
i′∈I

(
ti′i − t1i ti′1

t11

)
︸ ︷︷ ︸

=:xi′i

f i′ −
t1i

t11︸︷︷︸
=:x1i

e1 −
∑
j∈I c∗

(
tj i − t1i tj1

t11

)
︸ ︷︷ ︸

=:xji

ej , i ∈ I,

f ′j (L) := f j (L)− t1jf 1(L)

= f j +
∑
i∈I

(
tij − t1j ti1

t11

)
︸ ︷︷ ︸

=:xij

f i −
t1j

t11︸︷︷︸
=:x1j

e1 −
∑
j ′∈I c∗

(
tj ′j − t1j tj ′1

t11

)
︸ ︷︷ ︸

=:xj ′j

ej ′ , j ′ ∈ I c∗ .

The space L is thus spanned by the vectors e′i (L), i ∈ I and f ′j (L), j ∈ I c , where we recall that
1 ∈ I c. Also, since t11 = t̄11 we deduce that

xpq = x̄qp, ∀1 � p,q � n.

This implies that xpq must be the Arnold coordinates of L in the chart Lagh(Ê)I .
In these coordinates the canonical orientation orI of W−

I is obtained from the orientation of
the conormal bundle given by the form

ωI = (−1)w(I )dxI ∧
( ∧

j<i,i∈I

1

2i
dxji ∧ dxij

)
,

where dxI denotes the wedge product of the forms dxii , i ∈ I , in increasing order with respect
to i. Observe that

xii = tii − t1i ti1

t11
, xi1 = ti1

t11
, ∀i ∈ I,

xij = tij − t1j ti1

t11
, ∀i ∈ I, j ∈ I c \ {1}.

Along W−
I we have

ti1 = tij = 0, ∀i ∈ I, j ∈ I c, j < i.

We will denote by O(1) any differential form on Lagh(Ê)I ∩ Lagh(Ê)I∗ which is a linear com-
bination of differential forms of the type

f (tp,q) dtp1q1 ∧ · · · ∧ dtpmqm, f |W−
I
= 0.

Then
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dxii = dtii +O(1), ∀i ∈ I,
dxij = dtij − t1j

t11
dti1 +O(1), ∀i ∈ I, j ∈ I c, j �= 1,

dxi1 = 1

t11
dti1 +O(1).

We deduce that

ωI = 1

t2#I
11

ωI∗ +O(1).

The last equality shows that the orientations orI and orI∗ coincide on the overlap W−
I ∩

Lagh(Ê)I∗ . This concludes the proofs of both Lemma 34 and of Proposition 33. �
Remark 35. Arguing as in the first part of Lemma 34 one can prove that for every k ∈ I+n the
smooth locus of Xν contains the strata W−

m , m � k, and W−
{1,k}. In particular, the singular locus

of Xk has codimension at least 3 in Xk .
The codimension 3 is optimal. For example, the variety X1 ⊂ Lagh(2) is a union of three

strata

X1 =W−
1 ∪W−

2 ∪W−
{1,2}.

The smooth locus is W−
1 ∪W−

2 . The stratum W−
2 is one dimensional and its closure is a smoothly

embedded circle. The stratum W−
{1,2} is zero dimensional. It consists of a point in X1 whose link

is homeomorphic to a disjoint union of two S2-s. One can prove that X1 is a 3-sphere with two
distinct points identified.

We see that any AS cell WI (Fl•,g+,g−) defines a subanalytic cycle in U(Ê+). For fixed I ,
any two such cycle are homologous since any one of them is the image of [W−

I ,orI ] via a
real analytic map, real analytically homotopic to the identity. Thus they all determine the same
homology class

αI ∈Hn2−w(I )

(
U
(
Ê+
)
,Z
)
,

called the AS cycle of type I ⊂ I+n . By Poincaré duality we obtain cocycles

α
†
I ∈Hw(I )

(
U
(
Ê+
)
,Z
)
.

We will refer to these as AS cocycles of type I . When I = {ν}, ν ∈ I+n we will use the simpler
notations αν and α†

ν to denote the AS cycles and cocycles of type {ν}. We will refer to these
cycles as the basic AS (co)cycles.

Example 36. Observe that the AS cycle α∅ is the orientation cycle of Lagh(Ê).
The codimension 1 basic cycle α1 is the so called Maslov cycle. It defined by the same inci-

dence relation as the Maslov cycle defined in [1] in the case of real lagrangians.
The top codimension basic cycle αn can be identified with the integration cycle defined by the

embedding U(n− 1) � T 	→ T ⊕ 1 ∈U(n).
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6. A transgression formula

The basic cycles have a remarkable property. To formulate it we need to introduce some
fundamental concepts. We denote by E the rank n= dimC Ê+ complex vector bundle over S1 ×
U(Ê+) obtained from the trivial vector bundle

Ê+ × ([−1,1] ×U
(
Ê+
))→[−1,1] ×U

(
Ê+
)
,

by identifying the point u ∈ Ê+ in the fiber over (−1,g) ∈ [−1,1] ×U(Ê+) with the point v =
gu ∈ Ê+ in the fiber over (1,g) ∈ [−1,1] × U(Ê+). Equivalently, consider the Z-equivariant
bundle

Ẽ= Ê+ × (R×U
(
Ê+
))→R×U

(
Ê+
)
,

where the Z-action is given by

Z× (Ê+ ×R×U(Ê)
) � (k;u, θ,g) 	−→ (

gku, θ + 2k,g
) ∈ Ê+ ×R×U

(
Ê+
)
.

Then E is the quotient vector bundle Z\Ẽ→ Z\(R×U(Ê+)).
The sections of this bundle can be identified with maps u :R×U(Ê+)→ Ê+ satisfying the

equivariance condition

u(θ + 2,g)= gu(θ,g), ∀(t,g) ∈R×U
(
Ê+
)
.

Denote by

π ! :H •(S1 ×U
(
Ê+
)
,Z
)→H •−1(U(Ê+),Z)

the Gysin map determined by the natural projection

π : S1 ×U
(
Ê+
)→U

(
Ê+
)
.

For every ν = {1, . . . , n} we define γ ν ∈H 2ν−1(U(Ê+),Z) by setting

γ ν := π !cν(E),

where cν(Ê) ∈H 2ν(S1 ×U(Ê+),Z) denotes the ν-th Chern class of E.

Theorem 37 (Transgression Formula). For every ν = {1, . . . , n} we have the equality

α†
ν = γ ν.

Proof. Here is briefly the strategy. Fix a unitary basis e = {e1, . . . , en} of Ê+, and consider the
AS variety

Xν(−1) := {g ∈U(Ê+); dim ker(1+ g)∩ spanC{eν, . . . , en}� 1
}
.

It defines a subanalytic cycle [Xν(−1),orν]. We will prove that there exists a subanalytic cycle
c in S1 ×U(Ê+) such that the following happen.
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• The (integral) homology class determined by c is Poincaré dual to cν(E).
• We have an equality of subanalytic currents π∗c= [Xν(−1),orν].

To construct this analytic cycle we will use the interpretation of cν as the Poincaré dual of a
degeneracy cycle [22,29].

We set V := spanC{eν, . . . , en}, and we denote by V the trivial vector bundle with fiber V over
S1 ×U(Ê). Denote by P(V ) the projective space of lines in V , and by p the natural projection

p : P(V )× S1 ×U
(
Ê+
)→ S1 ×U

(
Ê+
)
.

We have a tautological line bundle L→ P(V )× S1×U(Ê+) defined as the pullback to P(V )×
S1 ×U(Ê+) of the tautological line bundle over P(V ).

To any morphism T : V → E of vector bundles over S1 × U(Ê+) we can associate in a
canonical fashion a bundle morphism T̃ : L→ p∗E. We regard T̃ as a section of the bundle
L∗ ⊗p∗E. If T is a C2, subanalytic section such that the associated section T̃ vanishes transver-
sally, then its zero locus Z(T̃ ) is a C1 subanalytic manifold equipped with a natural orientation
and defines a subanalytic current [Z(T̃ )]. Moreover, by Thom–Porteous formula (see [22, VI.1]),
the subanalytic current p∗[Z(T̃ )] is Poincaré dual to cν(E). We will produce a C2, subanalytic
bundle morphism T satisfying the above transversality condition, and satisfying the additional
equality of currents

π∗p∗
[
Z(T̃ )

]= [Xν(−1),orν
]
.

To construct such a morphism T we first choose a polynomial η ∈R[θ ] satisfying the following
conditions

η′(θ)� 0, ∀θ ∈ [−1,1],
η(−1)= 0, η(1)= 1, η(0)= 1

2
,

η′(0)= 1

4
, η′(±1)= η′′(±1)= 0.

Note that a bundle morphism T : V → E is uniquely determined by the sections T ej , ν � j � n,
of E. Now define a vector bundle morphism

T : V × ([−1,1] ×U
(
Ê+
))−→ Ê+ × ([−1,1] ×U

(
Ê+
))
,

given by,

V × ([−1,1] ×U
(
Ê+
)) � (v; θ,g) 	→ (

S(θ)v; θ,g) ∈ Ê+ × ([−1,1] ×U
(
Ê+
))
,

where

S(θ)= S(θ,g)= 1+ η(θ)(g − 1)= (1− η(θ)
)
1+ η(θ)g.

Observe that S(−1) is the inclusion of V in Ê, while S(1)= g. Thus, for every v ∈ V the map

Ψv : [−1,1] ×U
(
Ê+
)→ Ê+, Ψv(θ,g)= S(θ)v,
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satisfies Ψv(1,g) = gΨv(−1,g) and defines a C2-semi-algebraic section of E. Hence T deter-
mines a C2-semi-algebraic bundle morphism T : V → E.

Let (�, θ,g) ∈ Z(T̃ ) ⊂ P(V )× S1 × U(Ê+). This means that the restriction of S(θ) to the
line �⊂ V is trivial, i.e.,

�⊂ ker
((

1− η(θ)
)
1+ η(θ)g

)
.

Clearly when η(t) = 0,1 this is not possible. Hence η(θ) �= 0,1 and thus − 1−η(θ)
η(θ)

must be an
eigenvalue of the unitary operator g. Since η(θ) ∈ (0,1), and the eigenvalues of g are com-
plex numbers of norm 1, we deduce that − 1−η(θ)

η(θ)
can be an eigenvalue of g if and only if

− 1−η(θ)
η(θ)

=−1, so that η(θ)= 1
2 . From the properties of η we conclude that this happens if and

only if θ = 0. Thus

Z(T̃ )= {(�, θ,g) ∈ P(V )× S1 ×U
(
Ê+
); θ = 0, �⊂ ker(1+ g)

}
.

Lemma 38. The section T̃ constructed above vanishes transversally.

Proof. Let (�0,0,g0) ∈ Z(T̃ ). Fix v0 ∈ V spanning �0. Then we can identify an open neighbor-
hood of �0 in P(V ) with an open neighborhood of 0 in the hyperplane �⊥0 ∩V : to any u ∈ �⊥0 ∩V
we associate the line �u spanned by v0 + u. We obtain in this fashion a map

(
�⊥0 ∩ V

)× (−1,1)×U
(
Ê+
) � (u, θ,g) F	−→ (

1+ η(θ)(g − 1)
)
(v0 + u) ∈ Ê+, (6.1)

and we have to prove that the point (0,0,g0) ∈ (�⊥0 ∩ V )× (−1,1)×U(Ê+) is a regular point
of this map.

Choose a smooth path (−ε, ε) � t 	→ (ut , θt ,gt ) ∈ (�⊥0 ∩ V )× (−1,1)×U(Ê+) such that

u0 = 0, θ0 = 0, gt=0 = g0.

We set

u̇ := d

dt

∣∣∣∣
t=0

ut , θ̇ := d

dt

∣∣∣∣
t=0

θt , ġ0 :=
d

dt

∣∣∣∣
t=0

gt ,

and

X := g−1
0 ġ0 = g∗0ġ0, i.e., ġ0 = g0X.

Observe that X is a skew-hermitian operator Ê+ → Ê+, and we can identify the tangent space
to �⊥0 ∩ V × (−1,1)×U(Ê+) at (0,0, S0) with the space of vectors

(u̇, θ̇ ,X) ∈ �⊥0 ∩ V ×R× u
(
Ê+
)
.

Then

d
∣∣∣∣ F(ut , θt ,gt )=

1
(1+ g)u̇0 + η′(0)θ̇0(g0 − 1)(v0)+ η(0)ġ0v0
dt t=0 2
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(−1v0 = g0v0, η′(0)= 1
4 )

= 1

2
(1+ g0)u̇0 + 1

2
θ̇0g0v0 + 1

2
g0Xv0 = 1

2
(1+ g0)u̇0 + 1

2
g0(θ̇01+X)v0.

The surjectivity of the differential of F at (0,0,g0) follows from the fact that the R-linear map

R× u
(
Ê+
) � (θ̇0,X) 	−→ (θ̇0 +X)v0 ∈ Ê+

is surjective for any nonzero vector v0 ∈ Ê+. �
The above lemma proves that Z(T̃ ) is a C1 submanifold of P(V )× S1 ×U(Ê+). It carries a

natural orientation which we will describe a bit later. It thus defines a subanalytic current [Z(T̃ )].
Observe that

Z(T̃ )⊂ P(V )× {θ = 0} ×U
(
Ê+
)⊂ P(V )× S1 ×U

(
Ê+
)
.

The current p∗[Z(T̃ )] is the integration current defined by Z(T̃ ) regarded as submanifold of
P(V )×U(Ê+). Its support has the description

Z(T̃ )= {(�,g) ∈ P(V )×U(Ê); (1+ g)|� = 0
}
.

We set

Z(T̃ )∗ := {(�,g) ∈ Z(T̃ ); �= ker(1+ g), eν /∈ �⊥}.
Note that the projection

π := P(V )×U
(
Ê+
)→U(Ê), (�,g) 	→ g,

maps Z(T̃ ) surjectively onto Xν(−1). Moreover, Z(T̃ )∗ is the preimage under π of the top
stratum W−

ν (−1) of Xν(−1),

Z(T̃ )∗ = π−1(W−
ν (−1)

)
,

and the restriction of π to Z(T̃ ∗) is a bijection with inverse

W−
ν (−1) � g 	→ (

ker(1+ g),g
) ∈ Z(T̃ )∗.

Lemma 39. The map π : Z(T̃ )∗ →W−
ν is a diffeomorphism.

Proof. It suffices to show that the differential of π is everywhere injective. Let ζ0 = (�0,g0) ∈
Z(T̃ )∗. Suppose �0 = span{v0}. We have to prove that if

(−ε, ε) � (�t ,gt ) ∈ Z(T̃ )∗

is a smooth path Z(T̃ )∗ passing through ζ0 at t = 0 and ġ0 := d |t=0gt = 0, then d |t=0�t = 0.

dt dt
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We write �t = span{v0 + ut }, where t 	→ ut ∈ �⊥0 ∩ V is a C1-path such that u0 = 0. Then

gt (v0 + ut )=−v0 − ut , ∀t,

and differentiating with respect to t at t = 0 we get

−u̇0 = g0u̇0 + ġ0(v0)= g0u̇0.

Hence u̇0 ∈ ker(1+ g0). We conclude that u̇0 = 0 because ker(1+ g0) is the line spanned by
v0, and u̇0 ⊥ v0. �

Lemma 39 implies that we have an equality of currents

π∗p∗
[
Z(T̃ )

]=±[Xν(−1)
]
.

To eliminate the sign ambiguity we need to understand the orientation of Z(T̃ ).
We begin by describing the conormal orientation of Z(T̃ ) at a special point ξ0 = (�0,0,g0),

where

�0 = spanC{eν}, and g0ei =
{−1, i = ν,

1, i �= ν.

Observe that g0 is self-adjoint and belongs to the top dimensional stratum W−
ν (−1) of Xν(−1).

Denote by F the differential at ξ0 of the map F described in (6.1).
The fiber at ξ0 of the conormal bundle to Z(T̃ ) is the image of the real adjoint of F ,

F † : T ∗0 Ê+ → T ∗ξ0

(
P(V )× S1 ×U

(
Ê+
))
.

Since F is surjective, its real dual F † is injective. The fiber at ξ0 of the conormal bundle is the
image of F †, and we have an orientation on this fiber induced via F † by the canonical orientation
of Ê+ as a complex vector space.

The canonical orientation of the real cotangent space T ∗0 Ê+ is described by the top degree
exterior monomial

α1 ∧ β1 ∧ · · · ∧ αn ∧ βn,

where αk,βk ∈HomR(Ê
+,R) are defined by

αk(x)=Re(x, ek), βk(x)= Im(x, ek), ∀x ∈ Ê+, k = 1, . . . , n.

For every u̇0 ∈ V , u̇0 ⊥ eν , θ̇0 ∈R and iZ ∈ u(Ê+) we have

F †αk(u̇0, θ̇0, iZ)=Re
(
F(u̇0, θ̇0, iZ), ek

)
= 1

2
Re
(
(1+ g0)u̇0, ek

)+ 1

2
Re
(
g0(θ̇0 + iZ)eν, ek

)
= 1

Re
(
u̇0, (1+ g0)ek

)+ 1
Re
(
(θ̇0 + iZ)eν,g0ek

)
,

2 2
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F †βk(u̇0, θ̇0, iZ)= 1

2
Im
(
u̇0, (1+ g0)ek

)+ 1

2
Im
(
(θ̇0 + iZ)eν,g0ek

)
.

To simplify the final result observe that the restrictions to �⊥0 ∩V of the R-linear functions αk,βk ,
k � ν determine a basis of Hom(�⊥0 ∩ V,R) which we will continue by the same symbols. We
denote by dt the tautological linear map T0R→R.

Recall (see Example 32) that the real dual of u(Ê+) admits a natural basis given by the
R-linear forms

θj (Z)= (Zej , ej ), θ ij (Z)=Re(Zej , ei ), ϕij = Im(Zej , ei ), i < j ∈ I+n , iZ ∈ u(Ê+).
Observe that

θij = θji , ϕij =−ϕji, ∀i �= j.

For every u̇0 ∈ �⊥0 ∩ V , θ̇0 ∈ T0R, iZ ∈ u(Ê+) we have

Re
(
u̇0, (1+ g0)ek

)= {2αk(u̇0), k > ν,

0, k � ν,

Im
(
u̇0, (1+ g0)ek

)= {2βk(u̇0), k > ν,

0, k � ν,

Re
(
(θ̇0 + iZ)eν,g0ek

)= δνkdt (θ̇0)−
{

0, k = ν,

ϕkν(Z), k �= ν,

Im
(
(θ̇0 + iZ)eν,g0ek

)= { θν(Z), k = ν,

θkν(Z), k �= ν.

We deduce the following.

• If k < ν, then

F †αk =−1

2
ϕkν, F †βk = 1

2
θkν.

• If k = ν, then

F †αν = 1

2
dt, F †βν = 1

2
dθν.

• If j > ν, then

F †αj = αj + 1

2
ϕνj , F †βk = βj + 1

2
θνj .

Thus, the conormal space of Z(T̃ ) ↪→ P(V )× S1 × U(Ê) at ξ0 has an orientation given by the
oriented basis
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−ϕ1ν, θ1ν, . . . ,−ϕν−1,ν , θ1,ν , dt, dθν,

αν+1 + 1

2
ϕν,ν+1, βν+1 + 1

2
θν,ν+1, . . . , αn + 1

2
ϕν,n, βn + 1

2
θν,n

which is equivalent with the orientation given by the oriented basis

θ1ν, ϕ1ν, . . . , θ1,ν , ϕν−1,ν , dt, dθν,

αν+1 + 1

2
ϕν,ν+1, βν+1 + 1

2
θν,ν+1, . . . , αn + 1

2
ϕν,n, βn + 1

2
θν,n.

We will represent this oriented basis by the exterior polynomial

ωnorm ∈Λ2nT ∗ξ0

(
P(V )× S1 ×U

(
Ê+
))
,

ωnorm :=
(∧

k<ν

θkν ∧ ϕkν
)
∧ dt ∧ dθν ∧

( ∧
j=ν+1

(
αj + 1

2
ϕνj
)
∧
(
βj + 1

2
θνj
))

.

The zero set Z(T̃ ) is a smooth manifold of dimension

dimR Z(T̃ )= dimR

(
P(V )× S1 ×U

(
Ê+
))− dimR Ê+

= (2n− 2ν)+ 1+ n2 − 2n= n2 − (2ν − 1)= n2 −w(ν).

The orientation of Tξ0(P(V )× S1 ×U(Ê+)) is described by the exterior monomial

Ω = dt ∧
(

n∧
j=ν+1

αj ∧ βj

)
∧
(

n∧
i=1

θi

)
∧
(∧

j<i

θji ∧ ϕji
)

︸ ︷︷ ︸
Ωn

.

The orientation of Tξ0Z(T̃ ) is given by any ω ∈Λn2−w(ν)T ∗ξ0
(P(V )× S1 ×U(Ê+)) such that

Ω̂ = ωnorm ∧ω.

We can take ω to be

ω= ωtan := (−1)ν−1θ1 ∧ · · · ∧ θν−1 ∧ θν+1 ∧ · · · ∧ θn ∧
( ∧

j<k, k �=ν
θjk ∧ ϕjk

)
. (6.2)

If we now think of Z(T̃ ) as an oriented submanifold of P(V )× U(Ê)⊂ P(V )× S1 ×U(Ê+),
we see that its conormal bundle has a natural orientation given by the exterior form

ωnorm
0 =

(∧
θkν ∧ ϕkν

)
∧ dθν ∧

( ∧ (
αj + 1

2
ϕνj
)
∧
(
βj + 1

2
θνj
))

.

k<ν j=ν+1



2406 L.I. Nicolaescu / Advances in Mathematics 224 (2010) 2361–2434
The discussion in Example 32 shows that the tangent space TS0W
−
ν (−1)⊂ TS0U(Ê+) is also ori-

ented by ωtan. This proves that the differential Dπ : T(�0,S0)Z(T̃ )→ TS0W
−
ν (−1) is orientation

preserving. This concludes the proof of Theorem 37. �
Remark 40. The proof of Theorem 37 shows that we have a resolution X̃ν

π→Xν of Xν , where

X̃ν =
{
(�,g) ∈ P(Vν)×U

(
Ê+
); (1− g)|� = 0

}
, Vν := spanC{eν, . . . , en},

and π is induced by the natural projection P(Vν)×U(Ê)→U(Ê+). The map π is a resolution
in the sense that it is semi-algebraic, proper, and it is a diffeomorphism over the top dimensional
stratum W−

ν of Xν .
The map π is also a Bott–Samelson cycle (see [10,39] for a definition) for the Morse function

U(Ê+) � g 	→ −Re trAg ∈R and its critical point gν ∈U(Ê+) given by

gνek =
{

eν, k = ν,

−ek, k �= ν.

All the AS-varieties XI admit such Bott–Samelson resolutions (see [39]), ρI : X̃I → XI . Using
these resolutions Vassiliev defined in [44] the cycles αI . �
Remark 41. We want to describe explicitly an invariant differential form on U(n) representing
the cohomology class α

†
k ∈H 2k−1(U(n)) and compare it with the computations in [41, §5]. As

in [41], we do this to present a consistent set of sign conventions and normalization factors.
The proof of Theorem 37 shows that the Poincaré dual of the Chern class π !cν(E) is rep-

resented by a cycle contained in the slice {0} × U(Ê+). If we denote by j the inclusion
{0} ×U(Ê+) ↪→ S1 ×U(Ê+) we deduce

cν(E)= j !α†
ν =

1

2π
dθ ∧ π∗α†

ν , ∀ν. (6.3)

Now denote by chk(E) the homogeneous part of degree 2k of the Chern character of E. From the
classical Newton identities we deduce that

chk(E)= (−1)k+1

(k − 1)! ck(E)+
1

k!Pk
(
c1(E), . . . , ck−1(E)

)
,

where Pk(c1, . . . , ck−1) denotes a universal homogeneous polynomial of degree 2k with integral
coefficients in the variables ci(E), 1 � i < k, deg ci = 2i. Using the equality (6.3) we deduce

chk(E)= (−1)k+1

(k − 1)! ck(E),

so that

α
† = (−1)k+1(k − 1)!π !chk(E). (6.4)
k
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Let n = dim Ê+ and identify U(Ê+) with U(n) using a unitary basis of Ê+. We can use the
last equality to describe a DeRham representative for α

†
k = α

†
k,n ∈ H 2k−1(U(n)) using the left

invariant Maurer–Cartan form 	 =	n = g−1dg =−d(g)−1g on U(n).
Consider the Z-equivariant connection of the Z-equivariant vector bundle Ẽ → R × U(n)

given by

∇ =∇0 + f (t)g−1dg =∇0 − f (t)
(
d(g)−1)g,

where ∇0 denotes the trivial connection on the trivial rank n bundle over R × U(n) and
f :R→R is a smooth strictly decreasing function such that f (1)= 0, and satisfying the equiv-
ariance condition

f (t + 2k)= f (t)− k, ∀t ∈R, k ∈ Z.

For example, we can take f (t)=− t−1
2 . The sections of E can be identified with Z-equivariant

sections of Ẽ, i.e., maps u :R×U(n)→Cn satisfying the condition

u(t − 2,g)= g−1u(t,g), ∀(t,g) ∈R×U(n).

Observe that

(∇u)(t − 2)=∇0u(t − 2)+ f (t − 2)g−1(dg)u(t − 2)

=∇0(g−1u(t)
)+ f (t)g−1(dg)g−1u(t)+ g−1(dg)g−1u(t)

= (d(g)−1)u(t)+ g−1∇0u(t)− f (t)
(
d(g)−1)u(t)− (d(g)−1)u(t)

= g−1(∇0 − f (t)gd(g)−1)u(t)= g−1∇u(t).

Thus, ∇ induces a connection on the vector bundle E. Using the Maurer–Cartan identity d	 =
−	 ∧	 we deduce that its curvature is given by

F(∇)= d(f	)+ f 2	 ∧	 = df ∧	 + f (f − 1)	 ∧	.

Thus the cohomology class chk(E) is represented by the 2k-form

ik

(2π)kk! tr
(
F(∇)k)= ik

(2π)kk! tr
(
f k(f − 1)k	∧(2k) + k

(
f (f − 1)

)k−1
df ∧	∧(2k−1)).

Integrating with respect to t ∈ [−1,1] using the (decreasing) change in variables t↔ f and the
sign conventions in (B.2) we deduce that π !chk(E) is represented by the form

(−i)k

(2π)k(k − 1)!

( 1∫
f k−1(1− f )k−1 df

)
tr	∧(2k−1).
0



2408 L.I. Nicolaescu / Advances in Mathematics 224 (2010) 2361–2434
In the above integral we recognize the Beta function B(k, k) = (k−1)!(k−1)!
(2k−1)! . From the equality

(6.4) we deduce that α
†
k ∈H 2k−1(U(n)) is represented by the form

Θk =Θk,n = (−1)k+1B(k, k)

(2πi)k
tr
(
	∧(2k−1)). (6.5)

This shows that the differential form (−1)k+1

(k−1)! Θk coincides with the differential form chk−1/2 in
[41, Def. 5.4].

Observe that when k = 1 and n= 1, so that U(1)= S1, then Θ1,1 = 1
2π dθ is the angular form

on S1 with integral periods. Note that for every n > 0 we have a determinant map det : U(n)→
S1 =U(1) and Θ1,n = det∗Θ1,1.

7. The Morse–Floer complex and intersection theory

It is well known that the integral cohomology ring of U(n) is an exterior algebra freely gen-
erated by elements xi ∈H 2i−1(U(n),Z), i = 1, . . . , n. The transgression formula implies that as
generators xi of this ring we can take the AS cocycles α

†
i . In this section we would like to prove

this by direct geometric considerations, and then investigate the cup product of two arbitrary AS

cocycles.

Proposition 42. The AS-cycles αI , I ⊂ I+n , form a Z-basis of H•(Lagh(Ê),Z).

Proof. We will use a Morse theoretic approach. Consider again the Morse flow Ψ t
A = etÂ on

Lagh(Ê).

Lemma 43. The flow Ψ t is a Morse–Stokes flow, i.e., the following hold.

(a) The flow Ψ t is a finite volume flow, i.e., the (n2 + 1)-dimensional manifold{(
t,Ψ 1/t (L),L

); t ∈ (0,1], L ∈ Lagh(Ê)
}⊂ (0,1] × Lagh(Ê)× Lagh(Ê),

has finite volume.
(b) The stable and unstable manifold W±

I have finite volume.
(c) If there exists a tunnelling from ΛI to ΛJ then dimW−

J < dimW−
I .

Proof. From Theorem 64 in Appendix A we deduce that Ψ t is a tame flow. Proposition 63 now
implies that the flow satisfies (a) and (b). Property (c) follows from Proposition 24. �

As in Harvey and Lawson [21], we consider the subcomplex C•(Ψ t ) of the complex
C•(Lagh(Ê)) of subanalytic chains generated by the analytic chains [W−

I ,orI ], and their bound-
aries. According to [21, Thm. 4.1], the inclusion C•(Ψ t ) ↪→ C• induces an isomorphism in
homology.

Proposition 33 implies that the complex C•(Ψ t ) is perfect. Hence the AS cycles, which form
an integral basis of the complex C•(Ψ t ), also form an integral basis of the integral homology
of Lagh(Ê). �
Remark 44. The complex C•(Ψ t ) is isomorphic to the Morse–Floer complex of the flow Ψ t [35,
§2.5].
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The results of Harvey and Lawson [21] have the following consequence.

Corollary 45. Consider the invariant forms Θk ∈H 2k−1(U(n)) defined in the previous section.
For every t ∈R define

Θk(t) :=
(
Ψ−t)∗Θk.

Then, as t →∞, the form Θk(t) converges in the sense of currents to the integration current
defined by αk .

Using the Poincaré duality on U(Ê+) we obtain intersection products

• :Hn2−p
(
U
(
Ê+
)
,Z
)×Hn2−q

(
U
(
Ê+
)
,Z
)→Hn2−p−q

(
U
(
Ê+
)
,Z
)
.

For every pair of nonempty, disjoint subsets I, J ⊂ I+n such that

I = {i1 < · · ·< ip}, J = {j1 < · · ·< jq},
we define ε(I, J )=±1 to be the signature of the permutation (i1, . . . , ip; j1, . . . , jq) of I ∪ J .

Proposition 46. Let I, J ⊂ I+n such that w(I )+w(J )=w(I+n )= n2. Then

αI • αJ =
{

0, I ∩ J �= ∅,
ε(I, J ), I = J c.

Proof. Fix a unitary basis {e1, . . . , en} of Ê+, and consider the symmetric operator

A0 : Ê+ → Ê+, A0ei = 2i − 1

2
ei .

We form as usual the associated symmetric operator Â0 : Ê→ Ê, and the positive gradient flow
etÂ0 on Lagh(Ê) associated to the Morse function

ϕ0 : Lagh(Ê)→R, L 	→Re tr(Â0PL).

For every critical point ΛK of ϕ0 we have

dimW−
K =w(K)= ϕ0(ΛK)+ n2

2
.

For every M ⊂ I+n we denote by W+
M the stable manifold at Λ+M .

Let w(I )+w(J )=w(I+n ). Using the equality

W+
J c = JW−

J

we deduce that W+
J c is also an AS cell of type J , so that we can represent the homology class αJ

by the subanalytic cycle given as the integration over the stable manifold W+
I c equipped with the

orientation induced by the diffeomorphism J :W− →W+
c . We denote by X+c its closure.
J J J
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We have ϕ0(ΛJc )=−ϕ0(ΛJ ), and the equality w(I )+w(J )= n2 translates into the equality

ϕ0(ΛJc)= ϕ0(ΛI )=: κ.
Observe that,

X+J c \ {ΛJc } ⊂ {ϕ0 > κ}, X−I \ {ΛI } ⊂ {ϕ0 < κ}.

This shows that if I c �= J and w(I c)= w(J ) the supports of the subanalytic currents [X+J c ] and
[X−I ] are disjoint, so that, in this case, αI • αJ = 0.

When J = I c we see that the supports of the above subanalytic cycles intersect only at ΛI .
In fact, only the top dimensional strata of their supports intersect, and they do so transversally.
Hence the intersection of the analytic cycles [X+J c ] and [X−I ] is well defined, and from Proposi-
tion 69 in Appendix B we deduce [

X+J c
] • [X−I ]=±[ΛI ],

where [ΛI ] denotes the Dirac 0-dimensional current supported at ΛI . The fact that the correct
choice of signs is ε(I, I c) follows from our orientation conventions. �

From the above result we deduce that for every cycle c ∈Hk(U(n),Z) we have a decomposi-
tion

c=
∑

w(I )=k
ε
(
I, I c

)
(c • αI c )αI . (7.1)

Theorem 47 (Odd Schubert calculus). If I = {ik < · · ·< i1} ⊂ I+n then

αI = αik • · · · • αi1, (7.2)

or equivalently,

α
†
I = α

†
ik
∧ · · · ∧ α

†
i1
. (7.3)

Proof. Let us first describe our strategy. Fix a unitary basis e of Ê+, an injection ρ : I → S1 \
{±1}, i 	→ ρi , and consider the AS varieties Xi (ρi) = Xi (ρi, e), i ∈ I , defined in (5.1). We
denote by [Xi (ρi)] the associated subanalytic cycles. We will prove the following facts.

A. The varieties Xi� intersect quasi-transversally, i.e., for any subset J ⊂ I we have

codim
⋂
j∈J

Xj (ρj )� w(J ).

B. There exists a continuous semi-algebraic map Ξ : U(Ê+)→ U(Ê+), semi-algebraically
homotopic to the identity such that

Ξ

(⋂
i∈I

Xi (ρi)

)
⊂XI =XI (1).
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C. The intersection current [Xik (ρik )] • · · · • [Xi1(ρi1)] • [XI c (1)] is a well defined zero dimen-
sional subanalytic current consisting of a single point with multiplicity ε(I, I c).

We claim that the above facts imply (7.2). To see this, note first that A implies that, according to
[18] (see also Appendix B), we can form the intersection current

η= [Xik (ρik )
] • · · · • [Xi1(ρi1)

]
.

The current η is a subanalytic current whose homology class is αik • · · · • αi1 , and its support is

supp(η)=
(⋂

i∈I
Xi (ρi)

)
.

The push-forward Ξ∗(η) is also a subanalytic current and it represents the same homology class
since Ξ is homotopic to the identity. Moreover, property B shows that

suppΞ∗(η)⊂XI (1).

Consider again the dual AS varieties X+J , w(J )=w(I ). In the proof of Proposition 46 we have
seen that

XI ∩X+J = ∅, if J �= I.

Hence, the equality (7.1) implies that there exists an integer k = kI such that

αik • · · · • αi1 = kIαI ,

where

kI = ε
(
I, I c

)
(αik • · · · • αi1) • αI c .

The equality kI = 1 now follows from C.

Proof of A. Since the set of unitary operators with simple eigenvalues is open and dense, we
deduce that the set

YJ :=
⋂
j∈J

Xj (ρj )

contains a dense open subset OJ consisting of operators g such that

dimC ker(ρj − g)= 1, ∀j ∈ J.
For ν ∈ I+n we set F ν := span{ei , i � ν}.

Observe that if g ∈ OJ , then for every j ∈ J we have ker(ρj − g) ⊂ F⊥
j−1. Suppose that

J = {jm < · · ·< j1}, and define

Φ :OJ → P
(
F⊥ )× · · · × P

(
F⊥ )

, g 	→ (
ker(ρjm − g), . . . ,ker(ρj − g)

)
.
jm j1−1 1
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The image of Φ is

Φ(OJ )=
{
(�m, . . . , �1) ∈ P

(
F⊥
jm

)× · · · × P
(
F⊥
j1−1

);�i ⊥ �i′ ,∀i �= i′
}
.

The resulting map OJ →Φ(OJ ) is a fibration with fiber over (�m, . . . , �1) diffeomorphic to the
manifold F consisting of the unitary operators on the subspace (�m⊕· · ·⊕ �1)

⊥ ⊂ Ê+ which do
not have the numbers ρj , j ∈ J , in their spectra. The manifold F is open in this group of unitary
operators. Now observe that

dimRΦ(OJ )= 2(n− jm)+ 2(n− 1− jm−1)+ · · · + 2
(
n− (m− 1)− j1

)
= 2nm−m(m− 1)− 2

∑
j∈J

j.

The fiber F has dimension (n−m)2 so that

dimR OJ = (n−m)2 + 2nm−m(m− 1)− 2
∑
j∈J

j = n2 −
∑
j∈J

(2j − 1).

Hence

codimYJ = codimOJ =w(J ).

Proof of B. In the proof we will need the following technical result.

Lemma 48. For any finite subset R ⊂ S1 \ {−1} there exists a C2-semi-algebraic map ξ : S1 →
S1 which is semi-algebraically homotopic to the identity and satisfies the condition

ξ−1(1)=R.

Proof. For every ρ ∈ R, we define t (ρ) to be the unique real number t ∈ (−1,1) such ρ = eit ,
ti ∈ (−π,π), and we consider a C2-semi-algebraic map

f : [−π,π]→ [−π,π]

satisfying the following conditions (see Fig. 1, where k = #R)

• f (±π)=±π .
• f−1(0)= {t (ρ);ρ ∈R}.

Now define ξ : S1 → S1 by setting

ξ
(
eit
)= eif (t), t ∈ [−π,π].

We have a C2 semi-algebraic homotopy between ξ and the identity map given by

ξs
(
eit
)= ei((1−s)f (t)+st), s ∈ [0,1], t ∈ [−π,π]. �
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Fig. 1. Constructing degree 1 self maps of the circle.

Using the map ξ in Lemma 48 where R = {ρi; i ∈ I } we define

Ξ :U(Ê+)→U
(
Ê+
)
, g 	→Ξ(g).

The map Ξ is semi-algebraic because its graph ΓΞ ⊂ U(Ê+) × U(Ê+) can be given the de-
scription

ΓΞ =
{(

g,g′
); ∃A ∈U(Ê+), AgA∗ =Diag(λ1, . . . , λn), Ag′A∗ =Diag

(
ξ(λ1), . . . , ξ(λn)

)}
.

The continuity of Ξ is classical; see e.g. [11, Theorem X.7.2].
If we consider the set OI defined in the proof of A then we notice that Ξ(OI ) ⊂W−

I (e,1)
and thus

Ξ

(⋂
i∈I

Xi (ρi)

)
=Ξ

(
cl(OI )

)⊂ cl
(
W−

I (1)
)=XI (1).

This proves B.

Proof of C. For ν ∈ I+n and ρ �= −1 we set

∗W−
ν (ρ) :=

{
S ∈W−

ν ; dimC ker(ρ − S)= 1, ker(1+ S)= 0
}
.

Note that ∗W−
ν (ρ) is an open and dense subset of W−

ν (ρ). We first want to produce a natural
trivializing frame of the conormal bundle of ∗W−

ν (ρ). Set λ := −i 1−ρ
1+ρ .

The Cayley transform

g 	→ −i(1− g)(1+ g)−1

maps ∗W−
ν (ρ) onto the subset R∗ν of the space of hermitian operators A : Ê+ → Ê+ such that

• dim ker(λ−A)= 1.
• ej ⊥ ker(λ−A), ∀j < ν.
• (eν,u) �= 0, ∀u ∈ ker(λ−A), u �= 0.
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Note that for any A ∈ R∗ν there exists a unique vector u = uA ∈ ker(λ − A) such that
(u, eν) = 1. For A ∈ R∗ν we denote by (λ − A)[−1] the unique hermitian operator Ê+ → Ê+
such that

(λ−A)[−1]uA = 0, (λ−A)[−1](λ−A)v = v, ∀v ⊥ uA.

If (−ε, ε) � t 	→ At ∈ R∗ν is a smooth path, and ut := uAt , then differentiating the equality
Atut = λut at t = 0 we deduce

Ȧ0u0 = (λ−A0)u̇0.

Taking the inner product with u0 we deduce

(Ȧ0u0,u0)= 0.

We write u̇0 = cu0 + v̇0, where (v0,u0)= (v0, ej )= 0, ∀j < ν. We deduce

v0 = (λ−A0)
[−1]Ȧ0u0,

so that (
Ȧ0u0, (λ−A0)

[−1]ej
)= (v0, ej )= 0, ∀j < ν.

This shows that the fiber at A0 of the conormal bundle of R∗ν contains the R-linear forms

Ȧ0 	→ uν(Ȧ0)= uνA0
(Ȧ0)= (Ȧ0u0,u0),

Ȧ0 	→ ujν(Ȧ0)= u
jν
A0
(Ȧ0)=Re

(
Ȧ0u0, (λ−A0)

[−1]ej
)
,

Ȧ0 	→ vjν(Ȧ0)= v
jν
A0
(Ȧ0)= Im

(
Ȧ0u0, (λ−A0)

[−1]ej
)
.

Since the vectors ej , j < ν lie in the orthogonal complement of ker(λ−A0) we deduce that the
vectors (λ−A0)

[−1]ej , j < ν are linearly independent over C. A dimension count now implies
that the above linear forms form a basis of the fiber at A0 of the conormal bundle of R∗ν . Since

the forms uνA, ujνA , vjνA depend smoothly on A ∈R∗ν , we deduce that they define a smooth frame
of the conormal bundle. Moreover, the canonical orientation of R∗ν is given by

(−1)w(ν)uν ∧
∧
j<ν

ujν ∧ vjν.

In particular, we deduce that if g ∈ ∗W−
ν (ρ) is a unitary operator such that the vectors ei are

eigenvectors of g, then the canonical orientation of the fiber of S of the conormal bundle of
∗W−

ν (ρ) is given by

θν ∧
∧
j<ν

θjν ∧ ϕjν,

where for any ġ ∈ TgU(Ê+) we have
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θν(ġ)= (−ig−1ġeν, eν
)
, θjν(ġ)=Re

(−iS−1ġeν, ej
)
,

ϕjν(ġ)= Im
(−ig−1ġeν, ej

)
.

We deduce that if ρ : I → S1 \ {±1} is an injective map, then the manifolds ∗W−
i (ρi), i ∈ I ,

intersect transversally.
Now observe that the manifolds ∗W−

i (ρi), i ∈ I , and W−
I c (1) intersect at a unique point g0 ∈

U(Ê+), where

g0ej =
{
ρjej , j ∈ I,
ej , j ∈ I c.

The computations in Example 32 show that this intersection is transversal, and moreover, at S0
we have

or⊥ik ∧ · · · ∧ or⊥i1 ∧ or⊥I c = ε
(
I, I c

)
or
(
T ∗g0

U
(
Ê+
))
.

The equality kI = 1 now follows by invoking Proposition 69 in Appendix B applied to the
elementary cycles [∗W−

i (ρi),or⊥i ] = [Xi ,or⊥i ], i ∈ I , and [W−
I c ,or⊥I c ] which intersect conve-

niently. �
We conclude this section with a simple application of the above Schubert calculus motivated

by the index theoretic results in [7].

Proposition 49. For 1 < k � n we denote by Σk,n the locus of unitary n× n matrices that have
an eigenvalue of multiplicity � k. Then Σk,n is a semi-algebraic set, and the integration current
defined by Σk,n equipped with a suitable orientation is a cycle Poincaré dual to the cohomology
class nα†

2 ∪ · · · ∪ α
†
k ∈H •(U(n)).

Proof. The set {g ∈ U(n);dim ker(1− g) � k} is the closure X1,2,...,k of the AS-cell W1,2,...,k .
This determines the AS cycle α1,...,k . Consider now the double fibration

S1 ×U(n)

π μ

U(n) U(n)

(7.4)

where π is the natural projection, and μ is the multiplication map

S1 ×U(n) � (z,g) 	→ z−1g ∈U(n).

Both maps π and μ define trivial principal S1-bundles over U(n). Moreover, we have the set
theoretic equality

Σk,n = π
(
μ−1(X1,...,k)

)
. (7.5)
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Set Zk := μ−1(X1,...,k), and denote by Z∗k the subset of Zk consisting of pairs (z,g) ∈ S1×U(n)

such that z is an eigenvalue of g of multiplicity precisely k, while all the other eigenvalues of g

are simple. Note that Zk is a semi-algebraic variety of dimension

dimZk = 1+ dimX1,2,...,k,

while Z∗k is an open and dense semi-algebraic subset of Zk . Hence dimZ∗k = dimZk .

The induced map Z∗k
π→Σk,n is semi-algebraic. Since k > 1, this map is also injective, and its

image Σ∗
k,n is open and dense in Σk,n. The scissor principle (see Appendix A) implies that Σ∗

n,k

is a semi-algebraic set of dimension

dimΣk,n = dimΣ∗
k,n = dimZ∗k = 1+ dimX1,2,...,k = dimX2,...,k.

We can use the diagram (7.4) to define the (closed) current π∗μ−1[X1,2,...,k]. The above discus-
sion shows that it can be identified with the current of integration along Σ∗

k,n equipped with an
appropriate orientation. We will denote this current by [Σk,n].

The Poincaré dual of [Σk,n] is given by the cohomology class

σ
†
k,n := π !μ∗α†

1,2,...,k,

where π! :H •(S1 ×U(n),Z)→H •−1(U(n),Z) denotes the Gysin morphism induced by π .
We can write μ as the composition

μ= π ◦Φ, Φ : S1 ×U(n)→ S1 ×U(n), (z,g) 	→ (
z, z−1g

)
.

Hence

σ
†
k,n = π !Φ∗π∗α†

1,2,...,k.

Set Ξk :=Φ∗π∗α†
k . From the Schubert calculus we deduce that

σ k,n = π !(Ξ1 ∧ · · · ∧Ξk).

Denote by θ the angular coordinate on S1. Recall that α†
k is represented by the form Θk defined

in (6.5)

Θk = rk tr
(
	 2k−1), rk = (−1)k+1B(k, k)

(2πi)k
, 	 = g−1dg.

We have the following result whose proof will be presented later.

Lemma 50.

(a) Φ∗π∗Θ1 =− n
2π dθ + π∗Θ1.

(b) For any j � 2 the form Φ∗π∗Θj − π∗Θj is exact.
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From the above lemma we deduce that

Ξ1 =−n[dθ/2π] + π∗α†
1, Ξk = π∗α†

j ,

so that

Φ∗π∗α†
1,...,k =−n[dθ/2π] ∧ π∗α†

2,...,k + π∗α1,...,k.

Given that π ![dθ/2π] = 1 we deduce from the projection formula that

σ
†
k,n =−nα†

2,...,k.

Proof of Lemma 50. For simplicity we write

π∗ tr
(
	 2j−1)= tr

(
g−1dg

)∧(2j−1) = tr(	)2j−1.

Then

Φ∗ tr
(
g−1 dg

)∧(2j−1) = tr
(
zg−1 d

(
z−1g

)∧(2j−1))
= tr

((−z−1 dz1Cn + g−1 dg
)∧(2j−1))

= tr
(
g−1dg

)∧(2j−1)

− tr

( 2j−2∑
i=0

(
g−1 dg

)∧i ∧ (z−1 dz
)∧ (g−1 dg

)∧(2j−2−i)
)

= tr
(
g−1 dg

)∧(2j−1) − tr

( 2j−2∑
i=0

(−1)i
(
z−1 dz

)∧ (g−1dg
)∧(2j−2)

)
= tr(	)∧(2j−1) − tr

((
z−1 dz

)∧	∧(2j)).
From the Maurer–Cartan equality d	 =−	 ∧	 we deduce

Φ∗ tr
(
	 2j−1)= tr(	)∧(2j−1) + (−1)j tr

(
z−1 dz∧ (d	)∧(j−1)).

If j = 1, then

Φ∗ tr	 = tr	 − tr
(
z−1 dz1Cn

)= tr	 − i dθ,

so that

r1Φ
∗ tr	 = r1 tr	 − n

2π
dθ.

If j > 1, then we observe that

tr
(
z−1 dz∧ (d	)∧(j−1))=−d tr

(
z−1 dz∧	 ∧ (d	)∧(j−2)). �
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Remark 51. The factor n in the equality σ k,n =±nα†
2 ∪ · · · ∪α

†
k can be an annoyance if the goal

is to investigate the case n=∞. Here is one possible strategy of getting rid of it.
Suppose X is compact, oriented real analytic manifold and g :X→U(n), x 	→ gx is smooth

tame (e.g. subanalytic) map. We define the spectral flow of the map g to be the cohomology class
SF(g) ∈H 1(X,Z)

SF (g)= g∗α†
1 = (detg)∗

(
1

2π
dθ

)
,

where 1
2π dθ denotes the canonical generator of H 1(S1,Z). Note that we have a branched cover

π : X̃→X, where

X̃ := {(z, x) ∈ S1 ×X; det(z− gx)= 0
}
,

and π is induced by the canonical projection S1×X→X. Under certain transversality assump-
tions one can prove that, if the spectral flow of the family g is trivial, then we can find continuous
tame maps

u1, . . . , un :X→Cn, λ1, . . . , λn :X→R

such that for every x ∈X the following hold.

• The collection (u1(x), . . . , un(x)) is an orthonormal frame of Cn.
• λ1(x)� · · ·� λn(x).
• gxuk(x)= eiλk(x)uk(x), ∀k = 1, . . . , n.

For every 1 � i � n we consider the locus

Σi,k,n :=
{
x ∈X; λi(x)= · · · = λi+k−1(x)

}
,

where we for any i ∈ Z we set λi+n = λi . The loci Σi,k,n define closed subanalytic currents
satisfying

n[Σi,k,n] = [Σk,n], ∀1 � i � n.

We will carry out the details elsewhere. �
8. Symplectic reductions

The stratifications we have constructed behave well with respect to a standard operation in
symplectic geometry, namely the operation of symplectic reduction. We briefly recall a special
case.

Suppose I⊂ Ê+ is an isotropic subspace of Ê, so that I⊂ J I⊥. The quotient space

ÊI :=
(
J I⊥

)
/I
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is a hermitian symplectic space called the symplectic reduction of Ê mod I. If we denote by
I⊥hor the orthogonal complement of I in Ê+, then we can identify ÊI with the subspace I⊥hor ⊕
J I⊥hor ⊂ Ê. We denote by PI the orthogonal projection onto this subspace.

We say that a lagrangian L ∈ Lagh(Ê) is clean mod I if L ∩ I = 0, and we denote by
Lagh(Ê, I) the open and dense subset consisting of such lagrangians. The symplectic reduction
mod I is the map

RI : Lagh(Ê)→ Lagh(ÊI), Lagh(Ê) � L 	−→ LI := PI

(
L∩ (Ê+ + J I⊥hor

)) ∈ Lagh(ÊI).

The restriction of RI to Lagh(Ê, I) is continuous. We want to analyze in greater detail a special
case of this construction since it is relevant to our main problem.

For every positive integer N we denote by ÊN the hermitian symplectic space

ÊN :=CN ⊕CN

equipped with the natural symplectic structure, and we set Lagh(N) := Lagh(ÊN). We denote
by (ei ) the natural unitary basis of CN ⊕ 0 and by (f j ) the natural unitary basis of 0⊕CN . We
set IN = 0, and for n <N we denote by In the isotropic subspace of ÊN defined by

In = spanC{ei; i > n}.

We have a natural isomorphism Ên
∼= (ÊN )In .

For I ⊂ {1,2, . . . ,N} we denote by XN
I the Arnold–Schubert variety determined by I and the

decreasing isotropic flag (I•). In particular, when I = {k} we have

XN
k+1 =

{
L ∈ Lagh(N); L∩ Ik �= 0

}
.

We set Lagh(N;n) := Lagh(ÊN , I
n). Observe that

Lagh(N;n)= Lagh(N) \XN
n+1.

We obtain an increasing filtration by open subsets

Lagh(N,1)⊂ Lagh(N,2)⊂ · · · ⊂ Lagh(N,N)= Lagh(N). (8.1)

For every I ⊂ I+n = {1, . . . , n} we set

ΛN
I = spanC{ei; i ∈ I } ⊕ spanC

{
f j ; j ∈ I+N \ I

} ∈ Lagh(N),

and

Lagh(N)I =
{
L ∈ Lagh(N); L∩ JNΛ

N
I = 0

}
.

Observe that In ⊂ JNΛ
N
I , ∀I ⊂ I+n , so that⋃

+
Lagh(N)I ⊂ Lagh(N,n).
I⊂In
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In fact, we can be more precise.

Proposition 52. Let Rn,N denote the symplectic reduction map Lagh(N,n)→ Lagh(n). Then
for every I ⊂ I+n we have

Lagh(N)I =R−1
n,N

(
Lagh(n)I

)
, Rn,N

(
Lagh(N)I

)= Lagh(n)I .

In particular, ⋃
I⊂I

+
n

Lagh(N)I = Lagh(N;n).

Proof. Let L ∈ Lagh(N,n), and denote by L′ the symplectic reduction of L mod In. We have to
prove two things.

A. If L′ ∈ Lagh(n)I for some I ⊂ I+n , then L ∈ Lagh(N)I .
B. If L ∈ Lagh(N)I for some I ⊂ I+n , then L′ ∈ Lagh(n)I .

Proof of A. We know that L′ ∩ J nΛ
n
I = 0 and have to prove that L∩ JNΛ

N
I = 0. We argue by

contradiction. Suppose that ∃u ∈ L∩ JNΛ
N
I , u �= 0. Observe that

ΛN
I =Λn

I ⊕ spanC{f j ; j > n} =Λn
I ⊕ JNIn.

Note that u ∈ L∩ (JΛn
I ⊕ In) so we can write

u= v +w, v ∈ JΛn
I , w ∈ In.

Since L∩In = 0 we deduce v �= 0. Observe that Ên = I⊥n ⊕J I⊥n =Λn
I ⊕JΛn

I , where I⊥n denotes
the orthogonal complement of In in CN ⊕0. If Pn : ÊN → Ên denotes the orthogonal projection,
then we have

L′ =Rn,NL= Pn

(
L∩ (Ên ⊕ In)

)
.

Note that u ∈ L∩ (Ên ⊕ In). We conclude that v ∈ L′ ∩ JΛn
I = 0. This contradiction proves A.

Proof of B. Since L ∈ Lagh(ÊN)I we can find a hermitian matrix (xij )1�i,j�N such that L is
spanned by the vectors ei (L) i ∈ I , and f j (L), j ∈ I cN = I+N \ I , where,

ei (L)= ei +
∑
i′∈I

xi′if i′ −
∑
j∈I cN

xjiej , i ∈ I, (8.2a)

f j (L)= f j +
∑
i∈I

xijf i −
∑
j ′∈I cN

xj ′jej ′ , j ∈ I cN . (8.2b)

From the above we deduce that the collection of vectors{
ei (L),f k(L); i ∈ I, k ∈ I cn := I+n \ I

}
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is a basis of L∩ (Ên⊕ In). Hence L∩ (Ên⊕ In) has complex dimension n, and we deduce that
the vectors

ei
(
L′
)= Pnei (L)= ei +

∑
i′∈I

xi′if i′ −
∑
k∈I cn

xkiek, i ∈ I, (8.3a)

f k

(
L′
)= Pnf k(L)= f k +

∑
i∈I

xikf i −
∑
k′∈I cn

xk′jkek′ , k ∈ I cn (8.3b)

form a basis of L′. This shows that L′ ∈ Lagh(n)I , and in fact, that the Arnold coordinates of L′
in the chart Lagh(n)I are described by the hermitian matrix (tij )1�i,j�n. �

Denote by {W−
I,N ; I ⊂ I+N } the Arnold–Schubert stratification of Lagh(N) determined by the

isotropic flag I0 ⊃ I1 ⊃ · · ·. Observe that if I ⊂ I+n , then

Lagh(N,n)=
⋃
I⊂I

+
n

W−
I,N . (8.4)

From the proof of Proposition 52 we deduce the following consequences.

Corollary 53. The symplectic reduction map Rn,N : Lagh(N,n)→ Lagh(n) is a surjective sub-

mersion with fibers diffeomorphic to RN2−n2
. Moreover, for every I ⊂ I+n we have

W−
I,n =Rn,N

(
W−

I,N

)
, W−

I,N =R−1
n,N

(
W−

I,n

)
.

Moreover, if N > n>m, then

Rm,N =Rm,n ◦Rn,N .

The fibration Rn,N : Lagh(N,n)→ Lagh(n) admits a natural section (extension map)

Lagh(n) � L′ 	−→ EN,n

(
L′
)= L′ ⊕ spanC{f k; k > n} ∈ Lagh(N,n).

Using the extension map EN,n we can give a Morse theoretic interpretation of the symplectic
reduction map.

Consider the hermitian matrix B̂ = B̂N,n : ÊN → ÊN given such that

−B̂f k = B̂ek =
{

0, i � n,

k, n < k �N.
(8.5)

We obtain as before a Morse–Bott function fn : Lagh(N)→R, fn(L)=Re tr(B̂PL). The (posi-
tive) gradient flow of this function is given by

Φt
n(L)= etB̂L, ∀L ∈ Lagh(N).

Using (8.2a)–(8.2b) we deduce that if L ∈ Lagh(N)I , I ⊂ I+n , and (xij )1�i,j�N are its Arnold
coordinates then (8.3a)–(8.3b) and (8.5) we deduce the following result.
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Proposition 54.

(a) The submanifold EN,n(Lagh(n)) ⊂ Lagh(N) is the critical submanifold of fn consisting of
the absolute minima. The region Lagh(N,n) is the repelling region (unstable variety) of this
critical set.

(b) For every L ∈ Lagh(N,n) we have

lim
t→∞ e−tB̂ (L)= EN,n

(
Rn,N (L)

)
,

where B̂ is described by (8.5).
(c) The flow L 	→ e−tB̂L extends to a smooth map

Ψ̂ : [0,∞]× Lagh(N,n)→ Lagh(N,n), (t,L) 	→ lim
s↗t

e−tB̂L.

Proof. Suppose that L ∈ Lagh(N)I , I ⊂ I+n , and (xij )1�i�j�N are its Arnold coordinates. Us-

ing (8.2a)–(8.2b) we deduce that the Arnold coordinates of Lt = etB̂ are

xij (t)=
⎧⎨⎩
xij if i � j � n,

ejtxij if i � n < j,

e(i+j)t xij if n < i � j.

The last equality proves (a) and (b). The smoothness of Ψn away from t =∞ is obvious. Near
t =∞ we use the coordinate s defined by e−t = 1

s
, i.e., t = 1

log s . Then

xij (−t)=
⎧⎨⎩
xij if i � j � n,

sj xij if i � n < j,

s(i+j)xij if n < i � j,

which proves the smoothness of Ψ̂ near t =∞. �
Let us observe that the extension map EN,n : Lagh(n)→ Lagh(N) corresponds via the Cayley

diffeomorphisms Lagh(m)→U(m) to the map

EN,n :U(n)→U(N), U(n) � g 	→ g⊕ (−1CN−n) ∈U(N).

This map has the property that

E∗
N,nΘk,N =Θk,n, ∀k � n, (8.6)

where the closed differential forms Θk,m ∈ Ω2k−1(U(m)) are defined by (6.5). We denote by
Θ̂k,m ∈ Ω2k−1(Lagh(m)) the pullbacks of Θk,m via the Cayley transform. Using (8.6) and
Proposition 54 we obtain the following result.
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Corollary 55. For every integers 1 � k � n < N there exists a canonical form θ̂k,n,N ∈
Ω2k−2(Lagh(N,n)) such that

Θ̂k,N |Lagh(N,n) −R∗N,nΘ̂k,n = d θ̂k,n,N .

Proof. The form θ̂k,n,N is obtained by integrating along the fibers of the natural projection

[0,∞]× Lagh(N,n)
π→ Lagh(N,n)

the form Ψ̂ ∗Θ̂k,N ∈Ω2k−1([0,∞]× Lagh(N,n)), i.e., θ̂k,n,N = π !Ψ̂ ∗Θ̂k,N . �
Remark 56. In the most trivial case, n = 0, we have B = 1 and the flow (t,L)→ e−tB̂L is
precisely the deformation used by Quillen in [41, §5.B].

The above result has a homological counterpart.

Proposition 57. Suppose X is a compact, oriented real analytic manifold and F :X→ Lagh(N)

is a real analytic map.

(a) There exists a decreasing isotropic flag (Im)0�m�N of CN ⊕CN such that F is transversal
to the Arnold–Schubert strata (W−

I,N )I⊂I
+
N

defined by I•. We set

(b) Fix a transversal isotropic flag (I•) as above. Then F(X)⊂ Lagh(N,n) if dimX < (2n+1).
(c) Fix n such that (2n+ 1) > dimX, denote by Rn,N : Lagh(N,n)→ Lagh(n) the symplectic

reduction map, and by Fn the composition

Fn =Rn,N ◦ F.

Then for every 1 � k � n we have F−1(XN
k )= F−1

n (Xn
k ).

(d) The current of integration over the smooth locus of F−1(XN
k ) is a subanalytic cycle Poincaré

dual to F ∗(α†
k,N ).

Proof. Part (a) follows from Remark 30. Observe that the complement XN
n+1 = Lagh(N) \

Lagh(N,n) has codimension (2n+ 1). Part (b) now follows from the transversality of F . Part
(c) follows from Proposition 52.

Via the map F the Whitney stratification of Lagh(N) by Arnold–Schubert strata pulls back
to a Whitney regular stratification of X by real analytic and globally subanalytic strata. The
smooth locus of F−1(XN

k ) is naturally co-oriented, it has finite volume, and its complement has
codimension � 2. Denote by [F−1(XN

k )] the current of integration over the smooth locus of
F−1(XN

k ). This current is a subanalytic cycle.

In Lagh(N), the subanalytic current defined by XN
k is Poincaré dual to α

†
k,N . The fact that

[F−1(XN
k )] is the Poincaré dual of F ∗(α†

k,N ) follows from the (proof of the) slicing theorem
(Theorem 66) coupled with the transversality and the tameness of F . �
Remark 58. The real analyticity of the map F seems unavoidable if we are to stay in the realm
of currents. We can dispense with this assumption, and allow F to be only C∞ if we define the
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cocycles α
†
I using Čech cohomology. This approach is explained in great detail in Cibotaru’s

dissertation [5].
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Appendix A. Tame geometry

Since the subject of tame geometry is not very familiar to many geometers we devote this
section to a brief introduction to this topic. Unavoidably, we will have to omit many interesting
details and contributions, but we refer to [6,8,9] for more systematic presentations. For every set
X we will denote by P(X) the collection of all subsets of X.

An R-structure4 is a collection S= {Sn}n�1, Sn ⊂ P(Rn), with the following properties.

E1. Sn contains all the real algebraic subvarieties of Rn, i.e., the zero sets of finite collections of
polynomial in n real variables.

E2. For every linear map L :Rn→R, the half-plane {
x ∈Rn;L(x)� 0} belongs to Sn.
P1. For every n� 1, the family Sn is closed under boolean operations, ∪, ∩ and complement.
P2. If A ∈ Sm, and B ∈ Sn, then A×B ∈ Sm+n.
P3. If A ∈ Sm, and T :Rm→Rn is an affine map, then T (A) ∈ Sn.

Example 59 (Semi-algebraic sets). Denote by Salg the collection of real semi-algebraic sets.
Thus, A ∈ Snalg if and only if A is a finite union of sets, each of which is described by finitely
many polynomial equalities and inequalities. The celebrated Tarski–Seidenberg theorem states
that Salg is a structure.

Let S be an R-structure. Then a set that belongs to one of the Sns is called S-definable. If
A,B are S-definable, then a function f :A→ B is called S-definable if its graph Γf := {(a, b) ∈
A×B;b= f (a)} is S-definable.

Given a collection A= (An)n�1, An ⊂ P(Rn), we can form a new structure S(A), which is
the smallest structure containing S and the sets in An. We say that S(A) is obtained from S by
adjoining the collection A.

Definition 60. An R-structure is called o-minimal (order minimal) or tame if it satisfies the
property

T. Any set A ∈ S1 is a finite union of open intervals (a, b), −∞ � a < b �∞, and single-
tons {r}.

4 This is a highly condensed and special version of the traditional definition of structure. The model theoretic definition
allows for ordered fields, other than R, such as extensions of R by “infinitesimals”. This can come in handy even if one
is interested only in the field R.
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Example 61.

(a) (Tarski–Seidenberg) The collection Salg of real semi-algebraic sets is a tame structure.
(b) (A. Gabrielov, R. Hardt, H. Hironaka [16,20,23]) A restricted real analytic function is a

function f :Rn→R with the property that there exists a real analytic function f̃ defined in
an open neighborhood U of the cube Cn := [−1,1]n such that

f (x)=
{
f̃ (x), x ∈ Cn,

0, x ∈Rn \Cn,

we denote by San the structure obtained from Salg by adjoining the graphs of all the restricted
real analytic functions. Then San is a tame structure, and the San-definable sets are called
globally subanalytic sets.

(c) (A. Khovanskii, P. Speissegger, A. Wilkie [25,43,47]) There exists a tame structure Ŝan
with the following properties
(c1) San ⊂ Ŝan.
(c2) If U ⊂ Rn is open, connected and Ŝan-definable, F1, . . . ,Fn : U × R → R are Ŝan-

definable and C1, and f :U→R is a C1 function satisfying

∂f

∂xi
= Fi

(
x,f (x)

)
, ∀x ∈R, i = 1, . . . , n, (A.1)

then f is Ŝan-definable.
(c3) The structure Ŝan is the minimal structure satisfying (d1) and (d2).
The structure Ŝan is called the pfaffian closure5 of San.
Note that logx and ex are Ŝan-definable. Moreover if f : (a, b)→ R is C1, Ŝan-definable,
and x0 ∈ (a, b) then the antiderivative F(x)= ∫ x

x0
f (t) dt , x ∈ (a, b), is also Ŝan-definable.

The definable sets and function of a tame structure have rather remarkable tame behavior
which prohibits many pathologies. It is perhaps instructive to give an example of function which
is not definable in any tame structure. For example, the function x 	→ sinx is not definable in a
tame structure because the intersection of its graph with the horizontal axis is the countable set
πZ which violates the tameness condition T.

We will list below some of the nice properties of the sets and function definable in a tame
structure S. Their proofs can be found in [6,8].

• (Piecewise smoothness of tame functions) Suppose A is an S-definable set, p is a positive
integer, and f :A→R is a definable function. Then A can be partitioned into finitely many
S definable sets S1, . . . , Sk , such that each Si is a Cp-manifold, and each of the restrictions
f |Si is a Cp-function.

• (Triangulability) For every compact definable set A, and any finite collection of definable
subsets {S1, . . . , Sk}, there exists a compact simplicial complex K , and a definable homeo-
morphism Φ : |K| →A such that all the sets Φ−1(Si) are unions of relative interiors of faces
of K .

5 Our definition of pfaffian closure is more restrictive than the original one in [25,43], but it suffices for the geometrical
applications we have in mind.
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• (Dimension) The dimension of an S-definable set A⊂Rn is the supremum over all the non-
negative integers d such that there exists a C1 submanifold of Rn of dimension d contained
in A. Then dimA<∞, and dim(cl(A) \A) < dimA.

• (The scissor principle) Suppose A and B are two tame sets. Then the following are equivalent
• The sets A and B have the same Euler characteristic and dimension.
• There exists a tame bijection f :A→ B . (The map f need not be continuous.)

• (Crofton formula [4], [15, Thm. 2.10.15, 3.2.26]) Suppose E is an Euclidean space, and
denote by Graffk(E) the Grassmannian of affine subspaces of codimension k in E. Fix an
invariant measure μ on Graffk(E).6 Denote by Hk the k-dimensional Hausdorff measure.
Then there exists a constant C > 0, depending only on μ, such that for every compact,
k-dimensional tame subset S ⊂E we have

Hk(S)= C

∫
Graffk(E)

χ(L∩ S)dμ(L).

• (Finite volume.) Any compact k-dimensional tame set has finite k-dimensional Hausdorff
measure.

In the remainder of this section, by a tame set (or map) we will understand a Ŝan-definable set
(or map).

Definition 62. A tame flow on a tame set X is a topological flow

Φ :R×X→X, (t, x) 	→Φt(x),

such that the map Φ is tame.

We list below a few properties of tame flows. For proofs we refer to [37].

Proposition 63. Suppose Φ is a tame flow on a compact tame set X. Then the following hold.

(a) The flow Φ is a finite volume flow in the sense of [21].
(b) For every x ∈X the limits limt→±∞Φt(x) exist and are stationary points of Φ . We denote

them by Φ±∞(x).
(c) The maps x 	→Φ±∞(x) are definable.
(d) For any stationary point y of Φ , the unstable variety W−

y = Φ−1−∞(y) is a definable subset
of X. In particular, if k = dimW−

y , then W−
y has finite k-th dimensional Hausdorff measure.

Theorem 64. (See Theorem 4.3, [37].) Suppose M is a compact, connected, real analytic, m-
dimensional manifold, f :M → R is a real analytic Morse function, and g is a real analytic

6 The measure μ is unique up to a multiplicative constant.
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metric on M such that in the neighborhood of each critical point p there exists real analytic
coordinates (xi)1�i�m and nonzero real numbers (λi)1�i�m such that,

∇gf =
m∑
i=1

λi∂xi , near p.

Then the flow generated by the gradient ∇gf is a tame flow.

Appendix B. Subanalytic currents

In this appendix we gather without proofs a few facts about the subanalytic currents introduced
by R. Hardt in [20]. Our terminology concerning currents closely follows that of Federer [15]
(see also the more accessible [31]). However, we changed some notations to better resemble
notations used in algebraic topology.

Suppose X is a C2, oriented Riemann manifold of dimension n. We denote by Ωk(X) the
space of k-dimensional currents in X, i.e., the topological dual space of the space Ωk

cpt (X) of
smooth, compactly supported k-forms on X. We will denote by

〈•,•〉 :Ωk
cpt (X)×Ωk(X)→R

the natural pairing. The boundary of a current T ∈Ωk(X) is the (k − 1)-current defined via the
Stokes formula

〈α, ∂T 〉 := 〈dα,T 〉, ∀α ∈Ωk−1
cpt (X).

For every α ∈Ωk(X), T ∈Ωm(X), k �m define α ∩ T ∈Ωm−k(X) by

〈β,α ∩ T 〉 = 〈α ∧ β,T 〉, ∀β ∈Ωn−m+k
cpt (X).

We have〈
β, ∂(α ∩ T )

〉= 〈dβ, (α ∩ T )
〉= 〈α ∧ dβ,T 〉

= (−1)k
〈
d(α ∧ β)− dα ∧ β,T

〉= (−1)k〈β,α ∩ ∂T 〉 + (−1)k+1〈β,dα ∩ T 〉

which yields the homotopy formula

∂(α ∩ T )= (−1)degα(α ∩ ∂T − (dα)∩ T
)
. (B.1)

The manifold X together with its orientation defines a current [X] ∈Ωn(X). The induced map

∩[X] :Ωk(X)→Ωn−k(X)

is the Poincaré duality map and the morphism of complexes

(
Ω•(X), d

) ∩[X]−→ (
Ωn−•(X), ∂

)
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induces an isomorphism in cohomology. We denote this isomorphism by PDX . The homology
of the complex of currents (Ω•(X), ∂) is the Borel–Moore homology of X with real coefficients
(if X is not too wild at ∞). We denote it by HBM• (X) so that the Poincaré duality is a map
PDX :H •(X)→HBM

n−•(X).
If X and Y are compact oriented real analytic manifolds of dimensions n and respectively

m, and f : X→ Y is a smooth map, then we have a pull-back map f ∗ : H •(Y )→ H •(X),
a push-forward morphism f∗ :HBM• (X)→HBM• (Y ) and a Gysin map

f! :H •(X)→H •−(n−m)(Y )

defined by

f! = PD−1
Y f∗PDX.

Let us say a few words about the various sign conventions hidden in the above definition.
If π : S1×M→M is the canonical projection, where M is a compact oriented manifold, and

we orient S1×M by using the orientation of S1 followed by the orientation of M , then for every
α ∈Hk(M) we have

π!
(
dθ ∧ π∗α

)= 2πα. (B.2)

In other words, π! coincides with the integration-along-the-fibers map, where we use the fiber-
first orientation convention to fix an orientation on the total space of the bundle defined by π .

We say that a set S ⊂ Rn is locally subanalytic if for any p ∈ Rn we can find an open ball B
centered at p such that B ∩ S is globally subanalytic.

Remark 65. There is a rather subtle distinction between globally subanalytic and locally subana-
lytic sets. For example, the graph of the function y = sin(x) is a locally subanalytic subset of R2,
but it is not a globally subanalytic set. Note that a compact, locally subanalytic set is globally
subanalytic. �

If S ⊂ Rn is an orientable, locally subanalytic, C1 submanifold of Rn of dimension k, then
any orientation orS on S determines a k-dimensional current [S,orS] via the equality

〈
α, [S,orS]

〉 := ∫
S

α, ∀α ∈Ωk
cpt

(
Rn
)
.

The integral in the right-hand side is well defined because any bounded, k-dimensional globally
subanalytic set has finite k-dimensional Hausdorff measure. For any open, locally subanalytic
subset U ⊂Rn we denote by [S,orS] ∩U the current [S ∩U,orS].

For any locally subanalytic subset X ⊂ Rn we denote by Ck(X) the Abelian subgroup of
Ωk(R

n) generated by currents of the form [S,orS], as above, where cl(S) ⊂ X. The above
operation [S,orS] ∩U , U open subanalytic extends to a morphism of Abelian groups

Ck(X) � T 	→ T ∩U ∈ Ck(X ∩U).

We will refer to the elements of Ck(X) as subanalytic (integral) k-chains in X.
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Given compact subanalytic sets A⊂X ⊂Rn we set

Zk(X,A)=
{
T ∈ Ck

(
Rn
); suppT ⊂X, supp∂T ⊂A

}
,

and

Bk(X,A)=
{
∂T + S; T ∈ Zk+1(X,A), S ∈ Zk(A)

}
.

We set

Hk(X,A) := Zk(X,A)/Bk(X,A).

R. Hardt has proved in [19,20] that the assignment

(X,A) 	−→H•(X,A)

satisfies the Eilenberg–Steenrod homology axioms with Z-coefficients. This implies that
H•(X,A) is naturally isomorphic with the integral homology of the pair. In fact, we can be
much more precise.

If X is a compact subanalytic we can form the chain complex

· · · ∂→ Ck(X)
∂→ Ck−1(X)

∂→ ·· ·

whose homology is H•(X).
If we choose a subanalytic triangulation Φ : |K| → X, and we linearly orient the vertex set

V = V (K), then for any k-simplex σ ⊂ K we get a subanalytic map from the standard affine
k-simplex !k to X

Φσ :!k→X.

This defines a current [σ ] = Φσ∗ ([!k]) ∈ Ck(X). By linearity we obtain a morphism from the
group of simplicial chains C•(K) to C•(X) which commutes with the respective boundary oper-
ators. In other words, we obtain a morphism of chain complexes

C•(K)→ C•
(
Φ|K|).

The arguments in [13, Chap. III] imply that this induces an isomorphism in homology.
To describe the intersection theory of subanalytic chains we need to recall a fundamental re-

sult of R. Hardt, [18, Theorem 4.3]. Suppose E0,E1 are two oriented real Euclidean spaces of
dimensions n0 and respectively n1, f : E0 → E1 is a real analytic map, and T ∈ Cn0−c(E0) a
subanalytic current of codimension c. If y is a regular value of f , then the fiber f−1(y) is a sub-
manifold equipped with a natural co-orientation and thus defines a subanalytic current [f−1(y)]
in E0 of codimension n1, i.e., [f−1(y)] ∈ Cd0−d1(E0). We would like to define the intersection
of T and [f−1(y)] as a subanalytic current T • [f−1(y)] ∈ Cn0−c−n1(E0). It turns out that this is
possibly quite often, even in cases when y is not a regular value.
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Theorem 66 (Slicing Theorem). Let E0, E1, T and f be as above, denote by dVE1 the Euclidean
volume form on E1, by ωn1 the volume of the unit ball in E1, and set

Rf (T ) :=
{
y ∈E1; codim(suppT )∩ f−1(y)� c+ n1,

codim(supp ∂T )∩ f−1(y)� c+ n1 + 1
}
.

For every ε > 0 and y ∈E1 we define T •ε f−1(y) ∈Ωn0−c−n1(E0) by

〈
α,T •ε f−1(y)

〉 := 1

ωn1ε
n1

〈(
f ∗ dVE1

)∧ α,T ∩ (f−1(Bε(y)
))〉

, ∀α ∈Ωn0−c−n1
cpt (E0).

Then for every y ∈ Rf (T ), the currents T •ε f−1(y) converge weakly as ε > 0 to a subanalytic
current T • f−1(y) ∈ Cn0−c−n1(E0) called the f -slice of T over y, i.e.,

〈
α,T • f−1(y)

〉= lim
ε↘0

1

ωn1ε
n1

〈(
f ∗ dVE1

)∧ α,T ∩ (f−1(Bε(y)
))〉

, ∀α ∈Ωn0−c−n1
cpt (E0).

Moreover, the map

Rf � y 	→ T • f−1(y) ∈ Cd0−c−d1

(
Rn
)

is continuous in the locally flat topology.

We will refer to the points y ∈Rf (T ) as the quasi-regular values of f relative to T .
Consider an oriented real analytic manifold M of dimension m, and Ti ∈ Cm−ci (M), i = 0,1.

We would like to define an intersection current T0 • T1 ∈ Cm−c0−c1(M). This will require some
very mild transversality conditions.

The slicing theorem describes this intersection current when T1 is the integration current de-
fined by the fiber of a real analytic map. We want to reduce the general situation to this case. We
will achieve this in two steps.

• Reduction to the diagonal.
• Localization.

To understand the reduction to the diagonal let us observe that if T0, T1 were homology
classes, then their intersection T0 • T1 satisfies the identity

j∗(T0 • T1)= (−1)c0(m−c1)(T0 × T1) •!M,

where !M denotes the diagonal class in M ×M , and j :M →M ×M denotes the diagonal
embedding; see [34, Sec. 7.3.2].

We use this fact to define the intersection current in the special case when M is an open subset
of Rm. In this case the diagonal !M is the fiber over 0 of the difference map

δ :M ×M→Rm, δ(m0,m1)=m0 −m1.

If the currents T0, T1 are quasi-transversal, i.e.,
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codim(suppT0)∩ (suppT1)� c0 + c1, (B.3a)

codim
(
(suppT0 ∩ supp ∂T1)∪ (supp ∂T0 ∩ suppT1)

)
� c0 + c1 + 1, (B.3b)

then 0 ∈Rm is a T0 × T1-quasi-regular value of δ so that the intersection

(T0 × T1) • δ−1(0)= (T0 × T1) •!M

is well defined.
The intersection current T0 • T1 is then the unique current in M such that

j∗(T0 • T1)= (−1)c0(m−c1)(T0 × T1) • δ−1(0).

If M is an arbitrary real analytic manifold and the subanalytic currents are quasi-transversal, then
we define T0 • T1 to be the unique subanalytic current such that for any open subset U of M real
analytically diffeomorphic to an open ball in Rm we have

(T0 • T1)∩U = (T0 ∩U) • (T1 ∩U).

One can prove that

∂(T0 • T1)= (−1)c0+c1(∂T0) • T1 + T0 • (∂T1), (B.4)

whenever the various pairs of chains in the above formula are quasi-transversal.
One of the key results in [19,20] states that this intersection of quasi-transversal chains induces

a well defined intersection pairing

• :Hm−c0(M)×Hm−c1(M)→Hm−c0−c1(M).

These intersections pairings coincide with the intersection pairings defined via Poincaré duality.
This follows by combining two facts.

• The subanalytic homology groups can be computed via a triangulation, as explained above.
• The classical proof of the Poincaré duality via triangulations (see [30, Chap. 5]).

For a submanifold S ⊂M of dimension k we define the conormal bundle T ∗S M to be the
kernel of the natural bundle morphism

i∗ : T ∗M|S → T ∗S,

where i : S ↪→M is the inclusion map. A co-orientation of S is then an orientation of the conor-
mal bundle. This induces an orientation on the cotangent bundle of S as follows.

• Fix s0 ∈ S, and a positively basis b0 = {e1, . . . , ek} of the fiber of T ∗S M over s0.
• Extent the basis b0 to a positively oriented basis b= {e1, . . . , en} of T ∗s0

M .
• Orient T ∗S using the ordered basis {i∗(ek+1), . . . , i∗(em)}.
s0
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We see that a pair (S,or⊥) consisting of a C1, locally subanalytic submanifold S ↪→M , and
a co-orientation or⊥ defines a subanalytic chain [S,or⊥] ∈ Ck(M). Observe that

supp∂
[
S,or⊥

]⊂ cl(S) \ S.

Thus, if dim(cl(S) \ S) < dimS − 1, then ∂[S,or⊥] = 0.

Definition 67. An elementary cycle of M is a co-oriented locally subanalytic submanifold
(S,or⊥) such that ∂[S,or⊥] = 0.

We say that two elementary cycles (Si,or⊥i ), i = 0,1, intersect conveniently if the following
hold.

• The submanifolds S0, S1 intersect transversally.
• cl(S0)∩ cl(S1)= cl(S0 ∩ S1).

Remark 68. Let us point out some simple properties of elementary cycles intersecting conve-
niently. The last condition in the above definition implies that

codim
(
cl(S0)∩ cl(S1) \ (S0 ∩ S1)

)= codim
(
cl(S0 ∩ S1) \ (S0 ∩ S1)

)
> codim(S0 ∩ S1)= codimS0 + codimS1. (B.5)

The intersection S0 ∩ S1 is transversal and the conormal bundle of S0 ∩ S1 is the direct sum of
the restrictions of the conormal bundles of S0 and S1,

T ∗S0∩S1
M = (T ∗S0

M
)∣∣
S0∩S1

⊕ (T ∗S1
M
)∣∣
S0∩S1

.

There is natural induced co-orientation or⊥0 ∧ or⊥1 on S0 ∩ S1 given by the above ordered direct
sum.

Proposition 69. Suppose (Si,or⊥i ), i = 0,1, are elementary cycles intersecting conveniently.
Then [

S0,or⊥0
] • [S1,or⊥1

]= [S0 ∩ S1,or⊥0 ∧ or⊥1
]
.

Proof. From (B.4) we deduce that

∂
([
S0,or⊥0

] • [S1,or⊥1
])= 0.

On the other hand,

supp
([
S0,or⊥0

] • [S1,or⊥1
])⊂ cl(S0)∩ cl(S1)= cl(S0 ∩ S1).

Using (B.5) we deduce that in order to find the intersection current [S0,or⊥0 ]•[S1,or⊥1 ] it suffices
to test it with differential forms α ∈Ωc0+c1(M) such that

suppα ∩ cl(S0)∩ cl(S1)⊂ S0 ∩ S1.
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Via local coordinates this reduces the problem to the special case when S0, S1 are co-oriented
subspaces of Rn intersecting transversally in which case the result follows by direct computation
from the definition. We leave the details to the reader. �
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