
MIXED HODGE STRUCTURES ON SMOOTH ALGEBRAIC VARIETIES

LIVIU I. NICOLAESCU

Abstract. We discuss some of the details of Deligne’s proof on the existence of a functorial
mixed Hodge structure on a smooth quasiprojective variety.
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Notations

• H•(S) := H•(S,C).
• If W• is an increasing filtration on the vector space V then we denote by W •− the decreasing
filtration defined by

W `
− = W−`.

If F • is a decreasing filtration then we can associate in a similar fashion the increasing
filtration F−• .
• For an increasing filtration W• and k ∈ Z we define the shifted filtration

W [n]• = Wn+•.

We define the shifts of decreasing filtrations in a similar way. Note that

W [n]•− = W−[−n]•.

• For every graded object C• = ⊕n∈ZCn and every integer k we denote by C•[k] the graded
object defined by

Cn[k] := Cn+k.

• For a bigraded object C•,• and every integers (k,m) the shifted complex C•,•[k, m] is defined
in a similar fashion.
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1. Formulation of the problem

We assume X∗ is a smooth, complex, n-dimensional algebraic variety. According to Hi-
ronaka it admits a smooth compactification X such that the complement D = X \X∗ is a
normal crossings divisor. This means that every point p ∈ D there exist an integer 1 ≤ k ≤ n
and an open neighborhood O bi-holomorphic to an open ball B in Cn centered at 0 such that

D ∩ O ∼= {(z1, · · · , zn) ∈ B; z1 · · · zk = 0}.
We assume X is projective and we explain how to produce a mixed Hodge structure on
X∗ using the Hodge structure on X. The mixed Hodge structure thus produced will be
independent of the compactification X.

The strategy we will employ is easy to describe. Denote by j : X∗ ↪→ X the natural
inclusion of X∗ as an open subset of X. We observe that

H•(X∗) ∼= H•(X, j∗C).

The construction of a mixed Hodge structure on H•(X∗,Z) is carried on in several steps.

Step 1. We construct a complex of sheaves S• on X quasi-isomorphic to j∗C. This complex
will be equipped with a natural decreasing filtration F p and a natural increasing filtration
W`. We then produce a hypercohomology spectral sequence E•,•

r associated to the decreasing
filtration W `− := W−` and converging to H•(X∗, S•) ∼= H•(X∗,C). The increasing filtration
W` induces an increasing filtration on H•(X∗,C) which, up to a shift, will be the weight
filtration.
Step 2. We will show that the filtration F induces pure Hodge structures on Ep,q

1 and the
differential d1 is a morphism of pure Hodge structures of a given bidegree (0, 0). In particular,
we deduce that E2 is equipped with a mixed Hodge structure.
Step 3. We will show that for every r ≥ 2 the differential dr on Er vanishes so that

GrW
` Hm(X∗) ∼= E−`,m+`

2

is equipped with a natural pure Hodge structure induced by F of weight m + `. We deduce
that the filtrations (F •,W [−m]•) define a mixed Hodge structure on Hm(X∗). We have

∅ = Wm−1H
m(X∗) ⊂ j∗Hm(X) = WmHm(X∗) ⊂ · · · ⊂ W2mHm(X∗) = Hm(X∗).

Step 4. We will show that a holomorphic map between smooth quasiprojective varieties
induces a morphism of mixed Hodge structures.

The implementation of Step 1 requires the introduction of smooth and holomorphic log
complexes. Step 2 requires the use of the Poincaré residue. Step 3 is based on a clever
algebraic argument of P. Deligne known as ”le lemme de deux filtrations”. The last step
makes heavy use of Hironaka’s resolution of singularities theorem.

2. The logarithmic complexes

For every subset S ⊂ X we define

S∗ := S \D.

For every integer m ≥ 0 and every open set V ⊂ X we denote by Am
X(V, log D) the subspace

of Am
X(V ∗) consisting of smooth, complex valued m-forms on V ∗ with the propriety that for

any coordinate neighborhood (U, (zj) ) ⊂ V such that D ∩ U = {z1 · · · zk = 0} the forms
z1 · · · zkϕ and z1 · · · zkdϕ on U∗ extend to smooth forms on U∗. We define

Ωm
X(V, log D) = Ωm

X(V ∗) ∩Am
X(V, log D).
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The correspondences

V 7−→ Am
X(V, log D), U 7−→ Ωm

X(V, log D)

define sheaves Am
X(log D) and Ωm

X(log D) on X.
From the definition we deduce

dA•
X(V, log D) ⊂ A•

X(V, log D)[1], ∂Ω•X(log D) ⊂ Ω•X(log D)[1],

and thus we obtain two complexes of sheaves on X: (A•
X(log D), d) called the smooth loga-

rithmic complex, and (Ω•X(log D), ∂) called the holomorphic logarithmic complex.
Denote by j the natural inclusion j : X∗ ↪→ X. By definition, (Ω•X(log D), ∂) is a subcom-

plex of (A•
X(log D), d) which is a subcomplex of (j∗A•, d).

Theorem 2.1. The inclusions

(Ω•X(log D), ∂) ↪→ (A•
X(log D), d) (2.1)

and
(Ω•X(log D), ∂) ↪→ (j∗A•

X , d) (2.2)
are quasi-isomorphisms of complexes of sheaves. In particular, the inclusion

(A•
X(log D), d) ↪→ (j∗A•

X , d) (2.3)

is also a quasi-isomorphism.

Proof The proof of this result will occupy the remainder of this section. We use a com-
bination of the approaches in [6, §5] and [8, Chap. 8]. We begin by giving an alternate
description of A•

X(log D).

Lemma 2.2. Suppose ( U, (zj) ) is an open coordinate neighborhood on X such that

D ∩ U = {z1 · · · zk = 0}.
Then any α ∈ Am

X(U, log D) can be written as a combination

α = α0 +
k∑

j=1

∑

1≤i1<···≤ij≤k

αi1···ij ∧
dzi1

zi1

∧ · · · ∧ dzij

zij

,

where
α0 ∈ Am

X(U), αi1···ij ∈ A
m−j
X (U).

Proof For simplicity we consider only the case k = 1 and we write z = z1. Note first that
we can write

α =
1
z
β, β ∈ Am

X(U).

We write
β = β0 + dz ∧ α1, α1 ∈ Am−1

X (U), β0 ∈ Am
X(U),

∂

∂z
β0 = 0.

On the other hand, since zdα ∈ Am+1
X (U) we deduce

z
(
−dz

z2
∧ β +

1
z
dβ

)
= −dz

z
∧ β + dβ ∈ Am+1

X (U).

Hence
−dz

z
∧ β0 + dβ0 − dz ∧ dα1 ∈ Am+1

X (U)
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Hence
β0 = zα0, α0 ∈ Am

X(U).
ut

It is convenient to introduce some simplifying notations. If U is a coordinate neighborhood
in which D is described by the monomial equation z1 · · · zk then for every multi-index I =
(1 ≤ i1 < · · · < ij ≤ k) we set

|I| := j, (d log z)I :=
dzi1

zi1

∧ · · · ∧ dzij

zij

and
α =

∑

|I|≥0

αI ∧ (d log z)I

We will refer to such a representation as a local logarithmic representation.
To prove the quasi-isomorphism (2.1) we will show that for every p ≥ 0 the sequence of

sheaves over X

0 → Ωp,0
X (log D) ↪→ A

p,0
X (log D) ∂̄→ A

p,1
X (log D) ∂̄→ · · · (2.4)

is exact. To achieve this we will need a ∂̄-version of the Poincaré lemma. We state below a
more refined version due to Nickerson, [7]. Denote by Dn

r the polydisk in Cn defined by

Dn
r = {(z1, · · · , zn); |zj | < r, ∀j = 1, · · · , n}.

Lemma 2.3 (Dolbeault Lemma). For every integers n ≥ 1, 0 ≤ p ≤ n, 1 ≤ q ≤ n there
exists a linear operator

T0 : A•,•(Dn
r ) → A•,•(Dn

r/2)[0,−1]

such that ∀α ∈ Zp,q(Dn
r ) we have

α |Dn
r/2

= ∂̄T0α + T0∂̄α.

ut

For every integers 0 ≤ k ≤ n we denote by Sk = Sk,n the normal crossings divisor in Dn
r

defined by the equation z1 · · · zk = 0 if k > 0, S0 = ∅, if k = 0. Set

Z•,•k (Dn
r ) := ker

(
∂̄ : A•,•(Dn

r , log Sk) → A•,•(Dn
r , log Sk)[0, 1]

)
.

To prove the exactness of the sequence (2.4) it suffices to show the following.

Lemma 2.4. For every k ≤ n and every r > 0 there exists a linear map

Tk : Z•,•k (Dn
r ) → A•,•(Dn

r/2, log Sk)[0,−1],

such that
α |Dn

r/2
= ∂̄Tkα, ∀α ∈ Z•,•k (Dn

r ).

Proof We will argue by induction over k.
For k = 0 this follows from the Dolbeault lemma. Let us prove the inductive step. Set

z = zk+1. Suppose α ∈ Zp,q
k+1(D

n
r ). Then Lemma 2.2 implies that the forms

β = z∂z α ∈ Ap−1,q(Dn
r , log Sk), γ = α− dz

z
∧ β ∈ Ap,q(Dn

r , log Sk)
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contain no dz. By design, we have

α =
dz

z
∧ β + γ.

From the equality ∂̄α = 0 we deduce

∂̄γ − dz

z
∧ ∂̄β = 0.

Since β and γ contain no dz we deduce

∂̄γ = 0 = ∂̄β,

so that by induction, Tkβ and Tkγ are well defined. Now set

Tk+1α = −dz

z
∧ Tkβ + Tkγ.

Since β and γ depend linearly on α we deduce that Tk+1 is a linear operator. Clearly

dTk+1 = α.

ut

To prove the quasi-isomorphism (2.2) it suffices to show that any point p ∈ X admits a
fundamental system of neighborhoods Up such that every neighborhood U ∈ Up contains a
neighborhood U ′ ∈ Up such that the natural map

Ωp
X(U, log D), ∂) → (

j∗A•
X(U ′), d

)

is a quasi-isomorphism. To achieve this it suffices to show that for any integers 0 ≤ k ≤ n
and every positive real number r the natural map

(Ω•(Dn
r , log Sk), ∂) → (A•(Dn

r/2 \ Sk), d)

is a quasi-isomorphism. Let first observe that the above map induces a surjection in coho-
mology. Indeed

H•(A•(Dn
r/2 \ Sk), d) ∼= H•(Dn

r/2 \ Sk) ∼= H•( (C∗)k × Cn−k
) ∼= H•( (C∗)k).

This shows that the cocycles (d log z)I of (Ω•(Dn
r , log Sk), ∂) restrict to a C-basis of the DeR-

ham cohomology groups H•(Dn
r/2 \ Sk,C). This proves the claimed surjectivity.

To prove the injectivity we argue by induction over k and show that the restriction to
Dn

r/2 of a cocycle of (Ω•(Dn
r , log Sk), ∂) is cohomologous to constant logarithmic form, i.e.

linear combination of (d log z)I with constant coefficients. We denote by ∼ the cohomology
equivalence relation.

For k = 0 this follows from the Dolbeault Lemma. Suppose α ∈ Ωp(Dn
r , log Sk+1) is such

that ∂α = 0. Split the coordinates (z1, · · · , zn) into two groups

(z1, · · · , zn) = (zk+1; w), w = (z1, · · · , zk−1, zk+1, · · · , zn).

As in the proof of the exactness of (2.4) we can write

α =
dz

z
∧ β + γ,

where β ∈ Ωp−1(Dn
r , log Sk),γ ∈ Ωp(Dn

r , log Sk) contain no dz. We describe the dependence
of β on (z, w) as β(z, w), we denote by Dn−1

r the corresponding polydisk in the w subspace
and we set

β0 = β(0, w) ∈ Ωp−1(Dn−1
r , log Sk) ⊂ Ωp−1(Dn

r , log Sk),
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γ1 =
1
z
(β − β0) ∈ Ωp−1(Dn

r , log Sk).

Hence
α =

dz

z
∧ β0 + dz ∧ γ1 + γ, β0, γ, γ1 ∈ Ω•(Dn

r , log Sk)

and the coefficients of β0 are independent of z. Since ∂α = 0
dz

z
∧ ∂wβ0 = ∂γ − dz ∧ ∂γ1.

Since the right hand side does not have poles along z = 0 we deduce
dz

z
∧ ∂wβ0 = 0 ⇐⇒ ∂wβ0 = 0 and ∂(

dz

z
∧ β0) = 0.

Thus β0 is a cocycle of the complex (Ω•(Dn−1
r , log Sk), ∂) and by induction, its restriction to

Dn−1
r/2 is cohomologous to a constant logarithmic form ω0 in the variables d log w so that

dz

z
∧ β0 ∼ (d log z) ∧ ω0 on Dn

r/2.

On the other hand,

∂(
dz

z
∧ β0) = 0 = ∂α =⇒ ∂(dz ∧ γ1 + γ) = 0.

By induction dz ∧ γ1 + γ is also cohomologous to a constant logarithmic form.
This concludes the proof of the quasi-isomorphism (2.1) and thus the proof of Theorem

2.1.
ut

3. The weight filtration and the associated spectral sequence

We say that a section α ∈ A•
X(V, log D) has weight ≤ `, and we write this w(α) ≤ ` if in

each coordinate neighborhood it admits a logarithmic representation such that αI = 0 for all
|I| > `. Equivalently, this means that every point p ∈ V admits a coordinate neighborhood
(U, (zi)) such that

S` := {z1 · · · z` = 0} ⊂ D ∩ U

and
α |U∈ A•(U, log S`).

We denote by W`A
•
X(V, log D) the subspace of A•

X(V, log D) consisting of sections of weight
≤ `. Equivalently, we have

W`A
•
X(V, log D) = A`

X(V, log D) ∧A•
X(V )[−`].

The correspondence
V 7−→ A•

X(V, log D)
defines a subsheaf W`A

•
X(log D) of A•

X(log D). The subsheaf W`Ω•X(log D) of Ω•X(log D) is
defined in a similar fashion. Note that

W` ⊂ W`+1, dW`, ∂̄W` ⊂ W`, W` ∧W`′ ⊂ W`+`′ ,

W`A
`
X(log D) = A`

X(log D), W0A
•
X(log D) = A•

X , W−1 = 0.

The increasing filtration W`A
•
X(log D) is called the weight filtration. Note that

dW`A
•
X(log D) ⊂ W`A

•
X(log D)[1], ∂̄W`A

p,q
X (log D) ⊂ W`A

p+1,q
X (log D)

Clearly the sheaves W`A
•
X(log D) are fine.
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Denote by {Dλ, λ ∈ Λ} the irreducible components of D. Fix a total order on the finite
set Λ. For every finite subset L ⊂ Λ and every positive integer ` we set

DL :=
⋂

λ∈L

Dλ, D` =
⋃

|L|=`

DL, D̃` =
⊔

|L|=`

DL.

Since D is a normal crossings divisor D̃` is a projective manifold of dimension n − `, n =
dimCX. We denote by a the natural holomorphic map D̃` → X induced by the inclusions
i : DL → X. Note that

a∗Ω•D̃`
=

⊕

|L|=`

i∗Ω•DL
, a∗A•

D̃`
=

⊕

|L|=`

i∗A•
DL

.

Proposition 3.1. There exist natural quasi-isomorphism of complexes of sheaves

(
GrW

` Ω•X(log D), ∂
) → a∗(Ω•D̃`

[−`], ∂), (3.1)

(
GrW

` A
p,•
X (log D), ∂̄

) → a∗(A
p−`,•
D̃`

, ∂̄). (3.2)

(
GrW

` A•
X(log D), d

) → a∗(A•
D̃`

[−`], d), (3.3)

Proof The above isomorphisms are induced by the Poincaré residue

Res` : W`A
p,q
X (log D)x → a∗A

p−`,•
D̃`

which is defined as follows.
Let x ∈ X. If x ∈ X \D` then

Res` : W`A
p,q
X (log D)x → (a∗A

p−`,•
D̃`

)x.

is trivial. Suppose x ∈ D` and α ∈ A
p,q
X (log D)x. Then we can find a coordinate neighborhood

U of x and k ≥ ` with the following properties.
• The triplet (U,D ∩ U, x) is biholomorphic to the triplet (Dn

r , Sk, 0), where we recall that

Sk = {z1 · · · zk = 0}.
Set [k] = {1, · · · , k}, ζi = zi∂zi , ∀i ∈ [k].
• For i ∈ [k] we denote by Dλi the component of D such that

Dλi
∩ U = {zi = 0}.

Then
i < j =⇒ λi < λj .

• The germ α can be represented by a form

α =
∑

L⊂[k], |L|≤`

αL ∧ (d log z)L, αL ∈ A
p−|L|,q
X (U),

where the coefficients αL are uniquely determined by the conditions ζi αL = 0, ∀i ∈ L.
For |L| = ` we define

Res`
L α := (2πi)`αL |DL

∈ a∗A
p−`,q
DL

(U).
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To see that this definition is independent of the defining equations {zi = 0} suppose we
replace one of them z = 0 by an equivalent one w = 0, where w = uz and u is a holomorphic
function, nowhere vanishing on U , then

dw

w
=

dz

z
+

du

u

and we see that this affects only the terms αL with |L| < `. This shows the map Res`
L is

independent of the various choices. Moreover

Res`
L W`−1A

p,q
X (log D) = 0,

so that we do have a well defined map

Res` =
∏

|L|=`

Res`
L : GrW

` A
p,q
X (log D)x → a∗A

p−`,•
D̃`

.

This map is surjective, yet is not injective. For example, if X = C, D = {0} then Res z̄
zdz = 0

yet z̄
zdz 6∈ W0. However, it induces an isomorphism of complexes of sheaves

(Gr` Ω•X , ∂) → a∗(Ω•D̃`
[−`], ∂).

The proof of Lemma 2.4 shows that the inclusion

W`Ω
p
X(log D) ↪→ (W`A

p,•, ∂̄)

is a resolution of the sheaf W`Ω
p
X(log D). We deduce that

Gr` Ωp
X(log D) ↪→ GrW

` Ap,•, ∂̄)

is a quasi-isomorphism. In particular we obtain a commutative diagram of complexes of
sheaves

Gr` Ωp
X(log D) a∗Ω

p−`

D̃`

(GrW
` Ap,•, ∂̄) a∗(A

p−`,•
D̃`

, ∂̄)

wRes`
Ω

z

u

fl

z

u

fr

wRes`
A

in which the vertical arrows fl and fr are quasi-isomorphisms1 and the top horizontal arrow
is an isomorphism. Hence Res`

A is a quasi-isomorphism which proves (3.2).
The complex (W`A

•
X(log Y ), d) is the total complex associated to the double complex

(W `A
•,•
X , ∂, ∂̄) in which the columns are exact. Thus the inclusion

(W`Ω•X(log Y ), ∂) ↪→ ((W`A
•
X(log Y ), d)

is a quasi-isomorphism.
The proof of (3.3) now follows using la similar commutative diagram relating via the

Poincaré residue the Dolbeault-to-DeRham spectral sequences (GrW
` A

•,•
X (log Y ), ∂ + ∂̄) to

the Dolbeault-to-DeRham spectral sequence (A•,•
D̃`

[−`], ∂ + ∂̄). The columns of both these
double complexes are acyclic.

ut
1fr is a quasi-isomorphism since a∗ is an exact functor.
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The complex of sheaves A•
X(log D), d) is an fine resolution of j∗C so that

H•(A•
X(X, log D), d) ∼= H•(X, j∗C) ∼= H•(X∗).

The decreasing filtration W `− = W−` on A•
X(log D) leads to a spectral sequence

E•,•
r = E•,•

r (W−) =⇒ H•(X∗).

In particular, we obtain an increasing filtration W` on H•(X∗) such that

Wk = 0, ∀k < 0

and
W0H

•(X∗) = j∗H•(X). (3.4)

The last equality follows from the definition of W0H
•(X∗) as the image of the homology of

H•(Γ(X,W0A
•
X(log D), d

)
= H•(Γ(X,A•

X), d
) ∼= H•(X)

in
H•(H•(Γ(X, A•

X(log D), d
) ∼= H•(X∗).

Since the sheaves W`A
p
X(log D) are fine we deduce that the sheaves GrW

` A
p
X(log D) are

acyclic and the E0 term of the above spectral sequence is given by

E−`,m
0 = GrW

` Γ
(
X, Am−`

X (log D)
) ∼= Γ

(
X,GrW

` Am−`
X (log D)

)
, d0 = d.

Note that Ek,m
0 = 0 for k > 0 or m < 0. From (3.3) we deduce that the complex of acyclic

sheaves GrW
` A•

X(log D) is quasi-isomorphic to a∗A•
D̃`

[−`]. Since the functor a∗ is exact and
A•

D̃`
is a resolution of CD̃`

we deduce

E−`,m
1 = Hm−`

(
X,GrW

` A•
X(log D)

) ∼= Hm−`
(
X,GrW

` A•
X(log D)

)

∼= Hm−l(D̃`, A
•
D̃`

[−`]) ∼= Hm−2`(D̃`,C).

For example, if X is a smooth algebraic surface, and D is a normal crossing divisor then the
E1-page of this spectral sequence has the look

H0(D̃2) H2(D̃1) H4(X) 0

0 H1(D̃1) H3(X) 0

0 H0(D̃1) H2(X) 0

0 0 H1(X) 0

0 0 H0(X) 0

2 ≥ W 1 ≥ W 0 ≥ W −1 ≥ W

wd1

����

wd1

����

wd1

wd1 wd1

����

wd1

wd1 wd1

����

wd1

wd1 wd1

wd1 wd1
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The complex (A•
X(log D), d) is equipped with a natural decreasing filtration F = FX

F pAm
X(log D) =

⊕

k≥p

A
k,m−k
X (log D),

and the differential d is clearly compatible with this filtration. We will refer to this as the
Hodge filtration. Note that we have an isomorphism of complexes of sheaves

(Grp
F A•

X(log D),Grp
F d) = (Ap,•

X (log D), ∂̄).

Using (3.2) we deduce that they are complexes of acyclic sheaves. We conclude that the
sheaves

GrF GrW ∼= GrW GrF

are acyclic. This implies

F GrW Γ(X, A•
X(log D)) = Γ(X, F GrW A•

X(log D)

and

GrF GrW Γ(X, A•
X(log D)) = Γ(X,GrF GrW A•

X(log D).

We obtain a filtration a canonical FX on E•,•
0 . The sheaves Ak

D`
are also equipped with

decreasing filtrations F = FD defined by

F pAm
D̃`

=
⊕

k≥p

A
k,m−k

D̃`

and the Poincaré residue isomorphism

R` : E−`,m
0 = Γ(X,GrW

` Am−`
X (log D)) → Γ(D̃`, A

m−2`
D̃`

)

satisfies

R`F
•
X ⊂ FD[−`]•.

The filtration FD induces on Hm−2`(D̃`,C) a pure Hodge structure of weight m− 2`. Using
the Poincaré residue isomorphism

R` : E−`,m
1 → Hm−2`(D̃`)

we obtain a pure Hodge structure of weight m on E−`,m
1 . We want to prove that d1 is a

morphism of pure Hodge structures of bidegree (0, 0) and so that we have a canonical Hodge
structure on E2. To complete the argument we will show that dr = 0 for all r ≥ 2.

To show that d1 is a morphism of Hodge structures we can proceed in two different ways.
The first approach is more geometric and is based on an explicit geometric description of d1

in terms of Gysin maps. This description is contained in the Appendix and it is particularly
useful in concrete computations. The second approach, due to P. Deligne is more algebraic in
nature and is based on a careful analysis of filtered spectral sequences. We follow this method
as it will also lead to a very elegant proof of the degeneration of the spectral sequence. We
need a brief algebraic interlude.
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4. Spectral sequences

We want to first recall a few elementary constructions involving filtered modules.
Suppose R is a commutative ring with 1 and F • is a decreasing filtration on the R-module

A. If B is a submodule of A then F induces a canonical filtration FB on B such that the
inclusion B ↪→ A is strict with respect to the corresponding filtrations. More explicitly,

FB = F ∩B.

The quotient A/B has a canonical filtration uniquely determined by the requirement that
the natural projection A → A/B is strict. More precisely

F p(A/B) =
F p(A) + B

B
.

If C is a submodule of B then the quotient B/C has a canonical filtration uniquely determined
by the requirement that both natural morphisms

B/C ↪→ A/C, B ³ B/C

are strict. More precisely

F p(B/C) =
F p ∩B + C

C
∼= F p ∩B

F p ∩ C
.

We have a canonical morphism φ : A/C → A/B completing the commutative diagram

A A/C

A/B

ww[
[
[[]

uu
φ .

Note that kerφ = B/C and thus we have a canonical isomorphism

σ :
A/C

kerφ
=

A/C

B/C
→ Imφ = A/B

This isomorphism is strict with respect to the canonical filtrations induced by F on both
sides.

If X, Y are two submodules of A then we have a natural isomorphism

ψ :
X

X ∩ Y
→ X + Y

Y
, (4.1)

which completes the commutative diagram

X
X

X ∩ Y

X + Y

Y

ww[
[
[[]

uu
φ

ψ is compatible with the filtrations induced by F , but not necessarily strictly. More precisely,
ψ is strict if and only if the following condition is satisfied

F p ∩ (X + Y ) ⊂ F p ∩X + F p ∩ Y, ∀p. (4.2)
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Suppose (K, d) is a cochain complex of R-module. For simplicity, we do not include grading
of the complex in our notations. Then any decreasing filtration W on K• compatible with
the derivation d determines a spectral sequence

Ep
r = Ep

r (K, W ) =⇒ Grp
W H(K, d)

defined by

Ep
r =

Zp
r

Bp
r
,

where2

Zp
r = W p ∩ d−1W p+r,

Bp
r = (dW p−r+1 ∩W p) + (W p+1 ∩ d−1W p+r) = dZ

p−(r−1)
r−1 + Zp+1

r−1 .

Using the inclusions
dBp

r = dZp+1
r−1 ⊂ Bp

r , dZp
r ⊂ Zp+r

r

we obtain a cochain complex (Er(W ), dr), where dr : Ep
r → Ep+r

r is defined by the composition

Zp
r

Bp
r

d−→ dZp
r + Bp

r

Bp
r

↪→ Zp+r
r

Bp
r

³ Zp+r
r

Bp+r
r

We have a natural isomorphism αr : Er+1 → H(Er, dr) defined as the composition

Zp
r+1

Bp
r+1

=
Zp

r+1

Zp
r+1 ∩ (dZp−r

r + Zp+1
r−1 )

ψ−→ Zp
r+1 + Zp+1

r−1

dZp−r
r + Zp+1

r−1

σ−1−→ (Zp
r+1 + Zp+1

r−1 )/Bp
r

(dZp−r
r + Zp+1

r−1 )/Bp
r

=
Z(Er, dr)
B(Er, dr)

.

The above description identifies Er with a quotient of submodule of K. We can give a dual
description of Er as the submodule of a quotient of K. More precisely we set

B̃p
r := dW p−(r−1) + W p+1; Z̃p

r = Zp
r + B̃p

r = W p ∩ d−1W p+r + dW p−(r−1) + W p+1.

Observe that
Zr ∩ B̃r = Br

and thus we have an isomorphism

ηp
r : Ep

r (W ) =
Zp

r

Zp
r ∩ B̃p

r

ψ−→ Zp
r + B̃p

r

B̃p
r

=
Z̃p

r

B̃p
r

= Im
(
Zp

r → K/B̃p
r

)
=: Ẽp

r (W ).

On Ẽr we have a differential defined by the composition

d̃r :
Z̃p

r

B̃p
r

d−→ dZ̃p
r + B̃p

r

B̃p
r

↪→ Z̃p+r
r

B̃p
r

³ Z̃p+r
r

B̃p+r
r

The isomorphism ηp
r is an isomorphism of complexes (Ep

r , dr) → (Ẽp
r , d̃r).

We also have a natural identification α̃r : H(Ẽr, d̃r) → Ẽr+1 defined as the composition

Zp(Ẽr, dr)
Bp(Ẽr, d̃r)

=
(W p ∩ d−1W p+r+1 + B̃p

r )/B̃p
r

(W p ∩ dW p−r + B̃p
r )/B̃p

r

σ−→

:=Ẑp
r+1︷ ︸︸ ︷

(W p ∩ d−1W p+r+1 + B̃p
r )

(W p ∩ dW p−r + B̃p
r )︸ ︷︷ ︸

:=B̂p
r+1

2Our definition of Bp
r differs from the conventional one Bp

r = (dW p−r+1 ∩W p).
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=
Ẑp

r+1

Ẑp
r+1 ∩ B̃p

r+1

ψ−→ Z̃p
r+1

B̃p
r+1

= Ẽp
r+1.

We obtain in this fashion a commutative diagram

Er+1 Ẽr+1

H(Er, dr) H(Ẽr, d̃r)

wηr+1

u

αr

w
H(ηr)

u
α̃r . (4.3)

Suppose F is second decreasing filtration on K compatible with d. It induces a canonical
filtration F = F (r) on Ep

r , called the first direct filtration, by setting

F kEp
r =

F k ∩ Zp
r + Bp

r

Bp
r

.

On the other hand, it induces a filtration F̃ = F̃ (r) on Ẽp
r , called the second direct filtration

by

F̃ kẼp
r =

F k ∩ Z̃p
r + B̃p

r

B̃p
r

Observe that
ηp

r (F (r)) ⊂ F̃ (r),

i.e. ηp
r is compatible with the filtrations, not necessarily strictly.

For r = 0 we have
Zp

0 = W p = Z̃p
0 , Bp

0 = W p+1 = B̃p
0

so that we have
F (0) = F̃ (0).

For r = 1 we have

Zp
1 = W p ∩ d−1W p+1, B̃p

1 = dW p + W p+1 = Bp
1

and we conclude again that
F (1) = F̃ (1).

There is a third filtration F on Ep
r , called the recurrent filtration defined inductively by the

requirements.
• F(r) = F (r), r = 0, 1.
• F(r) induces a canonical filtration on H(Er, dr) and using the isomorphism

αr : Er+1 → H(Er, dr)

we obtain a filtration F(r + 1) on Er+1. and we have
Using the isomorphism ηr and the commutative diagram (4.3) we obtain three filtrations

F, F̂ , F̃ on Er satisfying
F ⊆ F ⊆ F̃ on Er,

with equalities for r = 0, 1. The differential dr is compatible with F and F̃ but may not be
compatible with F. We have the following result.
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Theorem 4.1 (Le lemme de deux filtrations). Suppose that for every 0 ≤ k ≤ r the differ-
ential dk is strictly compatible with the recurrent filtration F. Then dr+1 is compatible with
F and for every 0 ≤ k ≤ r + 1 we have

F = F = F̃ on Ek.

For a very elegant proof of this result we refer to [3, §1.3] or [4, §7.2].

5. The degeneration of the spectral sequence Er(A•(X, log D),W )

We now apply the previous abstract considerations to the special case of the complex of
C-vector spaces

(K•, d) = A•(X, log D), d)
Equipped with the decreasing filtrations

W−`K = W`A
•(X, log D), F pK =

⊕

k≥p

Ap,q(X, log D).

As explained in the previous section, on E1 = E1(K,W ) the three filtrations F , F and F̃

and d1 : E−`,m → E−`+1,m
1 is compatible with F . Since F induces on E•,m

1 a pure Hodge
structure of weight m we deduce that d1 is strict with respect to F , and in particular E−`,m

2
is equipped with a canonical pure Hodge structure of weight m. The Hodge filtration is
described by the recurrent filtration F.

We now prove by induction over r ≥ 2 that dr = 0. Since d0 and d1 are strictly compatible
with F = F we deduce from Theorem 4.1 that d2 is compatible with F̂ . In particular we
deduce that

d2 : E−`,m
2 → E−`+2,m−1

2

is a morphism of pure Hodge structures. Since the weight of the codomain E−`+2,m−1
2 of d2

is strictly smaller than the weight of the domain E−`,m
2 we deduce d2 = 0. Indeed we have

d2(Fp ∩ F̄q ∩ E•,m
2 ) ⊂ Fp ∩ F̄q ∩ E•,m−1

2

and we have

E•,m
2 =

⊕
p+q=m

Fp ∩ F̄q ∩ E•,m
2 , Fp ∩ F̄q ∩ E•,m−1

2 = 0, ∀p + q > m− 1.

Assume we have proved the vanishing of dk, 2 ≤ k ≤ r and we prove it for k = r + 1. The
vanishing implies that dk is strictly compatible with F for 0 ≤ k ≤ r and that E•,m

r+1 has a
pure Hodge structure of weight m with Hodge filtration F. By Theorem 4.1 the differential
dr+1 is compatible with F and thus induces a morphism of pure Hodge structures

dr+1 : E•,m
r+1 → E•,m−r

r+1

and we conclude as before that dr+1 = 0 because the weight of E•,m−r
r+1 is strictly smaller than

the weight of E•,m
r+1.

We deduce that

GrW
` Hm(X∗,C) = Gr−`

W− Hm(X∗,C) ∼= E−`,m+`
2

is equipped with a pure Hodge structure of weight m + `. Observe now that

GrW
` = GrW [−m]

m+`
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so that the decreasing filtration F and the increasing filtration W [−m] define a mixed Hodge
structure on Hm(X∗,C). From the equality (3.4) we deduce

WmHm(X∗) = j∗Hm(X). (5.1)

6. Functoriality

It is time to stop and reflect on the things we have done so far. We started with a smooth
quasi-projective variety X∗, We chose a smooth compactification X of X∗ such that the locus
at infinity X \X∗ is a normal crossings divisor. Then, using the embedding j : X∗ ↪→ X we
produced a mixed Hodge structure on H•(X∗). We have the following result.

Theorem 6.1 (Functoriality of mixed Hodge structures). (a) The above mixed Hodge struc-
ture on H•(X∗) is independent of the compactification X.
(b) If f : X → Y is a holomorphic map between two smooth quasi-projective manifolds then
the induced morphism

f∗ : H•(Y ) → H•(X)

is a morphism of mixed Hodge structures. ut

The proof of this theorem makes heavy use of Hironaka’s resolution theorem. For details
we refer to [3, §3.2].

7. Examples

We want to discuss a few simple examples to get a feeling of the complexity of the objects
involved. We begin by introducing some notations.

If V is a complex vector space equipped with a mixed Hodge structure (F, W ) we set

hp,q(V ) := dimC(GrW
p+q)

p,q,

and we define the Poincaré-Hodge polynomial PV (z, z̄) to be

PV (z, z̄) =
∑
p,q

hp,q(V )zpz̄q.

For a smooth quasi-projective manifold X we set

PX = PX(t, z, z̄) =
∑

k≥0

tkPHk(X)(z, z̄), Ep,q(X; z, z̄) =
∑

k≥0

(−1)khp,q(Hk(X) ) ∈ Z[z, z̄],

E(X; z, z̄) := PX(t, z, z̄) |t=−1=
∑
p,q

Ep,q(X; z, z̄) ∈ Z[z, z̄].

We begin with the simplest situation when the divisor D is smooth and irreducible.

Example 7.1. Suppose Y
i

↪→ X is a smooth hypersurface in the projective manifold X. We
would like to understand the mixed Hodge structure on X∗ = X \Y . Denote by j the natural
inclusion X∗ ↪→ X.

Observe that in this case we have D̃` = ∅ for ` > 1. In particular E−`,m
1 is zero for ` 6= 0, 1.

We have
E0,m

1 = Hm(X), E−1,m
1 = Hm−2(Y ).
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The E1-term has the shape

...
...

...
...

0 H2(Y ) i!−→ H4(X) → 0

0 H1(Y ) i!−→ H3(X) → 0

0 H0(Y ) i!−→ H2(X) → 0

0 0 H1(X) → 0

0 0 H0(X) → 0

(7.1)

Denote by H•(Y )van the kernel of the Gysin map i!. We deduce

E−1,m
2 = Hm−2(Y )van.

Using the long exact sequence

· · · → H•(Y )[−2] i!−→ H•(X)
j−→ H•(X∗) Res−→ H•(Y )[−1] → · · ·

we deduce
E0,m

2 = Hm(X)/ Im i! = Hm(X)/ ker j∗ ∼= j∗Hm(X)

Thus we can identify E0,m
2 with the subspace of Hm(X∗) consisting of cohomology classes

which extend over X. If we denote by W the weight filtration on Hm(X∗) we deduce

Wk = 0, ∀k < m, Wp = Hm(X∗), ∀p > m + 1

WmHm(X∗) = j∗Hm(X), GrW
m+1 Hm(X∗) ∼= Hm−1(Y )van.

In special cases we can say more about the differential d1. Assume i : Y ↪→ X is a smooth
very ample divisor. We then have the following result. For a proof we refer to [9, §2.3]

Theorem 7.2 (Hard Lefschetz Theorem). Set m = 1
2 dimR Y and denote by [Y ] the line

bundle associated to Y .

(a) For every k 6= m we have

Hk
van(Y ) = 0.

Moreover

Hm(Y )van ⊂ Hm(Y )prim ⇐⇒ ∀u ∈ Hm(Y )van, u ∪ c1([Y ]) |Y = 0.

(b) We have direct sum decompositions

Hm(Y ) = Hm(Y )van ⊕ i∗Hm(X), (7.2a)

Hm(Y )prim = Hm(Y )van ⊕ i∗Hm(X)prim. (7.2b)

The summands in each decomposition are orthogonal with respect to the intersection form on
Hm(Y ). ut
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This theorem is useful when for example Y is a smooth hypersurface in some Pn. In this
case m = n− 1, Hn−1(Pn)prim = 0 and we deduce from (7.2b)

Hn−1(Y )prim = Hn−1(Y )van.

Using (7.2a) we conclude

dimHn−1(Y )van = dimHn−1(Y )−
{

1 if dimC Y is even
0 if dimC Y is odd .

In particular, if Y is a hyperplane in Pn then Hk(Pn \ H) is equipped with a pure Hodge
structure of weight k. Let us look at a few other special examples.

Suppose for example that Y = Yd is a degree d curve in P2. Set X∗ = P2 \ Yd. Then the
Poincaré-Hodge polynomial of Y is

PY (z, z̄) = 1 +
(d− 1)(d− 2)

2
t(z + z̄) + t2(zz̄).

Then
H0(P2 \ Y ) ∼= C

W1H
1(X∗) = 0, W2H

1(X∗) = H0(Y )van = 0

W2H
2(X∗) = 0, W3H

2(X∗) = H1(Y )van = H1(Y )
and we deduce

PP2\Yd
= 1 +

(d− 1)(d− 2)
2

t2(zz̄)(z + z̄) = 1 + tzz̄(PY − 1− t2zz̄).

Using the equality
PPk = 1 + t2(zz̄) + · · ·+ t2k(zz̄)k

we deduce

PP2\Yd
= 1 +

(d− 1)(d− 2)
2

t2(zz̄)(z + z̄) = 1 + tzz̄(PY − PP1). (7.3)

Suppose now that Y = Yd is a degree d hypersurface in P2. Set X∗ = P3 \ Y . Then

h2,0(Y ) = h0,2(Y ) =
(

d− 1
3

)
, h1,1(Y ) =

4d2 − 12d2 + 14d
6

.

We have
h0,0(X∗) = 1, H1(X∗) = H2(X∗) = 0

Gr3 H3(X∗) = 0, Gr4 H3(P3 \ Y ) = H2(Y )van

h3,1(H3(X∗) = h2,0(Y ) = h1,3( H3(X∗) ), h2,2(H3(X∗)) = h1,1(Y )− 1
since the nonprimitive class in H2(Y ) has type (1, 1) and it is the restriction of the hyperplane
class which is a (1, 1)-class. We deduce

PP3\Y = 1 + tzz̄(PY − 1− tzz̄ − t4zz̄) = 1 + tzz̄(PY − PP2). (7.4)

ut

Example 7.3. Often Y could be very far from ample. Here is a simple example. Suppose
X is a smooth algebraic surface and set X∗ = X \ {pt}. As compactification for X∗ we can
choose X̄ = the blowup of X at p. Denote by E ↪→ X̄ the exceptional divisor so that

X∗ = X̄ \E.
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In this case E ∼= P1 and since the morphism i∗ : H•(E) → H•(X̄) is one-to-one we deduce
H•(E)van = 0 so that

E−1,•
2 = 0.

Hence Hm(X̄ \ E) is equipped with a pure Hodge structure of weight m. Hence

PX\p = PX − t4(zz̄)2.

ut

Example 7.4. Suppose X∗ is the complement of a three distinct lines L1, L2, L3 in P2. We
distinguish two cases (see Fig 1)

(a)

(b)

L

L

L

L

L
L

p

p p

p

12

13

23

1 1

2
2

3

3

Figure 1. Three lines in the plane.

(a) The generic situation. The three lines are not concurrent. In this case we set pij = L1∩Lj .

(b) The degenerate situation. The three lines intersect at a single point p.

To the configuration of lines we associate its nerve which is a simplicial complex with
one vertex for every line in the configuration, and one edge for pair of intersecting lines, a
2-simplex for every triplet of intersecting lines (see Fig 2) etc.

L

L L LL

L

1

1

1

2 2

2

2

33

3
p

p

p

(a)
(b)

Figure 2. The nerves of the two possible configurations of three lines in the plane.
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In the case (a) the spectral sequence has the form

...
...

...
...

0 0 0 0

⊕H0(pij)
δ−→ ⊕H2(Li)

δ4−→ H4(P2) → 0

0
⊕

H1(Li)
δ3−→ H3(P2) → 0

0 ⊕H0(Li)
δ2−→ H2(P2) → 0

0 0 H1(P2) → 0

0 0 H0(X) → 0

The row containing H4(P2) is the augmented simplicial chain complex corresponding to the
simplicial complex N depicted in Figure 2(a) and thus its homology is the reduced homology
of the associated space which is a circle. Note that Hodd(Li) = Hodd(P2) = 0 and the
differentials δ2, δ3, δ4 are onto. We deduce,

H0(X∗) = C

Gr1 H1(X∗) = 0, Gr2 H1(X∗) = H1(X∗) ∼= C2,

Gr2 H2(X∗) = 0, Gr3 H2(X∗) = 0, Gr4 H2(X∗) = H2(X∗) ∼= H1(N) = C

H3(X∗) = H4(X∗) = 0.

As X∗ is an affine set, the above computations agree with the Andreotti-Fraenkel theorem
which states that an affine set has no homology beyond middle dimension.

For k = 0, 1, 2 the space Hk(X∗) has a pure Hodge structure of maximal possible weight
2k. The Poincaré-Hodge polynomial of X∗ is

PX∗ = 1 + 2t(zz̄) + t2(zz̄)2.

We deduce that the Euler characteristic is

χ(X∗) = 1− 2 + 1 = 0.

Equivalently we can compute this as

χ(X∗) = χ(P2)− χ(L1 ∪ L2 ∪ L3) = 3− (6− 3) = 0.

(b) In the degenerate case we blow up P2 at the triple intersection point p. Denote by X the
result of this blowup, by E the exceptional divisor and by L̄i the strict transform of Li. We
get a configuration of four rational curves as depicted in Figure 3.

The second homology of X̄ is the direct sum C〈[L]〉 ⊕ C〈[E]〉, where [L] denotes the
homology class determined by a line in P2 \ {p} ⊂ X̄. Then

[L̄i] = [L] + [E], ∀i = 1, 2, 3. (7.5)
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E
E

L

L

L

L

L L
1

1
1

1

2

2
22

3

3

3

3

p

p

p

ppp

Figure 3. A configuration of rational curves and its associated nerve.

The Poincaré dual of the E1-term of the spectral sequence has the form

⊕3
i=1H0(pi) →

(⊕3
i=1H0(L̄i)

)⊕H0(E)−→ H0(X̄)
0 0

0
(⊕3

i=1H2(L̄i

)⊕H2(E) δ2−→ H2(X̄)
0 0 0
0 0 H4(X)

.

The top row is the augmented simplicial chain complex associated to the nerve of the collection
os curves L̄i and E. Since the nerve is contractible we deduce that the homology of the top
row is trivial.We deduce

Hk(X∗) = 0, ; ∀k > 2

From the equation (7.5) we deduce that the map δ2 is onto and we conclude

E0,2
2 = 0 =⇒ H2(X∗) = 0.

Finally we deduce that W2H
1(X∗) = 0, and thus

H1(C∗) ∼= ker δ2
∼= C2

so that H1(X∗) has a pure Hodge structure of weight 2. H0(X∗) has a pure Hodge structure
of weight 0. The associated Poincaré-Hodge polynomial is

PX∗ = 1 + 2t(zz̄).

ut

Remark 7.5. V. Danilov and A. Khovanskii have shown in [2] that for any quasi-projective
variety X the cohomology with compact supports H•

c (X) is equipped with a natural mixed
Hodge structure. We define

Ep,q
c (X; z, z̄) =

∑

k≥0

(−1)khp,q( Hk
c (X) )zpz̄q, Ec(X; z, z̄) =

∑
p,q

Ep,q
c (X; z, z̄).

These quantities are motivic in the sense that if S is a Zariski closed subvariety of X then

Ec(X; z, z̄) = Ec(X \ S; z, z̄) + Ec(S; z, z̄).

Since every algebraic variety admits a filtration by Zariski closed subsets

S0 ⊂ S1 ⊂ · · · ⊂ Sn = X



MIXED HODGE STRUCTURES ON SMOOTH ALGEBRAIC VARIETIES 21

such that Sk \ Sk−1 is smooth we deduce from the equality

Ec(X) =
∑

k≥0

Ec(Sk \ Sk−1)

that the Euler-Hodge characteristic

X 7→ Ec(X; z, z̄) ∈ Z[z, z̄]

is uniquely determined by its values on smooth varieties X.
For smooth varieties the Poincaré duality

H•(X)×H•
c (X) → C

defines a canonical pairing between Deligne’s mixed Hodge structure on H•(X) and the
above mixed Hodge structure on H•

c (X) so that each one of these mixed Hodge structures
canonically determines the other. If X is smooth and projective then Ec(X) completely
determines all the Hodge-Betti numbers of X. For example

Ec(Pk) =
k∑

j=0

(zz̄)j =
1− (zz̄)k+1

1− zz̄
.

Since
Pk \ Pk−1 ∼= Ck =⇒ Ec(Ck) = (zz̄)k

For the complement X∗ of three generic lines L1, L1, L3 in P2 as in Figure 1(a) we have

Ec(X∗) = Ec(P2)− Ec(L1 ∪ L2 ∪ L3) = Ec(P2)−
∑

i

Ec(Li) +
∑

i6=j

Ec(Li ∩ Lj)

= Ec(P2)− 3Ec(P1) + 3Ec(C0) = (zz̄)2 − 2(zz̄) + 1 = PX∗(t, z, z̄) |t=−1 .

ut

Appendix A. Gysin maps and the differential d1

Let us recall the definition of the Gysin map. Suppose X0, X1 are two, compact, oriented
smooth manifolds without boundary of dimensions n0, n1 and f : X0 → X1 is a smooth map.
For k = 0, 1 we denote by (−,−)k the intersection pairing

(−,−)k : H•(Xk,C)×Hnk−•(Xk,C) → C, (α, β)k :=
∫

Xk

α ∧ β.

The Poincaré duality theorem states that the induced map

PDXk
: H•(Xk,C) → Hnk−•(Xk,C)∗

is an isomorphism. The smooth map induces a pullback morphism

f∗ : H•(X1,C) → H•(X0,C)

and a transpose
(f∗)t : H•(X0,C)∗ → H•(X1,C)∗.

The Gysin map is the morphism

f! : H•(X0,C) → H•+(n1−n0)(X1,C), f! = PD−1
X1
◦ (f∗)t ◦ PDX0
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defined by the commutative diagram

Hn0−•(X0,C)∗ Hn0−•(X1,C)∗

H•(X0,C) H•+(n1−n0)(X1,C)

w(f∗)t

u
PD−1

X1

u
PDX0

w
f!

.

Equivalently, the Gysin map is uniquely determined by the equality
∫

X0

α ∧ f∗β =
∫

X1

(f!α) ∧ β, ∀α ∈ Hk(X0,C), β ∈ Hm(X1,C), k + m = n0. (A.1)

We want to give a more explicit description of the Gysin map in the special case when X1 = Z
is a compact Kähler manifold, X0 is a smooth divisor Y on Z and f is the natural inclusion
i : Y ↪→ Z. For this we need an auxiliary result. Consider the Poincaré residue map

Res : A
p,q
Z (log Y ) → i∗A

p−1,q
Y

and denote by A
p,q
Z,Y its kernel. Set

Am
Z,Y = ⊕p+q=mA

p,q
Z,Y .

Note that we have natural injections

A
p,q
Z ↪→ A

p,q
Z,Y .

However these are not isomorphisms. For example if Z = C, Y = 0 then the form z̄
z is a

section of A
1,0
C,0 with a singularity at 0. However, its residue is trivial.

The sheaves A
p,q
Z,Y are fine and

dAm
Z,Y ↪→ Am+1

Z,Y , ∂̄A
p,q
Z,Y ↪→ A

p,q+1
Z,Y .

Lemma A.1. The inclusions
(Ω•Z , ∂) → (A•

Z,Y , d) (A.2)

and
(A•

Z , d) → (A•
Z,Y , d) (A.3)

are quasi-isomorphisms.

Proof Note that we have a commutative diagram of complexes sheaves

0 → (Ω•Z , ∂) (Ω•Z(log Y ), ∂) i∗(Ω•Y [−1], ∂) → 0

0 → (A•
Z,Y , d) (A•

Z(log Y ), d) i∗(A•
Y [−1], d) → 0

z

u

w
z

u

wRes

z

u
w wRes

(†)

The rows are exact, the middle vertical arrow is a quasi-isomorphism by (2.1) and the last
vertical arrow is a quasi-isomorphism (Dolbeault-to-DeRham). Using the five lemma we
deduce that first vertical lemma is a quasi-isomorphism as well. This proves (A.2).
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To prove the quasi-isomorphism (A.3) note that we have a commutative diagram of com-
plexes of sheaves

(Ω•Z , ∂) (A•
Z , d)

(A•
Z,Y , d)

y wj1

c[
[
[
[
[[]

j

z

u

j2

where j1 and j are quasi-isomorphisms.
ut

The divisor Y determines a pair (L, s), where L → Z is a holomorphic line bundle and
s : Z → L is a holomorphic section such that Y = s−1(0). Fix a hermitian metric h on L
and consider

η = ηs,h =
1

2πi
∂ log |s|2h.

Locally, on a trivializing neighborhood U ⊂ Z for the line bundle L the section s is described
by a holomorphic function f vanishing along Y ∩ U and we have

|s|2h = e2u|f |2
for some smooth real valued function u. Using the equality |f |2 = ff̄ we deduce

η =
1

2πi
df

f
+

1
πi

∂u ∈ A
1,0
Z (U, log Y ). (A.4)

ωs,h = dη = ∂̄η =
1
πi

∂̄∂u ∈ A
1,1
Z (U). (A.5)

In particular, ηh satisfies
ResY ηh = 1.

The closed form ωs,h represents the first Chern class of L. Observe that if we change the
metric h to hw = e2wh then we have

ηs,hw = ηs,h +
1
πi

∂w, ωs,hw = ωs,h +
1
πi

∂̄∂w.

Note for later use that

ωs,hw = ωs,h +
1

2πi
d(∂w − ∂̄w) = ωs,h + ddcw, (A.6)

where the operator dc is defined as in [5, p.109]
Suppose α ∈ A

p,q
Y (Y ) is a closed form and denote by [α] the class it determines in

Hp+q(Y,C). Set m := p + q. Fix α̃ ∈ A
p,q
Z (Z) such that

α̃ |Y = α

and set
Γ(α) := −d(η ∧ α̃) ∈ A

p+1,q+1
Z (Z, log Y ).

From the local description (A.4) we deduce

G(Γ(α)) = −Res(d(η ∧ α̃) = Res(η ∧ dα̃) = dα = 0,

i.e.
G(α) ∈ A

p+1,q+1
Z,Y (Z).
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Clearly dα = ∂̄α = 0 and using Lemma A.1 we deduce that Γ(α) determines a cohomology
class

[Γ(α)] ∈ Hq+1(Z, Ωp+1
Z ) = Hp+1,q+1(Z) ⊂ Hm+2(Z,C).

Remark A.2. We can avoid the use of Lemma A.1 as follows. Denote by Tε a tubular
neighborhood of radius ε > 0 around Y defined by the inequality

|s|h ≤ ε.

Identify Tε of Y in Z with a tubular neighborhood of Y in the normal bundle of the imbedding
Y ↪→ Z. Thus we can produce a submersion πY : Tε → Y and then we construct α̃ ∈ Γ(Z, Am

Z )
such that α̃ |Tε/2

= π∗Y a. Then dã = 0 on Tε/2 and d(η ∧ α̃) = dη ∧ α̃ − η ∧ dα̃. Using (A.5)
we deduce that d(η ∧ α̃) is smooth form of degree (m + 2) on Z. We will say that α̃ is a
good extension of α. In fact, as explained in [1, Thm. 5.7], we can define the projection πY

carefully so the pullback by πY preserves the Hodge type, i.e.

α ∈ Γ(Y, Ap,q
Y ) =⇒ π∗Y α ∈ Γ(Tε, A

p,q
Z ).

In other words, we can choose an extension α̃ of α with the same Hodge type as α such that
G(α̃) is smooth on Z. ut

Proposition A.3. For every α ∈ Γ(Y,Ap,q
Y ) such that dα = 0 and for every extension α̃ of

α as a m-form on Z (m = p + q) we have

[G(α̃)] = i![α],

where i! denotes the Gysin map induced by the inclusion i : Y ↪→ Z. In particular, i! is a
morphism of pure Hodge structures of type (1, 1).

Proof We need to prove that∫

Z
G(α̃) ∧ β =

∫

Y
α ∧ β |Y , ∀β ∈ Γ

(
Z, A2 dimC Z−m−2

Z

)
, dβ = 0.

We orient ∂Tε using the outer-normal-first convention. We have

G(α) ∧ β = −d(η ∧ α̃ ∧ β)

and ∫

Z
G(α) ∧ β = − lim

ε↘0

∫

Z\Tε

d(η ∧ α̃ ∧ β)

Using Stokes formula we deduce

−
∫

Z\Tε

d(η ∧ α̃ ∧ β) = −
∫

∂(Z\Tε)
η ∧ α̃ ∧ β =

∫

∂Tε

η ∧ α̃ ∧ β.

Using partitions of unity we can reduce this to a local computation and we can assume we
work in a coordinate neighborhood (U, (zi)) = (Dn

r , (zi)) where f = z1. We have a natural
projection

π : ∂Tε → Y, (z1, z2, · · · , zn) 7→ (0, z2, · · · , zn)
Integrating along the fibers of π and using the Cauchy residue formula we deduce∫

∂Tε/Y
η ∧ α̃ ∧ β = α ∧ β

so that for ε > 0 sufficiently small we have∫

∂Tε

η ∧ α̃ ∧ β =
∫

Y
α ∧ β |Y .
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ut

Remark A.4. (a) If α̃ is a good extension of α then we say that G(α̃) is a good representative
of i![α].

(b) Proposition A.3 can be rephrased more conceptually as follows. We consider the short
exact sequence of complexes of fine sheaves

0 → (A•
Z,Y , d) → (A•

Z(log Y ), d) Res−→ (i∗A•
Y [−1], d) → 0.

Applying the functor Γ(X,−) we obtain a long exact sequence in (hyper) cohomology. We
have H•(X, i∗A•

Y [−1]) = H•(Y,C)[−1]. Given a cohomology class u ∈ H•(Y,C)[−1] repre-
sented by a closed form α on Y we deduce that d1u is represented by ±Γα.

The above short exact sequence is quasi-isomorphic to the sequence

0 → (Ω•Z , ∂) → (Ω•Z(log Y ), ∂) Res−→ (i∗Ω•Y [−1], ∂) → 0

and we deduce that the connecting morphism in the hypercohomology long exact sequence

d1 : H•
(
Y, (Ω•Y [−1], ∂)

) → H•
(
Z, (Ω•Z , ∂)

)
[1] (A.7)

is, up to a sign, the Gysin morphism. This long exact sequence is essentially the long exact
sequence of the pair (Z,Z∗), Z∗ = Z \ Y . To see this note that by excision we have

H•(Z, Z∗) ∼= H•(Tε, T
∗
ε ) ∼= H•(Tε, ∂Tε) ∼= H•(Y )[−2],

where the last isomorphism is given by the composition

H•(Tε, ∂Tε)
PD∼= H2 dim Z−•(Tε) ∼= H2 dim Z−•(Y )

PD∼= H•(Y )[−2].

The long exact sequence is then

· · · → H•(Y )[−2] i!−→ H•(Z) → H•(U) Res−→ H•(Y )[−1] → · · · .

ut

To relate the above construction to the differential d1 in the spectral sequence Er(K,W−),
K = (A•

X(log D), d) we need to recall an abstract result. More precisely, the differential d1

is described by the connecting morphism

δ : Hq(Gr`
W− K) → Hq+1(Gr`+1

W− K)

of the long exact sequence corresponding to the short exact sequence

0 → W `+1
− /W `+2

− → W `
−/W `+2

− → W `
−/W `+1

→ 0. (A.8)

In our special case, the connecting morphism is given by the connecting morphism in the
hyper-cohomology long exact sequence associated to the short exact sequence of complexes
of sheaves we have a commutative diagram of complexes of sheaves

0 → (GrW
`−1 Ω•X(log D), ∂) →

( W `Ω•X(log D)
W `−2Ω•X(log D)

, ∂
)
→ (GrW

` Ω•X(log D), ∂) → 0.
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As before note that we have a commutative diagram

0 → (Wl−1Ω•X(log D), ∂)
(
W `Ω•X(log D), ∂

)
(GrW

` Ω•X(log D), ∂) → 0

0 → (W ′
`A

•
X(log D), d)

(
W `A•

X(log D), d
)

(a∗A•[−`], d) → 0

w
z

u
f

w
z

u
g

u
Res`

w wRes`

in which W ′
` = kerRes`, the rows are exact, and the vertical arrows are quasi-isomorphisms

of complexes of sheaves. To understand the
The bottom row consists of complexes of acyclic sheaves and the short exact sequence

(A.8) is obtained by applying the functor Γ(X,−) to the bottom row. The resulting long
exact sequence is naturally isomorphic to the hypercohomology long exact sequence obtained
by applying the derived functor RΓ(X,−) to the first row. We denote by δ the connecting
morphism.

To understand the connecting morphism we need to introduce some notations. Fix hermit-
ian holomorphic line bundle (Li, hi), i = 1, · · · , ν and holomorphic sections si ∈ Γ(X,OLi)
such that Di = s−1

i (0). Denote by ηi = ηsi,hi the associated (1, 0)-form. For every ordered
multi-index I = (i1 < · · · < i`), |I| = `, we set

ηI = ηi1 ∧ · · · ∧ ηi` ∈ W`A
•(X, log D).

Note that
dηI ∈ W`−1A

•(X, log D).

Fix tubular neighborhoods TI of DI in X with projections πI : TI → DI . For every closed
form αI on DI we denote by π∗IαI a good extension and set

GI(αI) = (−1)|I|d(ηI ∧ π∗IαI) ∈ W`−1A
•(X, log D).

Its image in W`−1/W`−2 represents δ[αI ]. Using the identification

Res`−1 : H•(X,Gr`−1 A•
X(log D))

∼=−→ H•(D̃`−1)[`− 1]

we can identify δ[αI ] with Res`−1 GI(αI). Note that

Res`−1 GI(αI) ∈
⊕̀

k=1

H•(DI\ik).

More precisely, if [αI ] ∈ Hm(DI) then we have3

Res`−1 GI(αI) = δI [αI ] :=
⊕̀

k=1

(−1)k−1(ιk)!([α]I) ∈
⊕̀

k=1

Hm+2(DI\ik),

where ιk denotes the inclusion DI ↪→ DI\ik . Now define

δl =
∑

|I|=`

δI :
⊕

|L|=`

H•(DL) →
⊕

|L′|=`−1

H•(DL′)[2] ⊂ H•(D̃`−1)[2].

3Here we skipped some computational details.
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The differential d1 on E−`,m
1 → E−`+1,m

1 is then given by the commutative diagram

E−`,m
1 E−`+1,m

1

Hm−2`(D̃`) Hm−2`+2(D̃`−1)

wd1

u
Res

u
Res

w
δ`

. (A.9)

References

[1] C.H. Clemens: Degeneration of Kähler manifolds, Duke Math. J., 44(1977), p. 215-290.
[2] V.I. Danilov, A.G. Khovanskii: Newton polyhedra and an algorithm for computing Hodge-Deligne

numbers, Math. USSR Izvestyia, 29(1987), 279-298.
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