
MIXED HODGE STRUCTURES

LIVIU I. NICOLAESCU

1. Filtered vector spaces

Let k denote one of the fields Q,R,C. A decreasing (resp. increasing) filtration of a
k-vector space V is a collection of subspaces

{
F p = F p(V ) ⊂ V ; p ∈ Z}

(resp.
{

Fp = Fp(V ) ⊂ V ; p ∈ Z}

such that F p(V ) ⊃ F p+1(V ) (resp. Fp(V ) ⊂ Fp+1(V ) for all p ∈ Z. The filtration is called
finite if there exist integers m > n such that Fm(V ) = 0 and Fn(V ) = V (resp. Fm(V ) = V ,
Fn(V ) = 0).

Observe that given a decreasing filtration {F p(V )} we can form an increasing filtration
Fp(V ) := F−p(V ). In the remainder of this section we will work exclusively with decreasing
filtration so we will drop the attribute decreasing. In this case for v ∈ V we use the notation

F (v) ≥ p ⇐⇒ v ∈ F p(V ).

To a filtered space (V, F •) we can associate a graded vector space

Gr•F (V ) =
⊕

p∈Z
Grp

F (V ), Grp(F (V ) := F p(V )/F p+1(V ).

Suppose we are given a filtration F •(V ) on a vector space V . This induces a filtration F •(U)
on a subspace X by the rule

F p(X) := X ∩ F p(V ),
and filtration induces a filtration on the quotient V/U

F p(V/X) = F p(V )/X ∩ F p(V ) ∼= (F p(V ) + X)/X.

For any integer n we defined the shifted filtration F [n]• := F •+n.
Given two vector subspaces X ⊂ Y ⊂ V we can regard the quotient Y/X as a subspace of

the quotient V/X. We have dual descriptions for Y/X: as a quotient of the subspace Y or as
a subspace of the quotient A/X. We obtain in this way two filtrations on Y/X: a quotient
filtration induced from the filtration of Y as a subspace of V and the filtration induced from
the quotient filtration on V/X. These two filtrations coincide and we will refer to this unique
filtration as the induced filtration on Y/X.

Suppose we are given two filtered vector spaces F •(U) and F •(V ). A morphism of filtered
spaces is a linear map L : U → V compatible with the filtrations, i.e.

L(F •(U)) ⊂ F •(V ).

A morphism of filtered spaces L : U → V is called an isomorphism of filtered spaces if it is
invertible and the inverse L−1 is also compatible with the filtrations.

Note that kerL and ImL are equipped with natural filtrations.
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Example 1.1. Suppose V is the vector space k2 equipped with the canonical basis {e1, e2}.
Define

F 1(V ) = spank{e1, e2}, F 2(V ) = spank{e2}, F p(V ) = 0, ∀p > 2.

and L : V → V is the linear nilpotent map e1 7→ e2 7→ 0. Note that L is compatible with the
filtrations. We have

ImL = span {e2}, F 1(ImL) = F 2(ImL) = ImL, F p(ImL) = (0), ∀p > 2.

kerL = span {e2}, F 1(kerL) = F 2(kerL) = kerL, F p(kerL) = 0, ∀p > 2.

We have an induced filtration on V/ kerL

F 1(V/ kerL) = V/ kerL, F p(V/ kerL) = 0, ∀p > 1.

We see that the natural map
V/ kerL → ImL

is not an isomorphism of filtered spaces.
ut

Definition 1.2. A morphism of filtered spaces (U,F •) → (V, F •) is said to be strict if

F p(V ) ∩ ImL = L
(
F p(U)

)
,

i.e. for v ∈ V , F (v) ≥ p, the equation Lu = v has a solution u ∈ U , then it has a solution
satisfying the additional condition F (u) ≥ p.

ut

The next result explains the role of the strictness condition in avoiding pathologies of the
type illustrated in Example 1.1. Its proof is left to the reader.

Proposition 1.3. Suppose L : (U,F •) → (V, F •) is a morphism of filtered spaces. Then the
following are equivalent.
(a) L is strict.
(b) The induced map U/ kerL → ImL is an isomorphism of filtered spaces.

ut

Observe that if F • and G• are two filtrations on the same vector space then we have natural
isomorphisms

Grm
F Grn

G(V ) ∼= Grn
G Grm

F (V ), ∀m,n ∈ Z.

Definition 1.4. Let n ∈ Z. Two finite filtrations F • and F̂ • on the k-vector space V are
said to be n-complementary if

Grp
F Grq

F̂
(V ) = 0, ∀p + q 6= n.

ut

Proposition 1.5. Suppose F and F̂ are two finite filtrations on the vector space V . We set
V p,q := F p(V ) ∩ F̂ q(V ). The following statements are equivalent.

(a) The finite filtrations F • and F̂ • are n-complementary.
(b)

F p(V ) ∼=
⊕

j≥p

V j,n−j , F̂ q(V ) ∼=
⊕

k≥q

V n−k,k.
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(c)

F p(V ) ∩ F̂ q(V ) = 0, F p(V ) + F̂ q(V ) = V, ∀p + q = n + 1.

Proof Clearly (b) =⇒ (a). Let us prove that (a) =⇒ (b).
Note that for p + q 6= n we have

Grp
F Grq

F̂
(V ) = 0 ⇐⇒ F p Grq

F̂
(V ) = F p+1 Grq

F̂
(V )

⇐⇒ F p(V ) ∩ F̂ q(V )/F p(V ) ∩ F̂ q+1(V ) = F p+1(V ) ∩ F̂ q(V )/F p+1(V ) ∩ F̂ q+1(V )

⇐⇒ F p(V ) ∩ F̂ q(V ) = F p(V ) ∩ F̂ q+1(V ) + F p+1(V ) ∩ F̂ q(V ).

If p′ + q′ À n then F p′(V ) ∩ F̂ q′(V ) = 0 and by descending induction over p′ + q′ we deduce

F p(V ) ∩ F̂ q(V ) = 0, ∀p + q > n.

The equality
F p Grq

F̂
(V ) = F p+1 Grq

F̂
(V )

is also equivalent to
(
F p(V ) ∩ F̂ q(V ) + F̂ q+1(V )

)
/F̂ q+1(V ) =

(
F p+1(V ) ∩ F̂ q(V ) + F̂ q+1(V )

)
/F̂ q+1(V )

so that

F p(V ) ∩ F̂ q(V ) + F̂ q+1(V ) = F p+1(V ) ∩ F̂ q(V ) + F̂ q+1(V ), ∀p + q < n.

If we make the change in variables p → p + 1 we deduce that for every p + q < n + 1 and
every p′ < p we have

F p′(V ) ∩ F̂ q(V ) + F̂ q+1(V ) = F p(V ) ∩ F̂ q(V ) + F̂ q+1(V )

If p′ is sufficiently small we have F p′(V ) = V and we deduce

F̂ q(V ) = F p(V ) ∩ F̂ q(V ) + F̂ q+1(V ), ∀p + q < n + 1.

Now, if we choose p + q = n then F p(V ) ∩ F̂ q(V ) ∩ F̂ q+1(V ) = 0 and we deduce

F̂ q(V ) = F p(V ) ∩ F̂ q(V )⊕ F̂ q+1(V ), ∀p + q < n + 1.

Since for large q we have F̂ q(V ) = 0 we deduce by descending induction over q that

F̂ q(V ) =
⊕

k≥q

Fn−k(V ) ∩ F̂ k(V ).

This finishes the proof of (a) =⇒ (b) since the roles of F and F̂ are symmetric.
Clearly (b) =⇒ (c). To prove the opposite implication note that the equality

V = F p(V )⊕ F̂ q+1(V ), p + q = n

implies
F̂ q(V ) = V p,q ⊕ F̂ q+1(V ).

We conclude again by descending induction on q.
ut
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2. Complementary triple filtrations

Suppose F •, F̂ • and W• are three finite filtrations on the k-vector space V , F • and F̂ •
decreasing, W• increasing. They are called complementary if

Grp
F Grq

F̂
GrW

n n(V ) = 0, ∀p + q 6= n.

Equivalently, this means that for every integer m the filtrations induced by F and F̂ on Gr−n
W

are n-complementary. For simplicity we write

V p := F p(V ), V̂ q := F̂ q(V ), Vn = Wn(V ),

V p
n = V p ∩ Vn, V̂ q

n = V̂ q ∩ Vn,

Ip,q = V p
p+q ∩

(
V̂ q

p+q + V̂ q
p+q−1 + V̂ q−1

p+q−2 + · · ·
)

= V p
p+q ∩

(
V̂ q

p+q + V̂ q−1
p+q−2 + V̂ q−2

p+q−3 + · · ·
)
,

Îp,q = V̂ q
p+q ∩

(
V p

p+q + V p
p+q−1 + V p−1

p+q−2 + · · ·
)

= V̂ q
p+q ∩

(
V p

p+q + V p−1
p+q−2 + V p−2

p+q−3 + · · ·
)
.

We have the following key structural result.

Proposition 2.1.
Vn =

⊕

p+q≤n

Ip,q, (2.1)

Vn =
⊕

p+q≤n

Îp,q (2.2)

V p =
⊕

k≥p

⊕
q

Ik,q, (2.3)

V̂ q =
⊕

k≥q

⊕
p

Îp,k. (2.4)

Proof The fact that the triple filtration is complementary is equivalent to the fact that for
every p and every n we have we have

Vn/Vn−1 = F p(Vn/Vn−1)⊕ F̂n+1−p(Vn/Vn−1)

= (V p
n + Vn−1)/Vn−1 ⊕ (V̂ n+1−p + Vn−1)/Vn−1 ⇐⇒

Vn = V p
n + V̂ n+1−p

n + Vn−1, (V p
n + Vn−1) ∩ (V̂ n+1−p

n + Vn−1) = Vn−1. (2.5)
For every n we also have the equality

Vn/Vn−1 =
⊕

p+q=n

Grp
F Grq

F̂
(Vn/Vn − 1) =

⊕
p+q=n

F p(Vn/Vn−1) ∩ F̂ q(Vn/Vn−1).

Let α ∈ Grp
F Grq

F̂
(Vn/Vn−1), p + q = n. Then we can represent it by an element v ∈ V p

n and

by an element in u ∈ V̂ q
n . Moreover

v − u ∈ Vn−1.

Lemma 2.2. For every k ≥ 0 there exist vectors uk, vk ∈ Vn, unique modulo Vn−k−2, which
represent α, such that

vk ∈ V p
n , uk ∈ V̂ q

n + V̂ q
n−1 + V̂ q−1

n−2 + · · ·+ V̂ q−k
n−k−1, wk = vk − uk ∈ Vn−k−2.
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Proof We will use induction over k ≥ 0. Let us first prove the k = 0 statement. Choose
v ∈ V p

n and u ∈ V̂ q
n both representing α. Then

v = u + w, w ∈ Vn−1.

Using the equality
Vn−1 = V p

n−1 + V̂ q
n−1 + Vn−2

we can write

v − u = w = x0 + y0 + w0, x0 ∈ V p
n−1, y0 ∈ V̂ q

n−1, w0 ∈ Vn−2.

Hence
(v − x0)︸ ︷︷ ︸

v0

= (u + y0)︸ ︷︷ ︸
u0

+w0.

Suppose α = 0 and v0 ∈ V p
n and u0 ∈ V̂ q

n + V̂ q
n−1 = V̂ q

n represent α. Then

v0 ∈ V p
n−1, u0 ∈ V̂ q

n−1.

In particular we deduce that

v0, u0 ∈ (V p
n−1 + Vn−2) ∩ (V̂ q

n−1 + Vn−2)
(2.5)⊂ Vn−2.

Suppose we found (uk, vk, wk). Using the identity

Vn−k−1 = V p
n−k−1 + V̂ q−k

n−k−1 + Vn−k−2

we can write

wk = w′k + w′′k+1 + wk+1, w′k ∈ V p
n−k−1, w′′k ∈ V̂ q−k

n−1−k, wk ∈ Vn−k−2.

Then
(vk − w′k)︸ ︷︷ ︸

vk+1

= (uk + w′k)︸ ︷︷ ︸
uk+1

+wk+1

Suppose we have a pair vk ∈ V n
p , uk ∈ Vn of elements representing 0 ∈ Grp

F Grq

F̂
(Vn/Vn−1)

and
vk ∈ V p

n , uk ∈ V̂ q
n + V̂ q

n−1 + V̂ q−1
n−2 + · · ·+ V̂ q−k

n−1−k, vk − uk ∈ Vn−k−2

Since vk represents 0 we conclude by induction over k that

vk ∈ V p
n−k−1.

Let us write

uk =
(
v̂q
n + v̂q−1

n−2 + · · ·+ v̂q−k+1
n−k

)

︸ ︷︷ ︸
:=u′k−1∈V̂ q−k+1

+v̂q−k
n−k−1 = vk − wk ∈ V p

n−1−k + Vn−k−2.

Using again the induction hypothesis we deduce

u′k ∈ Vn−k−1,

so that
uk = u′k + v̂q−k

n−k−1 ∈ V̂ q−k
n−k−1

Hence

uk ∈ V̂ q−k
n−k+1 ∩ (V p

n−k−1 + Vn−k−2)
(2.5)⊂ Vn−k−2.

This completes the proof of Lemma 2.2.
ut
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Lemma 2.2 shows that the projection Vp+q → Vp+q/Vp+q−1 maps Ip,q ⊂ Vp+q isomorphi-
cally onto Grp

F Grq

F̂
Vp+q/Vp+q−1. In particular Ip,q ∩ Vp+q−1 = 0. The equality (2.1) follows

by an induction over n.
To prove (2.3) fix an integer p and v ∈ V p. Denote by m the least integer m such that

v ∈ Vm. We can then write
v =

∑

p+q≤m

vp,q, vp,q ∈ Ip,q.

Then the image of v in Grm V belongs to F p GrW
m V so that vi,m−i = 0, ∀i < p. Hence

v =
∑

i≥m

vi,m−i +
∑

p+q≤m−1

vp,q

︸ ︷︷ ︸
∈Vm−1

.

The equality (2.3) is obtained by iterating the above procedure.
The equalities (2.2) and (2.4) are obtained in a similar fashion.

ut

Definition 2.3. Suppose 0V , 1V are k-vectors spaces and
(

iF
•, iF̂

•, iW•
)

is a complemen-
tary triple filtration on iV , i = 0, 1. A linear map L : 0V → 1V is said to be a morphism of
complementary triple filtrations of bidegree (r, s) ∈ Z× Z if

L(0F •) ⊂ 1F
•+r, L(0F̂ •) ⊂ 1F̂

•+s,

L(0W•) ⊂ 1W•+r+s.

ut

Proposition 2.4. Suppose L : (0V, 0F
•, 0F̂

•, 0W
•) → (1V, 1F

•, 1F̂
•, 1W

•) is a morphism of
bidegree (r, s) of complementary triple filtrations. Then the following hold.
(a) L is strict with respect to each of the filtrations, i.e.

1F
p+r ∩ L(0V ) = L(0F p), 1F̂

q+s ∩ L(0V ) = L(0F̂ q)

1Wn+r+s ∩ L(0V ) = L(0Wn).

(b) The triple filtrations induced on kerL and cokerL are complementary.

Proof (a) For simplicity assume (r, s) = (0, 0). Define jI
p,q ⊂ jV , j = 0, 1 as in Proposition

2.1. The strictness follows from the inclusions

L(0Ip,q) ⊂ 1I
p,q

(b) Let us first prove the statement about kerL. Assume (r, s) = (0, 0). We define 0V
p, 0V̂

q

etc. as in the proof of Proposition 2.1. Set

K = kerL, Kp = K ∩ 0V
p, K̂q = K ∩ 0V̂

q, Kp
n = K ∩ 0V

p
n etc.

We need to prove that for every n, p we have

Kn = (Kp
n + Kn−1) + (K̂n+1−p

n + Kn−1), (Kp
n + Kn−1) ∩ (K̂n+1−p

n + Kn−1) = Kn−1.

The equality (Kp
n + Kn−1) ∩ (K̂n+1−p

n + Kn−1) = Kn−1 follows from the equality

(0V p
n + 0Vn−1) ∩ (0V̂ n+1−p

n + 0Vn−1) = 0Vn−1.
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Every x ∈ 0V has a unique decomposition

x =
∑
p,q

xp,q, xp,q ∈ 0I
p,q.

Then
x ∈ 0Vn ⇐⇒ xp,q = 0, ∀p + q > n,

and
x ∈ K ⇐⇒ L(xp,q) = 0, forallp, q.

Let x ∈ Kn. Then
x =

∑

p+q≤n

xp,q, Lxp,q =
∑

p+q=n

xp,q +
∑

p+q<n

xp,q

︸ ︷︷ ︸
:=w

=
∑

k≥p

xk,m−k

︸ ︷︷ ︸
:=x′

+
∑

k≤p−1

xk,n−k

︸ ︷︷ ︸
:=x′′

+w

Clearly x′ ∈ Kp
n, w ∈ Kn−1. Now observe that for k ≤ p− 1 we have

xk,m−k ∈ 0V
k
n ∩ (0V̂ n−k

n + V̂ n−k
n−1 + 0V̂

n−k−1
n−k−2 + · · · ) ∈ 0V̂

n+1−p + 0Vn−1

Hence x′′ ∈ (0V̂
n+1−p
n + Vn−1) ∩K. Using the decomposition of 0 as a direct sum of 0Î

p,q we
conclude that

x′′ ∈ (K̂n+1−p
n + Kn−1).

Now let C = cokerL, U = ImL. Since L is strict with respect to all the filtrations it induces
an isomorphism of filtered spaces

(C, F •, F̂ •,W•) → (U,F •, F̂ •,W•)

so it suffices to show that the induced filtrations on U are complementary. This is achieved
via an argument similar to the one used in the case of kerL.

ut

Remark 2.5. Suppose 0 → V ′ → V → V ′′ → 0 is a short exact sequence of k-vector spaces
such that V ′ and V ′′ are equipped with complementary triple filtration. Then one can equip
V is a natural complementary triple filtration such that the linear maps in the exact sequence
are morphisms of bidegree (0, 0) of triple filtrations. ut

3. Mixed Hodge structures

A mixed Hodge structure is a triplet H = (HZ, F •,W•) where HZ is a free Abelian group,
W• is an increasing filtration of HQ = HZ ⊗Q, F • is a decreasing filtration on HC such that
if F̄ • denotes the filtration obtained from F • by complex conjugation then (F •, F̄ •,W•) is a
complementary triple filtration on HC. The mixed Hodge structure is called pure of weight
m if Wm = HQ and Wn = 0 for all n < m.

A morphism of bidegree (r, r) between two mixed Hodge structure L : 0H → 1H is a
morphism of Abelian groups L : 0HZ → 1HZ such that the induced map 0HC → 1HC is a
morphism of bidegree (r, r) of complementary triple filtrations. A morphism of mixed Hodge
structures will be by definition a morphism of bidegree (0, 0).
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Example 3.1. Suppose X is a compact Kähler manifold of complex dimension m. We set
Hk(X,Z)0 = Hk(X,Z)/Tors. Then Hk(X,Z)0 is equipped with a pure Hodge structure of
weight k where

F pHk(X,C) =
k⊕

j=p

Hj,k−j(X).

Suppose now f : X → Y is a holomorphic map between two compact Káhler manifolds of
complex dimensions m and respectively n. We set r = n−m. Then the pullback

f∗ : Hk(Y,Z)0 → Hk(X,Z)0

induces a morphism of pure Hodge structures of bidegree (0, 0). Denote by (−,−)X the
Poincaré duality pairing on X

(−,−)X : H•(X,Z)0 ×H2m−•(X,Z)0 → Z, (α, β)X = 〈α ∪ β, [X]〉,
where 〈−,−〉 denotes the Kronecker pairing between homology and cohomology. We have a
Gysin map

f! : Hk(X,Z)0 → Hk+2r(Y,Z)0
defined by

(f!α, β)Y = (α, f∗β)X , ∀α ∈ Hk(X,Z)0, β ∈ H2m−k(Y,Z)) = H2n−(k+2r)(Y,Z)0.

We claim that f! is a morphism of pure Hodge structures of bidegree (r, r). To see this assume

α ∈ Hp,q(X), p + q = k, β ∈ Hp′,q′(Y ), p′ + q′ = 2m− k.

Then

(f!α, β)Y =
∫

Y
(f!α) ∪ β =

∫

X
α ∪ f∗β.

Note that ∫

X
α ∪ f∗β 6= 0 =⇒ (p, q) + (p′, q′) = (m,m)

We deduce in a similar fashion that f!α should belong to a single component Hp′′,q′′(Y ) such
that

(n, n) = (p′′, q′′) + (p′, q′)
We conclude that

(p′′, q′′) = (p, q) + (r, r).
ut

We deduce from the general results in the previous section that if L : H → H ′ is a
morphism of mixed Hodge structures of bi-degree (r, r) then both kerL and cokerL with the
induced filtrations define mixed Hodge structures.

The results proved so far shows that the category of mixed Hodge structures is Abelian.

Example 3.2. Let us describe another method of constructing a (pure) Hodge structure on
the cohomology of a compact Kähler manifold X. Start with the Dolbeault resolution of the
constant sheaf C

0 → C→ Ω0
X

∂−→ Ω1
X

∂−→ · · ·
For each p, the sheaf Ωp

X of holomorphic (p, 0)-forms admits a soft resolution

Ωp,0 → (Ap,•
X , ∂̄)
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and thus we obtain a double complex (A•,•, ∂, ∂̄) whose associated total complex

(A•
X , d), Am =

⊕
p+q=m

Ap,q, d = ∂ + ∂̄

is the DeRham complex and it is quasi-isomorphic to C. Its hypercohomology is isomorphic
to the cohomology of C. The complex K• = Γ(X, A•

X) is equipped with a natural decreasing
filtration

F pKm
=

⊕

k≥p

Γ(X, Ak,m−k
X ),

which defines a spectral sequence converging to H•(X,C). The E1 term is

Ep,q
1 = Hq(X, Ωp

X) = Hp,q(X)

The differential d1 on E1 is ∂ and according to classical Hodge theory every element in
Hq(X, Ωp

X) can be represented by a (p, q)-form α satisfying

∆∂α = ∆∂̄α = 0 =⇒ ∂α = 0.

Hence the differential d1 is trivial and thus the spectral sequence stops at the E1 term. We
deduce

Hm(X,C) =
⊕

p+q=m

Hp,q(X), Hp,q = Hq,p

and thus Hm(X,C) is equipped with a pure Hodge structure of weight m. ut

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618.
E-mail address: nicolaescu.1@nd.edu


