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The Atiyah-Singer Index Theorem

This is arguably one of the deepest and most beautiful results in modern geometry, and in my
view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera-
tors on a compact manifold, namely those operatorsP with the property that dim kerP,dim cokerP <
∞. In general these integers are very difficult to compute without some very precise information
about P . Remarkably, their difference, called the index of P , is a “soft” quantity in the sense that
its determination can be carried out relying only on topological tools. You should compare this with
the following elementary situation.

Suppose we are given a linear operator A : Cm → Cn. From this information alone we cannot
compute the dimension of its kernel or of its cokernel. We can however compute their difference
which, according to the rank-nullity theorem for n×mmatrices must be dim kerA−dim cokerA =
m− n.

Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator
is determined by certain cohomology classes on the background manifold. These cohomology
classes are in turn topological invariants of the vector bundles on which the differential operator
acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that
in order to understand the index problem for an arbitrary elliptic operator it suffices to understand
the index problem for a very special class of first order elliptic operators, namely the Dirac type
elliptic operators. Amazingly, most elliptic operators which are relevant in geometry are of Dirac
type. The index theorem for these operators contains as special cases a few celebrated results: the
Gauss-Bonnet theorem, the Hirzebruch signature theorem, the Riemann-Roch-Hirzebruch theorem.

In this course we will be concerned only with the index problem for the Dirac type elliptic
operators. We will adopt an analytic approach to the index problem based on the heat equation on a
manifold and Ezra Getzler’s rescaling trick.

+ Prerequisites: Working knowledge of smooth manifolds, and algebraic topology (especially
cohomology). Some familiarity with basic notions of functional analysis: Hilbert spaces, bounded
linear operators, L2-spaces.

+ Syllabus: Part I. Foundations: connections on vector bundles and the Chern-Weil construction,
calculus on Riemann manifolds, partial differential operators on manifolds, Dirac operators, [21].

Part II. The statement and some basic applications of the index theorem, [27].

Part III. The proof of the index theorem, [27].

+ About the class There will be a few homeworks containing routine exercises which involve
the basic notions introduced during the course. We will introduce a fairly large number of new
objects and ideas and solving these exercises is the only way to gain something form this class and
appreciate the rich flavor hidden inside this theorem.
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Notations and conventions

• K = R,C.

• For every finite dimensional K-vector space V we denote by AutK(V ) the Lie group of K-linear
automorphisms of V .

•We will orient the manifolds with boundary using the outer normal first convention.

• We will denote by gl
r
(K) o(n), so(n), u(n) the Lie algebras of the Lie groups GLr(K) and

respectively U(n), O(n), SO(n).
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Chapter 1

Geometric Preliminaries

1.1. Vector bundles and connections

1.1.1. Smooth vector bundles. The notion of smooth K-vector bundle of rank r formalizes the
intuitive idea of a smooth family of r-dimensional K-vector spaces.

Definition 1.1.1. A smooth K-vector bundle of rank r over a smooth manifold B is a quadruple
(E,B, π, V ) with the following properties.

(a) E,B are smooth manifolds and V is a r-dimensional K-vector space.

(b) π : E → B is a surjective submersion. We set Eb := π−1(b) and we will call it the fiber (of the
bundle) over b.

(c) There exists a trivializing cover, i.e., an open cover U = (Uα)α∈A of B and diffeomorphisms

Ψα : E |Uα= π−1(Uα)→ V × Uα
with the following properties.

(c1) For every α ∈ A the diagram below is commutative.

E |Uα V × Uα

Uα

'
'')

π

w
Ψα

[
[[̂ proj

.

(c2) For every α, β ∈ A there exists a smooth map

gβα : Uβα := Uα ∩ Uβ → Aut(V ), u 7→ gβα(u)

such that for every u ∈ Uαβ we have the commutative diagram

V × {u}

Eu

V × {u}
u

gβα(u)
[
[[]

Ψα|Eu

'
'')

Ψβ |Eu

.

1
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B is called the base, E is called total space, V is called the model (standard) fiber and π is called
the canonical (or natural) projection. A K-line bundle is a rank 1 K-vector bundle.

Remark 1.1.2. The condition (c) in the above definition implies that each fiber Eb has a natural
structure of K-vector space. Moreover, each map Ψα induces an isomorphism of vector spaces

Ψα |Eb→ V × {b}.
ut

Here is some terminology we will use frequently. Often instead of (E, π,B, V ) we will write
E

π→ B or simply E. The inverses of Ψ−1
α are called local trivializations of the bundle (over Uα).

The map gβα is called the gluing map from the α-trivialization to the β-trivialization. The collection{
gβα : Uαβ → Aut(V ); Uαβ 6= ∅

}
is called a (Aut(V ))-gluing cocycle (subordinated to U) since it satisfies the cocycle condition

gγα(u) = gγβ(u) · gβα(u), ∀u ∈ Uαβγ := Uα ∩ Uβ ∩ Uγ , (1.1.1)

where ”·” denotes the multiplication in the Lie group Aut(V ). Note that (1.1.1) implies that

gαα(u) ≡ 1V , gβα(u) = gαβ(u)−1, ∀u ∈ Uαβ. (1.1.2)

Example 1.1.3. (a) A vector space can be regarded as a vector bundle over a point.

(b) For every smooth manifold M and every finite dimensional K-vector space we denote by VM

the trivial vector bundle
V ×M →M, (v,m) 7→ m.

(c) The tangent bundle TM of a smooth manifold is a smooth vector bundle.

(d) If E π→ B is a smooth vector bundle and U ↪→ B is an open set then E |U
π→ U is the vector

bundle
π−1(U)

π→ U.

(e) Recall that CP1 is the space of all one-dimensional subspaces of C2. Equivalently, CP1 is the
quotient of C2 \ {0} modulo the equivalence relation

p ∼ p′ ⇐⇒ ∃λ ∈ C∗ : p′ = λp.

For every p = (z0, z1) ∈ C2 \ {0} we denote by [p] = [z0, z1] its ∼-equivalence class which we
view as the line containing the origin and the point (z0, z1). We have a nice open cover {U0, U1} of
CP1 defined by

Ui := {[z0, z1]; zi 6= 0}.
The setU0 consists of the lines transversal to the vertical axis, whileU1 consists of the lines transver-
sal to the horizontal axis. The slope m0 = z1/z0 of the line through (z0, z1) is a local coordinated
over U0 and the slope m1 = z0/z1 is a local coordinate over U1. On the overlap we have

m1 = 1/m0.

Let
E = {(x, y; [z0, z1]) ∈ C2 × CP1;

y

x
=
z1

z0
, i.e. yz0 − xz1 = 0}

The natural projection C2×CP1 → CP1 induces a surjection π : E → CP1. Observe that for every
[p] ∈ CP1 the fiber π−1(p) can be naturally identified with the line through p. We can thus regard
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E as a family of 1-dimensional vector spaces. We want to show that π actually defines a structure
of a smooth complex line bundle over CP1. Set

Ei := π−1(Ui) =
{

(x, y; [z0, z1]) ∈ E; zi 6= 0
}
.

We construct a map

Ψ0 : E0 → C× U0, E0 3 (x, y; [z0, z1]) 7→ (x, [z0, z1])

and
Ψ1 : E1 → C× U1, E1 3 (x, y; [z0, z1]y) 7→ (y, [z0, z1])

Observe that Ψ0 is bijective with inverse Ψ−1
0 : C× U0 → E0 is given by

C× U0 3 (t; [z0, z1]) 7→ (t,
z1

z0
t; [z0, z1]) = (t,m0t; [z0, z1]).

The composition
Ψ1 ◦Ψ−1

0 : C× U01 → C× U01

is given by
C× U01 3 (s; [p]) 7→ (g10([p])s, [p]),

where
U01 3 [p] = [z0, z1] 7→ g10([p]) = z1/z0 = m0([p]) ∈ C∗ = GL1(C).

The complex line bundle constructed above is called the tautological line bundle. ut

Given a smooth manifold B, a vector space V , an open cover U = (Uα)α∈A of B, and a gluing
cocycle subordinated to U

gβα : Uαβ → Aut(V )

we can construct a smooth vector bundle as follows. Consider the disjoint union

X =
∐
α∈A

V Uα .

Denote by E the quotient space of X modulo the equivalence relation

V Uα 3 (vα, uα) ∼ (vβ, uβ) ∈ V Uβ
⇐⇒ uα = uβ = u ∈ Uαβ, vβ = gβα(u)vα.

Since we glue open sets of smooth manifolds via diffeomorphisms we deduce that E is naturally a
smooth manifold. Moreover, the natural projections πα : V Uα → Uα are compatible with the above
equivalence relation and define a smooth map

π : E → B.

The natural maps Φα : V Uα → E |Uα are diffeomorphisms and their inverses Ψα = Φ−1
α satisfy

all the conditions in Definition 1.1.1. We will denote the vector bundle obtained in this fashion by
(U, g••, V ) or by (B,U, g••, V ).

Definition 1.1.4. Suppose (E, πE , B, V ) and (F, πF , B,W ) are smooth K-vector bundles over B
of ranks p and respectively q. Assume {Uα,Ψα}α is a trivializing cover for πE and {Vβ,Φβ}β is a
trivializing cover for πF . A vector bundle morphism from E

πE−→ B to F πF−→ B is a smooth map
T : E → F satisfying the following conditions.
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(a) The diagram bellow is commutative.

E F

B

w
T

[[]
πE

���πF
.

(b) The map T is linear along the fibers, i.e. for every b ∈ B and every α ∈ A, b ∈ B such that
b ∈ Uα ∩ Vβ the composition ΦβT |Fb Ψα |Eb : V →W is linear,

Eb V × {b}

Fb W × {b}
u

T|Eb

w
Ψα|Eb

u

linear

w
Φβ|Fb

.

The morphism T is called an isomorphism if it is a diffeomorphism.

We denote by Hom(E,F ) the space of bundle morphisms E → F . When E = F we set
End(E) := Hom(E,E). A gauge transformation of E is a bundle automorphism E → E. We
will denote the space of gauge transformations of E by Aut(E) or GE .

We will denote by VBK(M) the set of isomorphism classes of smooth K-vector bundles over
M . ut

Definition 1.1.5. A subbundle of E π→ B is a smooth submanifold F ↪→ E with the property that
F

π→ B is a vector bundle and the inclusion F ↪→ E is a bundle morphism. ut

Definition 1.1.6. Suppose E → M is a rank r K-vector bundle over M . A trivialization of E is a
bundle isomorphism

Kr
M → E.

The bundle E is called trivializable if it admits trivializations. A trivialized vector bundle is a pair
(vector bundle, trivialization). ut

Example 1.1.7. (a) A bundle morphism between two trivial vector bundles

T : V B →WB

is a smooth map

T : B → Hom(V,W ).

(b) If we are given two vector bundles over B described by gluing cocycles subordinated to the
same open cover

(U, g••, V ), (U, h••,W )

then a bundle morphism can be described as a collection of smooth maps

Tα : Uα → Hom(V,W )
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such that for any α, β and any u ∈ Uαβ the diagram below is commutative.

V W

V W

w
Tα(u)

u
gβα(u)

u
hβα(u)

w
Tβ(u)

ut

There are a few basic methods of producing new vector bundles from given ones. The first
methods reproduce some fundamental operations for vector spaces, i.e. vector bundles over a point.
We list below a few of them.

V  V ∗ := HomK(V,K) − the dual of V ,

V,W  V ⊕W − the direct sum of V and W,

V,W  V ⊗W − the tensor product of V and W,

V  Symm V − the m-th symmetric product of V ,
V  ΛkV − the k-th exterior power of V ,

V  detV := ΛdimV V − the determinat line of V .

These constructions are natural in the following sense. Given linear maps Vi
Ti→ Wi, i = 0, 1 we

have induced maps
tT0 : W ∗0−→V ∗0 ,

T0 ⊕ T1 : V0 ⊕ V1 →W0 ⊕W1, T0 ⊗ T1 : V0 ⊗ V1−→W0 ⊗W1,

Symk T0 : Symk V0−→ SymkW0, ΛkT0 : ΛkV0−→ΛkW0.

If dimV0 = dimW0 = n then the map ΛnT0 will be denoted by detT0.

These operations for vector spaces can also be performed for smooth families of vector spaces,
i.e. bundles over arbitrary smooth manifolds.

Given two bundles E,F over the same manifold M described by the gluing cocycles

E = (U, g••, V ), F = (U, h••,W )

we can form
E∗ =

(
U, (tg••)

−1, V ∗
)

E ⊕ F =
(
U, g•• ⊕ h••, V ⊕W

)
, E ⊗ F =

(
U, g•• ⊗ h••, V ⊗W

)
,

SymmE =
(
U, Symm g••, Symm V

)
, ΛkE =

(
U,Λkg••,Λ

kV
)
,

detKE =
(
U,det g••,detV

)
.

The line bundle detKE is called the determinant line bundle of E

Definition 1.1.8. (a) SupposeE →M is a K-vector bundle. A K-orientation ofE is an equivalence
class of trivializations of τ : KM → detKE, where two trivializations τi : KM → detKE, i = 0, 1
are considered equivalent if there exists a smooth function µ : M → R such that

τ1(s) = τ0(eµs), ∀s ∈ C∞(KM ).

A bundle is called K-orientable if it admits K-orientations. An oriented K-vector bundle is a pair
(vector bundle, K-orientation). ut
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Example 1.1.9. (a) A smooth manifold M is orientable if its tangent bundle TM is R-orientable.
ut

When K = R and when no confusion is possible we will use the simpler terminology of orien-
tation rather than R-orientation.

Another important method of producing new vector bundles is the pullback construction. More
precisely given a vector bundle E π→M described by the gluing cocycle

(M,U, g••, V )

and a smooth map f : N → M then we can construct a bundle f∗E → N described by the gluing
cocycle

(N, f−1(U), g•• ◦ f, V ).

There is a natural smooth map f∗ : f∗E → E such that the diagram below is commutative

f∗E E

M N

w
f∗

u u
w

f

and for every m ∈M the induced map (f∗E)m → Ef(m) is linear.

Remark 1.1.10. The above construction is a special case of the fibered product construction,

f∗(E)→ N! E ×M N
π×Mf−→ N,

E ×M N :=
{

(e, n) ∈ E ×N ; π(e) = f(n)
}
, (π ×M f)(e, n) = n.

Equivalently E ×M N is the preimage of the diagonal ∆ ⊂M ×M via the map

π × f : E ×N →M ×M.

This is a smooth manifold since π is a submersion. ut

Example 1.1.11. If V is a vector space, M is a smooth manifold and c : M → {pt} is the collapse
to a point, then the trivial bundle VM is the pullback via c of the vector bundle over pt which is the
vector space V itself

VM = c∗V.

ut

Definition 1.1.12. A (smooth) section of a vector bundle E π→ B is a (smooth) map s : B → E
such that

s(b) ∈ Eb, ∀B

If U ⊂ B is an open subset then a smooth section of E over U is a (smooth) section of E |U . We
denote by C∞(U,E) the set of smooth sections of U over E. When U = B we will write simply
C∞(E). ut
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Observe that C∞(E) is a vector space where the sum of two sections s, s′ : B → E is the
section s+ s′ defines by

(s+ s′)(b) := s(b) + s′(b) ∈ Eb. ∀b ∈ B.

If the vector bundle E → B is given by the local gluing data (U, g••, V ) then a section of E can be
described as a collection s• of smooth functions

s• : U• → V

with the property that ∀α, β and ∀u ∈ Uαβ we have

sβ(u) = gβα(u)sα(u).

This shows that there exists at least one section 0 defined by the collection s• ≡ 0. It is called the
zero section of E.

Given two sections s = (s•), s′ = (s′•) their sum is the section described locally by the collec-
tion (s• + s′•).

Example 1.1.13. (a) If M is a smooth manifold then a smooth section of the trivial line bundle CM
is a smooth function M → C.

(b) A smooth section of the tangent bundle of M is a vector field over M . We will denote by
Vect(M) the set of smooth vector fields on M .

( c) A smooth section of the cotangent bundle T ∗M is called a differential 1-form. A smooth
section of the k-th exterior power of T ∗M is called a differential form of degree k. We will denote
by Ωk(M) the space of such differential forms.

(d) Suppose E → M is a smooth vector bundle. Then an E-valued differential form of degree k is
a section of ΛkT ∗M ⊗ E. The space of such sections will be denoted by Ωk(E). Observe that

Ωk(M) = Ωk(RM ).

(e) Suppose that E,F →M are smooth K-vector bundles over M . Then

C∞(E∗ ⊗ F ) ∼= Hom(E,F ).

For this reason we set
Hom(E,F ) := E∗ ⊗ F.

When E = F we set
End(E) := Hom(E,E).

If E is a line bundle then
End(E) ∼= KM .

We want to emphasize that Hom(E,F ) is an infinite dimensional vector space while Hom(E,F )
is a finite dimensional vector bundle and

C∞(Hom(E,F )) = Hom(E,F ).

Let us also point out that a K-linear map T : C∞(E)→ C∞(F ) is induced by a bundle morphism
E → F iff and only if T is a morphism of C∞(M)-modules, i.e. for any smooth function f : M →
K we have

T (fu) = fTu, u ∈ C∞(E).
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(e) Suppose thatE →M is a real vector bundle. A metric onE is then a section h of Sym2E∗ with
the property that for every m ∈ M the symmetric bilinear form hm ∈ Sym2E∗ is an Euclidean
metric on the fiber Em. A Riemann metric on a manifold M is a metric on the tangent bundle TM .
A metric on E induces metrics on all the bundles E∗, E⊗k, Symk E, ΛkE.

Observe that if h is a metric on E and F is a sub-bundle of E then h induces a metric on F . In
particular, the tautological line bundle L → CP1 is by definition a subbundle of the trivial vector
bundle C2

CP1 and as such it is equipped with a natural metric.

(f) Suppose thatE →M is a complex vector of rank r described by the gluing cocycle (U, g••,Cr).
Then the conjugate ofE is the complex vector bundle Ē described by the gluing cocycle (U, ḡ••,Cr)
where for any matrix g ∈ GLr(C) we have denoted by ḡ its complex conjugate. Note that there
exists a canonical isomorphism of real vector bundles

C : E → Ē

called the conjugation.

A section u of Ē∗ defines for every m ∈ M a R-linear map um : Em → C which is complex
conjugate linear i.e.

um(λe) = λ̄um(e), ∀e ∈ Em, λ ∈ C.
A hermitian metric on H is a section h of E∗ ⊗C Ē

∗ satisfying for every m ∈ M the following
properties.

hm defines a R-bilinear map E×E → C which is complex linear in the first variable and conjugate
linear in the second variable.

hm(e1, e2) = h(e2, e1), ∀e1, e2 ∈ Em.

hm(e, e) > 0, ∀e ∈ Em \ {0}.
If E is a vector bundle equipped with a metric h (riemannian or hermitian), then we denote by
End−h (E) the real subbundle of End(E) whose sections are the endomorphisms T : E → E
satisfying

h(Tu, v) = −h(u, Tv), ∀u, v ∈ C∞(E).

(g) A K-vector bundle is K-orientable iff detKE admits a nowhere vanishing section. Indeed since
detKE ∼= (KM )∗ ⊗ detKE ∼= Hom(KM , E) a section of E can be identified with a bundle
morphism KM → E. This is an isomorphism since the section is nowhere vanishing.

(h) Every complex vector bundle E → M is R-orientable. To construct it we need to produce a
nowhere vanishing section of detRE. Suppose E is described by the gluing cocycle (U, g••,Cr).
Using the inclusion

i : GLr(C) ↪→ GL2r(R)

we get maps
ĝ•• = i ◦ g•• : U•• → GL2r(R)

satisfying
w•• := det ĝ•• = | det g••|2 > 0.

Let
f•• := logw•• ⇐⇒ w•• = exp(f••).
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Since w•• defines a gluing cocycle for detRE and in particular

wγα(u) = wγβ(u)wβα(u).

We deduce
fγα(u) = fγβ(u) + fβα(u), ∀α, β, γ, ∀u ∈ Uαβγ .

Consider now a partition of unity (θα) subordinated to U, supp θα ⊂ Uα. Define

fα : Uα → R, fα(u) =
∑
Uβ3u

θβ(u)fβα(u) =
∑
β

θβ(u)fβα(u)

Observe first that fα is smooth. Using the equalities

fγα − fγβ = fγα + fβγ = fβα

we deduce1

fα − fβ =
∑
γ

θγ(fγα − fγβ) =
∑
γ

θγfβα =
(∑

γ

θγ

)
fβα = fβα.

Equivalently
−fβ = fβα − fα =⇒ e−fβ = wβαe

−fα = (det ĝβα)e−fα .

This shows that the collection sα = e−fα is a nowhere vanishing section of detRE.

(i) Suppose E → N is a smooth bundle and f : M → N is a smooth map. Then f induces a linear
map

f∗ : C∞(E)→ C∞(f∗E)

which associates to each section s of E → N a section f∗s of f∗E → M called the pullback of s
by f . If s is described by a collection of smooth maps s• : U• → Kr, then f∗s is described by the
collection

s• ◦ f : f−1(U•)→ Kr.

Moreover we have a commutative diagram

f∗E E

M N

w
f∗

u

f∗s

w
f

u

s

ut

Definition 1.1.14. Suppose E → B is a smooth K-vector bundle. A local frame over the open set
U → B is an ordered collection of smooth sections e1, · · · , er of E |U such that for every u ∈ U
the vectors ~e = (e1(u), · · · , er(u)) form a basis of the fiber Eu. ut

Given a local frame ~e = (e1, · · · , er) of E → B over U we can represent a section s of E over
U as a linear combination

s = s1e1 + · · ·+ srer

where si : U → K are smooth functions.

1For the cognoscienti. The collection of smooth functions(fαβ) is a Čech 1-cocycle of the fine sheaf of smooth functions. Since
the cohomology of a fine sheaf is trivial in positive dimensions this collection must be a Čech coboundary, i.e., there exists a collection
of smooth functions (fα) such that fα − fβ = fβα; see [11]
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1.1.2. Principal bundles. Fix a Lie group G. For simplicity, we will assume that it is a matrix Lie
group2, i.e. it is a closed subgroup of some GLn(K). A principal G-bundle over a smooth manifold
B is a triple (P, π,B) satisfying the following conditions.

P
π→ B

is a surjective submersion. We set Pb := π−1b

There is a right free action
P ×G→ P, (p, g) 7→ pg

such that for every p ∈ P the G-orbit containing p coincides with the fiber of π containing p.

π is locally trivial, i.e. every point b ∈ B has an open neighborhood U and a diffeomorphism
ΨU : π−1(U)→ G× U such that the diagram below is commutative

π−1(U) G× U

U

w
Ψ

[
[[]π

�
�
��

proj

and
Ψ(pg) = Ψ(p)g, ∀p ∈ π−1(U), g ∈ G,

where the right action of G on G× U .

Any principal bundle can be obtained by gluing trivial ones. Suppose we are given an open
cover U = (Uα)α∈A of M and for every α, β ∈ A smooth maps

gαβ : Uαβ → G

satisfying the cocycle condition

gγα(u) = gγβ(u) · gβα(u), ∀u ∈ Uαβγ
Then, exactly as in the case of vector bundles we can obtain a principal bundle by gluing the trivial
bundles Pα = G× Uα. More precisely we consider the disjoint union

X =
⋃
α

Pα × {α}

and the equivalence relation

G× Uα × {α} 3 (g, u, α) ∼ (h, v, β) ∈ G× Uβ × {β)} ⇐⇒ u = v ∈ Uαβ, h = gβα(u)g.

Then P = X/ ∼ is the total space of a principal G-bundle. We will denote this bundle by
(B,U, g••, G).

Example 1.1.15 (Fundamental example). Suppose E → M is a K-vector bundle over M of rank
r, described by the gluing data (U, g••, V ), where V is a r-dimensional K-vector space. A frame of
V is by definition an ordered basis ~e = (e1, · · · , er) of V . We denote by Fr(V ) the set of frames
of V . We have a free and transitive right action

Fr(V )×GLr(K)→ Fr(V ), (e1, · · · , er) · g = (
∑
i

gi1ei, · · · ,
∑
i

girei),

2Any compact Lie group is a matrix Lie group
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∀g = [gij ]1≤i,j≤r ∈ GLr(K), (e1, · · · , er) ∈ Fr(V ).

In particular, the set of frames is naturally a smooth manifold diffeomorphic to GLr(K). Note that a
frame ~e of V associates to every vector v ∈ V a vector v(~e) ∈ Kr, the coordinates of v with respect
to the frame ~e. For every g ∈ GLr(K) we have

v(~e · g) = g−1v(~e).

If we let GLr(K) act on the right on Kr,

Kr ×GLr(K) 3 (u, g) 7→ u · g = g−1u ∈ Kr

then we see that the coordinate map induced by v ∈ V ,

v : Fr(V )→ Kr, ~e→ v(~e)

is G-equivariant.

An isomorphism Ψ : V → Kr induces a diffeomorphism
~Φ : GLr(K)→ Fr (V ), g 7→ ~Φ(g) = Ψ−1(~δ) · g,

where ~δ denotes the canonical frame of Kr. Observe that
~Φ(g · h) = ~Φ(g) · h.

To the bundleE we associate the principal bundle Fr (E) given by the gluing cocycle (U, g••,GLr(K)).
The fiber of this bundle over m ∈ Uα can be identified with the space Fr(Em) of frames in the fiber
Em via the map ~Φ and the local trivialization

Ψα : Em → Kr. ut

To any principal bundle P = (B,U, g••, G) and representation ρ : G → AutK(V ) of G on a
finite dimensional K-vector space V we can associate a vector bundle E = (B,U, ρ(g••), V ). We
will denote it by P ×ρ V . Equivalently, P ×ρ V is the quotient of P × V via the left G-action

g(p, v) = (pg−1, ρ(g)v).

A vector bundle E on a smooth manifold M is said to have (G, ρ)-structure if E ∼= P ×ρ V for
some principal G-bundle P .

We denote by g = T1G the Lie algebra of G. We have an adjoint representation

Ad : G→ End g, Ad(g)X = gXg−1 =
d

dt
|t=0 g exp(tX)g−1, ∀g ∈ G.

The associated vector bundle P ×Ad g is denoted by Ad(P ).

For any representation ρ : G→ Aut(V ) we denote by ρ∗ the differential of ρ at 1

ρ∗ : g→ EndV.

Observe that for every X ∈ g we have

ρ∗(Ad(g)X) = ρ∗(gXg
−1) = ρ(g)(ρ∗X)ρ(g)−1. (1.1.3)

If we set Endρ V := ρ∗(g) ⊂ EndV we have an induced action

Adρ : G→ Endρ(V ), Adρ(g)T := ρ(g)Tρ(g)−1, ∀T ∈ EndV, g ∈ G.
If E = P ×ρ V then we set

Endρ(V ) := P ×Adρ Endρ(V ).

This bundle can be viewed as the bundle of infinitesimal symmetries of E.
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Example 1.1.16. (a) Suppose G is a Lie subgroup of GLm(K). It has a tautological representation

τ : G ↪→ GLm(K) = Aut(Km).

A rank m K-vector bundle E → M is said to have G-structure if it has a (G, τ)-structure. This
means that E can be described by a gluing cocycle (U, g••,Km) with the property that the matrices
g•• belong to the subgroup G.

For example, SO(m),O(m) ⊂ GLm(R) and we can speak of SO(m) and O(m) structures on a
real vector bundle of rank m. Similarly we can speak of U(m) and SU(m) structures on a complex
vector bundle of rank m.

A hermitian metric on a rank r complex vector bundle defines a U(r)-structure on E and in this
case

AdP = Endρ(E) = End−h (E). ut

1.1.3. Connections on vector bundles. Roughly speaking, a connection on a smooth vector bundle
is a ”coherent procedure” of differentiating the smooth sections.

Definition 1.1.17. Suppose E →M is a K-vector bundle. A smooth connection on E is a K-linear
operator

∇ : C∞(E)→ C∞(T ∗M ⊗ E)

satisfying the product rule

∇(fs) = s⊗ df + f∇s, ∀f ∈ C∞(M), s ∈ C∞(E).

We say that ∇s is the covariant derivative of s with respect to ∇. We will denote by AE the space
of smooth connections on E. ut

Remark 1.1.18. (a) For every section s ofE the covariant derivative∇s is a section of T ∗M⊗E ∼=
Hom(TM,E). i.e.

∇s ∈ Hom(TM,E).

As such, ∇s associates to each vector field X on M a section of E which we denote by ∇Xs. We
say that∇Xs is the derivative of s in along the vector field X with respect to the connection∇. The
product rule can be rewritten

∇X(fs) = (LXf)s+ f∇s, ∀X ∈ Vect(M), f ∈ C∞(M), s ∈ C∞(M),

where LXf denotes the Lie derivative of f along the vector field X .

(b) Suppose E,F → M are vector bundles and Ψ : E → F is a bundle isomorphism. If ∇ is a
connection of E then Ψ∇Ψ−1 is a connection on F .

(c) Suppose∇0 and ∇1 are two connections on E. Set

A := ∇1 −∇0 : C∞(E)→ C∞(T ∗M × E).

Observe that for every f ∈ C∞(M) and every s ∈ C∞(E) we have

A(fs) = fA(s)

so that

A ∈ Hom(E, T ∗M ⊗ E) ∼= C∞(E∗ ⊗ T ∗M ⊗ E) ∼= C∞(T ∗M ⊗ E∗ ⊗ E)

∼= C∞
(
TM,End(E)

)
= Ω1(End(E)).
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In other words, the difference between two connections is a EndE-valued 1-form. Conversely, if

A ∈ Ω1(EndE) ∼= Hom(TM ⊗ E,E)

then for every connection ∇ on E the sum ∇+A is a gain a connection on E. This shows that the
space AE , if nonempty, is an affine space modelled by the vector space Ω1(EndE). ut

Example 1.1.19. (a) Consider the trivial bundle RM . The sections of RM are smooth functions
M → R. The differential

d : C∞(M)→ Ω1(M), f 7→ df

is a connection on RM called the trivial connection.

Observe that End(RM ) ∼= RM so that any other connection on M has the form

∇ = d+ a, a ∈ Ω1(RM ) = Ω1(M).

(b) Consider similarly the trivial bundle Kr
M . Its smooth sections are r-uples of smooth functions

s =

 s1

...
sr

 : M → Kr.

Kr is equipped with a trivial connection∇0 defined by

∇0

 s1

...
sr

 =

 ds1

...
dsr

 .
Any other connection on Kr has the form

∇ = ∇0 +A, A ∈ Ω1(EndKr).

More concretely, A is an r × r matrix [Aab ]1≤a,b≤r, where each entry Aab is a K-valued 1-form. If
we choose local coordinates (x1, · · · , xn) on M then we can describe Aij locally as

Aab =
∑
k

Aakbdx
k.

We have

∇s =

 ds1

...
dsr

+


∑

bA
1
bs
b

...

...∑
bA

r
bs
b

 .
(c) Suppose E → B is a K-vector bundle of rank r and ~e = (e1, · · · , er) is a local frame of E over
the open set U . Suppose ∇ is a connection on E. Then for every 1 ≤ b ≤ r we get section ∇eb of
T ∗M ⊗ E over U and thus decompositions

∇eb =
∑
a

Aabea, Aab ∈ Ω1(U), ∀1 ≤ a, b ≤ r. (1.1.4)

Given a section s =
∑b sbeb of E over U we have

∇s =
∑
b

dsbeb +
∑
b

sb
∑
a

Aabea =
∑
a

(
dsa +

∑
b

Aabs
b
)
ea.
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This shows that the action of ∇ on any section over U is completely determined by the action of ∇
on the local frame, i.e by the matrix (Aab ). We can regard this as a 1-form whose entries are r × r
matrices. This is known as the connection 1-form associated to ∇ by the local frame ~e. We will
denote it by A(~e). We can rewrite (1.1.4) as

∇(~e) = ~e ·A(~e).

Suppose ~f = (f1, · · · , fr) is another local frames of E over U related to ~e by the equalities

fa =
∑
b

ebg
b
a, (1.1.5)

where U 3 u 7→ g(u) = (gba(u))1≤a,b≤r ∈ GLr(K) is a smooth map. We can rewrite (1.1.5) as

~f = ~e · g.

Then A(~f) is related to A(~e) by the equality

A(~f) = g−1A(~e)g + g−1dg. (1.1.6)

Indeed

~f ·A(~f) = ∇(~f) = ∇(~eg) = (∇(~e))g + ~edg = (~eA(~e))g + ~fg−1dg = ~f(g−1A(~e)g + g−1dg).

Suppose now that E is given by the gluing cocycle (U, g••, ,Kr). Then the canonical basis of Kr

induces via the natural isomorphism Kr
Uα → E |Uα a local frame ~e(α) of E |Uα . We set

Aα = A(~e(α)).

Observe that Aα is a 1-form with coefficients in gl
r
(K) = End(Kr), the Lie algebra GLr(K). On

the overlap Uαβ we have the equality ~e(α) = ~e(β)gβα so that on these overlaps the gl
r
(K)-valued

1-forms Aα satisfy the transition formulæ

Aα = g−1
βαAβgβα + g−1

βαdgβα ⇐⇒ Aβ = gβαAαg
−1
βα − (dgβα)g−1

βα . (1.1.7)

ut

Proposition 1.1.20. Suppose E is a rank r vector bundle over M described by the gluing cocycle
(U, g••,Kr). Then a collection of 1-forms

Aα ∈ Ω1(Uα)⊗ gl
r
(K).

satisfying the gluing conditions (1.1.7) determine a connection on E. ut

Proposition 1.1.21. Suppose E → M is a smooth vector bundle. Then there exist connections on
E, i.e. AE 6= ∅.

Proof. Suppose that E is described by the gluing cocycle (U, g••,Kr), r = rank(E).

Denote by Ψα : Kr
Uα → E |Uα the local trivialization over Uα and by ∇α the trivial connection

on Kr
Uα Set

∇̂α := Ψα∇αΨ−1
α .
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Then (see Remark 1.1.18(b)) ∇̂α is a connection onE |Uα . Fix a partition of unity (θα) subordinated
to (Uα). Observe that for every α, and every s ∈ C∞(E), θαs is a section of E with support in Uα.
In particular ∇̂α(θαs) is a section of T ∗M ⊗ E with support in Uα. Set

∇s =
∑
α,β

θβ∇̂α(θαs)

If f ∈ C∞(M) then

∇(fs) =
∑
α,β

θβ∇̂α(θαfs) =
∑
β

θβ

(∑
α

df ⊗ (θαs) + f∇̂α(θαs)
)

= df ⊗ s
∑
α,β

θαθβ + f∇s = df ⊗ s
(∑

α
θα︸ ︷︷ ︸

=1

)(∑
β
θβ︸ ︷︷ ︸

=1

)
+ f∇s = df ⊗ s+ f∇s.

Hence∇ is a connection on E. ut

Definition 1.1.22. Suppose Ei → M , i = 0, 1 are two smooth vector bundles over M . Suppose
also ∇i is a connection on Ei, i = 0, 1. A morphism (E0,∇0) → (E1,∇1) is a bundle morphism
T : E0 → E1 such that for every X ∈ Vect(M) the diagram below is commutative.

C∞(E0) C∞(E1)

C∞(E0) C∞(E1)

w
T

u
∇0
X

u
∇1
X

w
T

An isomorphism of vector bundles with connections is defined in the obvious way. We denote by
VBc

K(M) the collection of isomorphism classes of K-vector bundles with connections over M . ut

Observe that we have a forgetful map

VBc(M)→ VB(M), (E,∇) 7→ E.

The tensorial operations ⊕, ∗, ⊗, S and Λ∗ on VB(M) have lifts to the richer category of vector
bundles with connections. We explain this construction in detail. Suppose (Ei,∇i) ∈ VBc(M),
i = 0, 1.

•We obtain a connection∇ = ∇0 ⊕∇1 on E0 ⊕ E1 via the equality

∇(s0 ⊕ s1) = (∇0s0 ⊕∇1s1), ∀s0 ∈ C∞(E0), s1 ∈ C∞(E1).

• The connection∇0 induces a connection ∇̌0 on E∗0 defined by the equality

LX〈u, v〉 = 〈∇̌0
Xu, v〉+ 〈u,∇Xv〉, ∀X ∈ Vect(M), u ∈ C∞(E∗0), v ∈ C∞(E0),

where 〈•, •〉 ∈ Hom(E∗0 ⊗ E0,KM ) denotes the natural bilinear pairing between a bundle and its
dual.

Suppose ~e = (e1, . . . , er) is a local frame of E and A(~e) is the connection 1-form associated to
∇,

∇~e = ~e ·A(~e)

Denote by t~e = (e1, . . . , cer) the dual local frame of E∗0 defined by

〈ea, eb〉 = δab .
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We deduce that 〈∇̌0ea, eb〉 = −〈ea,∇0eb〉 = −Aab so that

∇̌0ea = −
∑
b

Aabe
b.

We can rewrite this
∇̌0t~e = t~e ·

(
−tA(~e)

)
that is

A(t~e) = −tA(~e).

•We get a connection∇0 ⊗∇1 on E0 ⊗ E1 via the equality

(∇0 ⊗∇1)(s0 ⊗ s1) = (∇s0)⊗ s1 + s1 ⊗ (∇1s1).

•We get a connection on ΛkE0 via the equality

∇0
X(s1∧· · ·∧sk) = (∇Xs1)∧s2∧· · ·∧sk+s1∧ (∇0

Xs2)∧· · ·∧sk+ · · ·+s1∧s2∧· · ·∧ (∇0
Xsk)

∀s1, · · · , sk ∈ C∞(M), X ∈ Vect(M).

• If E is a complex vector bundle, then any connection ∇ on E induces a connection ∇̄ on the
conjugate bundle Ē defined via the conjugation operator C : E → Ē

∇̄ = C∇C−1.

SupposeE → N is a vector bundle over the smooth manifoldN , f : M → N is a smooth map,
and ∇ is a connection on E. Then ∇ induces a connection f∗∇ on f∗ defined as follows. If E is
defined by the gluing cocycle (U, g••,Kr) and∇ is defined by the collection A• ∈ Ω1(•)⊗ gl

r
(K),

then f∇ is defined by the collection f∗A• ∈ Ω1(f−1(U•))⊗ gl
r
(K). It is the unique connection on

f∗E which makes commutative the following diagram.

C∞(E) C∞(f∗E)

C∞(T ∗N ⊗ E) C∞(T ∗M ⊗ f∗E)

w
f∗

u
∇

u
f∗∇

w
f∗

Definition 1.1.23. Suppose∇ is a connection on the vector bundle E →M .

(a) A section s ∈ C∞(E) is called (∇)-covariant constant or parallel if

∇s = 0.

(b) A section s ∈ C∞(E) is said to be parallel along the smooth path γ : [0, 1]→M if the pullback
section γ∗s of γ∗E → [0, 1] is parallel with respect to the connection f∗∇. ut

Example 1.1.24. Suppose γ : [0, 1] → M is a smooth path whose image lies entirely in a single
coordinate chart U of M . Denote the local coordinates by (x1, . . . , xn) so we can represent γ as a
n-uple of functions (x1(t), · · · , xn(t)). Suppose E → M is a rank r vector bundle over M which
can be trivialized over U . If∇ is a connection on E then with respect to some trivialization of E |U
can be described as

∇ = d+A = d+
∑
i

dxi ⊗Ai, Ai : U → gl
r
(K).
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The tangent vector γ̇ along γ can be described in the local coordinates as

γ̇ =
∑
i

ẋi∂i.

A section s is the parallel along γ if ∇γ̇s = 0. More precisely, if we regard s as a smooth function
s : U → Kr, then we can rewrite this condition as

0 =
d

dγ̇
s+

∑
i

dxi(γ̇)Ais = (
∑
i

ẋi∂i)s+
∑
i

ẋiAis,

ds

dt
+
∑
i

ẋiAis = 0. (1.1.8)

Thus a section which is parallel over a path γ(0) satisfies a first order linear differential equation.
The existence theory for such equations shows that given any initial condition s0 ∈ Eγ(0) there
exists a unique parallel section [0, 1] 3 t 7→ S(t; s0) ∈ Eγ(t). We get a linear map

Eγ(0) 3 s0 → S(t; s0) |t=1∈ Eγ(1).

This is called the parallel transport along γ (with respect to the connection∇). ut

SupposeE is a real vector bundle, g is a metric onE. A connection∇ onE is called compatible
with the metric g (or a metric connection) if g is a section ofE∗⊗E∗ covariant constant with respect
to the connection on E∗⊗E∗ induced by∇. More explicitly, this means that for every sections u, v
of E and every vector field X on M we have

LXg(u, v) = g(∇Xu, v) + g(u,∇Xv).

Observe that if ∇0,∇1 are two connections compatible with g and A = ∇1 − ∇0, then the above
equality show that the endomorphism AX = ∇1 −∇0

X of E satisfies

g(AXu, v) + g(u,AXv) = 0, ∀u, v ∈ C∞(E).

In other words A ∈ Ω1(End−g (E)), where we recall that End−g (E) denotes the real vector vector
bundle whose sections are skew-hermitian endomorphisms of E; see Example 1.1.13 (f). One can
define in a similar fashion the connections on a complex vector bundle compatible with a hermitian
metric h.

Proposition 1.1.25. Suppose h is a metric (Riemannian or Hermitian) on the vector bundleE. Then
there exists connections compatible with h. Moreover the space AE,h of connections compatible
with h is an affine space modelled on the vector space Ω1(End−h (E)). ut

The proof follows by imitating the arguments in Remark 1.1.18 and Proposition 1.1.21.

Suppose that∇ is a connection on a vector bundle E →M . For any vector fields X,Y over M
we get three linear operators

∇X ,∇Y ,∇[X,Y ] : C∞(E)→ C∞(E),

where [X,Y ] ∈ Vect(M) is the Lie bracket of X and Y . Form the linear operator

F∇(X,Y ) : C∞(E)→ C∞(E),

F∇(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] = [∇X ,∇Y ]−∇[X,Y ].
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Observe two things. First,
F∇(X,Y ) = −F∇(Y,X).

Second, if f ∈ C∞(M) and s ∈ C∞(E) then

F∇(X,Y )(fs) = fF∇(X,Y )s = F∇(fX, Y )s = F∇(X, fY )s

so that for every X,Y ∈ Vect(M) the operator F∇(X,Y ) is an endomorphism of E and the
correspondence

Vect(M)×Vect(M)→ End(E), (X,Y ) 7→ F∇(X,Y )

is C∞(M)-bilinear and skew-symmetric. In other words F∇(•, •) is a 2-form with coefficients in
EndE, i.e., a section of Ω2(EndE).

Definition 1.1.26. The EndE-valued 2-form F∇(•, •) constructed above is called the curvature of
the connection∇. ut

Example 1.1.27. (a) Consider the trivial vector bundle E = Kr
U , where U is an open subset in Rn.

Denote by (x1, · · · , xn) the Euclidean coordinates on U . Denote by d the trivial connection on E.
Any connection∇ on E has the form

∇ = d+A = d+
∑
i

dxiAi, Ai : U → gl
r
(K).

Set ∂i := ∂
∂xi

,∇i = ∇∂i . Then for every s : U → Kr we have

F∇(∂i, ∂j)s = [∇i,∇j ]s = ∇i(∇js)−∇j(∇is)

= ∇i(∂js+Ajs)−∇j(∂is+Ais) = (∂i +Ai)(∂js+Ajs)− (∂j +Aj)(∂is+Ais)

=
(
∂iAj − ∂jAi + [Ai, Aj ]

)
s.

Hence ∑
i<j

F (∂i, ∂j)dx
i ∧ dxj =

(
∂iAj − ∂jAi + [Ai, Aj ]

)
dxi ∧ dxj .

We can write this formally as

F∇ = dA+A ∧A = −
∑
i

dxid(Ai) +
(∑

i

dxiAi
)
∧
(∑
j

dxjAj
)
.

Observe that if r = 1, so that E is the trivial line bundle KU then we can identify gl
1
(K) ∼= K so

the components Ai are scalars. In particular [Ai, Aj ] = 0 so that in this case

F∇ = dA.

(b) If E is a vector bundle described by a gluing cocycle (U, g••,Kr) and ∇ is a connection de-
scribed by the collection of 1-forms Aα ∈ Ω1(Uα)⊗ gl

r
(K) satisfying (1.1.7) then the curvature of

∇ is represented by the collection of 2-forms

Fα = dAα +Aα ∧Aα
satisfying the compatibility conditions

Fβ = gβαFαg
−1
βα on Uαβ. (1.1.9)
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(c) If ∇ is a connection on a complex line bundle L → M then its curvature F∇ can be identified
with a complex valued 2-form. If moreover, ∇ is compatible with a hermitian metric then iF∇ is a
real valued 2-form. ut

We define an operation

∧ : Ωk(EndE)× Ω`(EndE)→ Ωk+`(EndE),

by setting
(ωk ⊗ S) ∧ (η` ⊗ T ) = (ωk ∧ η`)⊗ (ST )

for any Ωk ∈ Ωk(M), η` ∈ Ω`(M), S, T ∈ End(E).

Using a connection∇ on E we can produce an exterior derivative

d∇ : Ωk(EndE)→ Ωk+1(EndE)

defined by
d∇(ωk ⊗ S) = (dωk)⊗ S + (−1)k(ω ⊗ 1E) ∧∇EndES,

We have the following result.

Proposition 1.1.28. Suppose ∇′,∇ are two connections on the vector bundle E → M . Their
difference B = ∇1 −∇0 is an EndE-valued 1-form. Then

F∇′ = F∇ + d∇B +B ∧B.

Proof. The result is local so we can assume E is the trivial bundle over an open subset M ↪→ Rn.
Let r = rankE. We can write

∇ = d+A, ∇′ = d+A′, A,A′ ∈ Ω1(M)⊗ gl
r
(K).

Then B = A′ −A,

F ′ = F∇′ = dA′ +A′ ∧A′, F = F∇ = dA+A ∧A

and thus

F ′ − F = d(A′ −A) + (A′ ∧A′)− (A ∧A) = d(A′ −A) + (A+B) ∧ (A+ Γ)−B ∧B

= dB +B ∧A+A ∧B +B ∧B.

In local coordinates d∇ we have (see Exercise 1.4.6)

d∇(
∑
i

dxi ⊗Bi) = −
∑
i

dxi ∧

∑
j

dxj ⊗∇jBi


= −

∑
i

dxi ∧

∑
j

dxj ⊗ (∂jBi + [Aj , Bi])


=
∑
i<j

dxi ∧ dxj ⊗ (∂iBj − ∂jBi)−
∑
i,j

dxi ∧ dxj ⊗ (AjBi −BiAj)
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= dB +

∑
j

dxj ⊗Aj

 ∧(∑
i

dxi ⊗Bi

)
+

(∑
i

dxi ⊗Bi

)
∧

∑
j

dxj ⊗Aj


= dB +A ∧B +B ∧A.

ut
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1.2. Chern-Weil theory

1.2.1. Connections on principal G-bundles. In the sequel we will work exclusively with matrix
Lie groups, i.e. closed subgroups of some GLr(K).

Fix a (matrix) Lie groupG and a principalG-bundle P = (M,U, g••) over the smooth manifold
M . Denote by g = T1G the Lie algebra of G. A connection on P is a collection

A = {Aα ∈ Ω1(Uα)⊗ g}

satisfying the following conditions

Aβ(u) = gβα(u)Aα(u)g−1
βα(u)− d(gβα)gβα(u)−1, ∀u ∈ Uαβ. (1.2.1)

We denote by AP the space of connections on P .

Proposition 1.2.1. AP is an affine space modelled on Ω1(AdP ).

Proof. We will show that given two connections (A1
α), (A0

α) their differenceCα = A1
α−Aα0 defines

a global section of Λ1T ∗M ⊗AdP , i.e. on the overlaps Uβα we have the equality

Cβ = Ad(gβα)Cα = gβαCαg
−1
βα .

This follows immediately by taking the difference of the transition equalities (1.2.1) for A1
• and A0

•.
ut

To formulate our next result let us introduce an operation

[−,−] : Ωk(Uα)⊗ g× Ω`(Uα)⊗ g→ Ωk+`(Uα)⊗ g,

[ωk ⊗X, η` ⊗ Y ] := (ωk ∧ η`)⊗ [X,Y ],

where [X,Y ]-denotes the Lie bracket in g, or in the case of a matrix Lie group, [X,Y ] = XY −Y X
is the commutator of the matrices X,Y . Let us point out that if A,B ∈ Ω1(Uα)⊗ g, then

[A,B] = A ∧B +B ∧A.

We define
Fα := dAα +

1

2
[Aα, Aα] = dAα +Aα ∧Aα ∈ Ω2(Uα)⊗ g.

For a proof of the following result we refer to [21, Chap.8].

Proposition 1.2.2. (a) The collection Fα defines a global section F (A) of Λ2T ∗M ⊗AdP , i.e. on
the overlaps Uαβ it satisfies the compatibility conditions,

Fβ = gβαFαg
−1
βα = Ad(gβα)Fα.

(b) (The Bianchi Identity)
dFα + [Aα, Fα] = 0, ∀α.

ut

The 2-form F (A) ∈ Ω2(AdP ) is called the curvature of A.

Consider now a representation ρ : G → Aut(V ) and the vector bundle E = P ×ρ V . Denote
by ρ∗ the differential of ρ at 1 ∈ G

ρ∗ : g→ EndV.
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We recall that Endρ(V ) = ρ∗g and EndρE = P ×Adρ Endρ(V ). The identity (1.1.3) shows that
any connection (Aα) on P defines a connection ∇ = (ρ∗Aα) on E. We say that this connection is
compatible with the (G, ρ)-structure. Observe that

F∇ |Uα= ρ∗Fα.

In particular F∇ ∈ Ω2(EndρE).

Example 1.2.3. Suppose E → M is a complex vector bundle of rank r. A hermitian metric h on
E defines a U(r)-structure. A connection ∇ is compatible with this structure if and only if it is
compatible with the metric. In this case EndρE is the subbundle End−h E of EndE and we have

F (∇) ∈ Ω2(End−h E).

ut

1.2.2. The Chern-Weil construction. Suppose P → M is a principal G-bundle over M defined
by the gluing cocycle (U, g••). To formulate the Chern-Weil construction we need to introduce first
the concept of Ad-invariant polynomials on g. .

The adjoint representation Ad : G→ GL(g) induces an adjoint representation

Adk : G→ GL(Symk g∗C), gC := g⊗R C.

We denote by Ik(g) the Adk-invariant elements of Symk g∗. Equivalently, they are k-multilinear
maps

P : g× · · · × g︸ ︷︷ ︸
k

→ C,

such that
P (Xϕ(1), . . . , Xϕ(k)) = P (gX1g

−1, . . . , gXkg
−1) = P (X1, . . . , Xk),

for any X1, . . . , Xk ∈ g, g ∈ G and any permutation ϕ of {1, . . . , k}.
If in the above equality we take g = exp(tY ), Y ∈ g and then we differentiate with respect to t

at t = 0 we obtain

P ([Y,X1], X2, . . . , Xk) + · · ·+ P (X1, . . . , Xk−1, [Y,Xk]) = 0, ∀Y,X1, . . . , Xk ∈ g. (1.2.2)

For P ∈ Ik(g) and X ∈ g we set

P (X) := P (X, . . . ,X︸ ︷︷ ︸
k

).

We have the polarization formula

P (X1, . . . , Xk) =
1

k!

∂k

∂t1 · · · ∂tk
P (t1X1 + · · ·+ tkXk).

More generally, given P ∈ Ik(g) and (not necessarily commutative) C-algebra R we define R-
multilinear map

P : R⊗ g× · · · × R⊗ g︸ ︷︷ ︸
k

→ R

by
P (r1 ⊗X1, . . . , rk ⊗Xk) = r1 · · · rkP (X1, . . . , Xk).
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Let us emphasize that when R is not commutative the above function is not symmetric in its vari-
ables. For example if r1r2 = −r2r1 then

P (r1X1, r2X2, . . . ) = −P (r2X2, r1X1, . . . ).

It will be so if R is commutative. For applications to geometry R will be the algebra Ω•(M) of
complex valued differential forms on a smooth manifold M . When restricted to the commutative
subalgebra

Ωeven(M) =
⊕
k≥0

Ω2k(M)⊗ C.

we do get a symmetric function.

Let us point out a useful identity. If P ∈ Ik(g), U is an open subset of Rn,

Fi = ωi ⊗Xi ∈ Ωdi(U)⊗ g, A = ω ⊗X ∈ Ωd(U)⊗ g

then

P (F1, · · · , Fi−1, [A,Fi], Fi+1 . . . , Fk) = (−1)d(d1+···+di−1)ωω1 · · ·ωkP (X1, . . . , [X,Xi], . . . , Xk).

In particular, if F1, · · · , Fk−1 have even degree we deduce that for every i = 1, · · · , k we have

P (F1, · · · , Fi−1, [A,Fi], Fi+1, . . . , Fk) = ωω1 · · ·ωkP (X1, . . . , [X,Xi], . . . , Xk)

Summing over i and using the Ad-invariance of P we deduce
k∑
i=1

P (F1, . . . , Fi−1, [A,Fi], Fi+1, . . . , Fk) = 0, (1.2.3)

∀F1, . . . , Fk−1 ∈ Ωeven(U)⊗ g, Fk, A ∈ Ω∗(U)⊗ g.

Theorem 1.2.4 (Chern-Weil). Suppose A = (A•) is a connection on the principal G-bundle
(M,U, g••), with curvature F (A) = (F•), and P ∈ Ik(g). Then the following hold.

(a) The collection of 2k-forms P (Fα) ∈ Ω2k(Uα) defines a global 2k-form P (F (A)) on M , i.e.

P (Fα) = P (Fβ) on Uαβ.

(b) The form P (F (A)) is closed
dP (F (A)) = 0.

(c) For any two connections A0, A1 ∈ AP the closed forms P (F (A0)) and P (F (A1) are cohomol-
ogous, i.e their difference is an exact form.

Proof. (a) On the overlap Uαβ we have

P (Fβ) = P (Ad(gβα)Fα) = P (Fα)

due to the Ad-invariance of P .

(b) Observe first that the Bianchi indentity implies that dFα = −[Aα, Fα]. From the product for-
mula we deduce

dP (Fα) = dP (Fα, . . . , Fα︸ ︷︷ ︸
k

) = P (dFα, Fα, . . . , Fα) + · · ·+ P (Fα, . . . , Fα, dFα)

= −P ([Aα, Fα], Fα, . . . , Fα)− · · · − P (Fα, . . . , Fα, [Aα, Fα])
(1.2.3)

= 0.
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(c) Consider two connections A1, A0 ∈ AP . We need to find a (2k − 1) form η such tha

P (F (A1))− P (F (A0) = dη.

Let C := A1 − A0 ∈ Ω1(AdP ). We get a path of connections t 7→ At = A0 + tC which starts at
A0 and ends at A1. Set F t := F (At) and

P (t) = P (FAt).

We want to show that P (1) − P (0) is exact. We will prove a more precise result. Define the local
transgression forms

TαP (A1, A0) := k

∫ 1

0
P (F tα, . . . , F

t
α, Cα)dt

The Ad-invariance of P implies that

TαP (A1, A0) = TβP (A1, A0), on Uαβ

so that these forms define a global form T (A1, A0) ∈ Ω2k−1(M) called the transgression form
from A0 to A1. We will prove that

P (1)− P (0) = dTP (A1, A0).

We work locally on Uα we have

P (1)− P (0) =

∫ 1

0

d

dt
P (F tα, . . . , F

t
α)dt

(Ḟ tα = d
dtF

t
α)

=

∫ 1

0

(
P (Ḟ tα, F

t
α, . . . , F

t
α) + · · ·+ P (F tα, . . . , F

t
α, Ḟ

t
α)
)
dt

= k

∫ 1

0
P (F tα, . . . , cF

t
α, Ḟ

t
α)dt.

We have

F tα = dAtα +
1

2
[Atα, A

t
α] = F 0

α + t(dCα + [A0
α, Cα]) +

t2

2
[Cα, Cα]

so that
Ḟ tα = dCα + [A0

α, Cα] + t[Cα, Cα] = dCα + [Atα, Cα].

Hence
P (F tα, · · · , F tα, Ḟ tα) = P (F tα, · · · , F tα, dCα + [Atα, Cα]).

To finish the proof of the theorem it suffices to show that

dP (F tα, . . . , F
t
α, Cα) = P (F tα, . . . , F

t
α, dCα + [Atα, Cα]).

Indeed, we have

dP (F tα, . . . , F
t
α, Cα) = P (dF tα, . . . , F

t
α, Cα) + · · ·+ P (F tα, . . . , dF

t
α, Cα)

+P (F tα, . . . , F
t
α, dCα)

(dF tα = −[Atα, F
t
α])

= −P ([Atα, F
t
α], . . . , F tα, Cα, )− · · · − P (F tα, . . . , [A

t
α, F

t
α], Cα) + P (F tα, . . . , F

t
α, dCα)

= P (F tα, . . . , F
t
α, dCα + [Atα, Cα])

−
(
P (F tα, . . . , F

t
α, [A

t
α, Cα]) + P ([Atα, F

t
α], . . . , F tα, Cα) + · · ·+ P (F tα, . . . , [A

t
α, F

t
α], Cα)

)
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= P (F tα, . . . , F
t
α, dCα + [Atα, Cα])

since the term in parentheses vanishes3 due to (1.2.3). ut

We set

C[g∗]G =
⊕
k≥0

Ik(g), C[[g∗]]G =
∏
k≥0

Ik(g).

C[g∗]G is the ring of Ad-invariant polynomials and C[[g∗]]G is the ring of Ad-invariant formal
power series. We have

C[g∗]G ⊂ C[[g∗]]G

Suppose A is a connection on the principal G-bundle P → M . Then for every f =
∑

k≥0 fk ∈
C[[g∗]]G we get an element

f(F (A)) =
∑
k≥0

fk(F (A))

Observe that fk(F (A)) ∈ Ω2k(M). In particular f2k(A) = 0 for 2k > dimM so that in the above
sum only finitely many terms are non-zero. We obtain a well defined correspondence

C[[g∗]]G ×AP → Ωeven(M), (f,A) 7→ f(F (A)).

This is known as the Chern-Weil correspondence. The image of the Chern-Weil correspondence is
a subspace of Z∗(M), the vector space of closed forms onM . We have also constructed a canonical
map

T : C[[g∗]]G ×AP ×AP → Ωodd(M), (f,A0, A1) 7→ Tf(A1, A0)

such that

f(F (A1)− f(F (A0)) = dTf(A1, A0).

We will refer to it as the Chern-Weil transgression.

The Chern construction is natural in the following sense. Suppose P = (M,U, g••, G) is a
principal G-bundle over M and f : N →M is a smooth map. Then we get a pullback bundle f∗P
over N described by the gluing data (N, f−1(U), f∗(g••), G. For any connection A = (A•) on P
we get a connection f∗A = (f∗A•) on f∗P such that

F (f∗A) = f∗F (A).

Then for every element h ∈ C[[g∗]]G we have

h(f∗F (A)) = f∗h(F (A)).

3The order in which we wrote the terms, F t, . . . , F t, C instead of C,F t, . . . , F t is very important in view of the asymmetric
definition of

P : R⊗ g× · · · × R⊗ g→ R.
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1.2.3. Chern classes. We consider now the special case G = U(n). The Lie algebra of U(n), de-
noted by u(n) is the space of skew-hermitian matrices. Observe that we have a natural identification

u(1) ∼= iR.

The group U(n) acts on u(n) by conjugation

U(n)× u(n) 3 (g,X) 7→ gXg−1 ∈ u(n).

It is a basic fact of linear algebra that for every skew-hermitian endomorphism of Cn can be diago-
nalized, or in other words, every skew-hermitian matrix is conjugate to a diagonal one. The space
of diagonal skew-hermitian matrices forms a commutative Lie subalgebra of u(n) known as the
Cartan subalgebra of u(n). We will denote it by Cartan(u(n)).

Cartan(u(n)) =
{

Diag(iλ1, . . . , iλn); (λ1, . . . , λn) ∈ Rn
}
.

The group WU(n)
4 of permutations of n objects acts on Cartan(u(n) in the obvious way, and two

diagonal matrices are conjugate if and only if we can obtain one from the other by a permutation
of its entries. Thus an Ad-invariant polynomial on u(n) is determined by its restriction to the
Cartan algebra. Thus we can regard every Ad-invariant polynomial as a polynomial function P =
P (λ1, · · · , λn). This polynomial is also invariant under the permutation of its variables and thus
can de described as a polynomial in the elementary symmetric quantities

ck =
∑

i1<···<ik

xi1 · · ·xik , xj =
i

2π
(iλj) = −λj

2π
.

The factor i
2π appears due to historical and geometric reasons. The variables xj are also known as

the Chern roots. More elegantly, if we set

D = D(~λ) = Diag(iλ1, . . . , iλn) ∈ u(n)

then

det
(

1 +
it

2π
D
)

= 1 + c1t+ c2t
2 + · · ·+ cnt

n.

Instead of the elementary sums we can consider the momenta

sr =
∑
i

xri .

The elementary sums can be expressed in terms of the momenta via the Newton relation

s1 = c1, s2 = c2
1 − 2c2, s3 = c2

1 − 3c1c2 + 3c3,
r∑
j=1

(−1)jsr−jcj = 0. (1.2.4)

Using again the matrix D we have ∑
r≥0

sr
r!
tr = tr exp(

it

2π
D).

Motivated by these examples we introduce the Chern polynomial

c ∈ C[u(n)∗]U(n), c(X) = det
(
1Cn +

i

2π
X
)
, ∀X ∈ u(n).

4We use the notation WU(n) because this group is in this case the symmetric group is isomorphic to the Weyl group of U(n).
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Now define the Chern character

ch ∈ C[[u(n)]]U(n), ch(X) = tr exp
( i

2π
X
)
.

Using (1.2.4)

ch = n+ c1 +
1

2!

(
c2

1 − 2c2

)
+

1

3!

(
c2

1 − 3c1c2 + 3c3

)
+ · · · . (1.2.5)

Example 1.2.5. Suppose

F =

[
iF 1

1 F 1
2

F 2
1 iF 2

2

]
∈ u(2)⇐⇒ F 2

1 = −F̄ 1
2 .

Then
c1(F ) = −1

2
(F 1

1 + F 2
2 ), c2(F ) = − 1

4π2
(F 1

2 ∧ F̄ 1
2 − F 1

1 ∧ F 2
2 ).

ut

Our construction of the Chern polynomial is a special case of the following general procedure
of constructing symmetric elements in C[[λ1, . . . , λn]]. Consider a formal power series

f = a0 + a1x+ a2x
2 + · · · ∈ C[[x]], a0 = 1.

Then if we set ~x = (x1, · · · , xn) the function

Gf (~x) = f(x1) · · · f(xn) ∈ C[[x1, . . . , xn]]

is a symmetric power series in ~x with leading coefficient 1. Observe that if D = Diag(i~λ) then

f(
i

2π
D) = Diag

(
f(x1), . . . , f(xn)

)
=⇒ f(~x) = det f

( i

2π
D
)
.

We thus get an element Gf ∈ C[[u(n)]]U(n) defined by

Gf (X) = det f
( i

2π
X
)
.

It is called the f -genus or the genus associated to f . When f(x) = 1 + x we obtain the Chern
polynomial.

Of particular relevance in geometry is the Todd genus, i.e. the genus associated to the function5

td (x) :=
x

1− e−x
= 1 +

1

2
x+

1

12
x2 + · · · = 1 +

1

2
x+

∞∑
k=1

B2k

(2k)!
x2k.

The coefficients Bk are known as the Bernoulli numbers. Here are a few of them

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
,

B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
.

We set
td := Gtd.

Consider now a rank n complex vector bundle E → M equipped with a hermitian metric h. We
denote by AE,h the affine space of connections on E compatible with the metric h and by Ph(E)

5Warning. The literature is not consistent on the definition of the Todd function. We chose to work with Hirzebruch’s definition
in [13]. This agrees with the definition in [2, 17], but it differs from the definitions in [4, 27] where td (x) is defined as x

ex−1
.
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the principal bundle of h-orthonormal frames. Then the space of connections AE,h can be naturally
identified with the space of connections on Ph(E).

For every ∇ ∈ AE,h we can regard the curvature F (∇) as a n × n matrix with entries even
degree forms on M . We get a non-homogeneous even degree form

c(∇) = c(F (∇)) = det
(
1E +

i

2π
F (∇)

)
∈ Ωeven(M).

According to the Chern-Weil theorem this form is closed and its cohomology class is independent
of the metric6 h and the connection A. It is thus a topological invariant of E. We denote it by c(E)
and we will call it the total Chern class ofE . It has a decomposition into homogeneous components

c(E) = 1 + c1(E) + · · ·+ cn(E), ck(E) ∈ H2k(M,R).

We will refer to ck(E) as the k-th Chern class. More generally for any f = 1 +a1x+ · · · ∈ C[[x]]
we define Gf (E) to be the cohomology class carried by the form

Gf (∇) = det f(F (∇)).

In particular, td (E) is the cohomology class carried by the closed form

td (∇) := det

(
i

2πF (∇)

exp( i
2πF (∇)− 1E

)
(see [13, I.§1])

= 1 +
1

2
c1 +

1

12
(c2

1 + c2) +
1

24
c1c2 + · · · .

Similarly we define the Chern character of E as the cohomology class ch(E) carried by the form

ch(∇) = tr exp(
i

2π
F (∇)

)
= rankE + c1(E) +

1

2

(
c1(E)2 − 2c2(E)

)
+

1

3!

(
c1(E)2 − 3c1(E)c2(E) + 3c3(E)

)
+ · · ·

Due to the naturality of the Chern-Weil construction we deduce that for every smooth map

f : M → N

and every complex vector bundle E → N we have

c(f∗E) = f∗c(E). (1.2.6)

Example 1.2.6. Denote by LPn the tautological line bundle over CPn. The natural inclusions

ik : Ck ↪→ Ck+1, (z1, . . . , zk) 7→ (z1, . . . , zk, 0)

induce inclusions ik : CPk−1 → CPk and tautological isomorphisms

LPk−1
∼= i∗kLPk .

We deduce that
c1(LPn) |CP1= c1(LP1).

We know thatH2(CPn,C) ∼= R and by Poincaré duality we can identifyH2(CPn,C) with the dual
ofH2(CPn,C). This is a one-dimensional space with a canonical basis, namely the homology class

6See Exercise 1.4.13.
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carried by the oriented submanifold CP1 ↪→ CPn. Thus, H2(CPn,C) carries a canonical basis
usually denoted by H defined by

〈H, [CP1]〉 = 1.

We can write
c1(LPn) = xH

where
x = 〈c1(LPn), [CP1]〉 =

∫
CP1

c1(LP1).

As shown in Exercise 1.4.8 the last integral in −1 so that

c1(LPn) = −H. (1.2.7)

ut

For a proof of the following result we refer to [21, Chap.8].

Proposition 1.2.7. Suppose (Ei, hi), i = 0, 1 are two hermitian vector bundles, ∇i ∈ AEi,hi and
f = 1 + a1x+ a2x

2 + · · · ∈ C[[x]].. We denote by ∇0 ⊕∇1 and ∇0 ⊗∇1 the induced hermitian
connections on E0 ⊕ E1 and E0 ⊗ E1 respectively. Then

Gf (∇0 ⊕∇1) = Gf (∇0) ∧Gf (∇1), ch(∇0 ⊕∇1) = ch(∇0) + ch(∇1),

ch(∇0 ⊗∇1) = ch(∇0) ∧ ch(∇1).

In particular, we have

c(E0 ⊕ E1) = c(E0)c(E1), ch(E0 ⊕ E1) = ch(E0) + ch(E1), (1.2.8)

ch(E0 ⊗ E1) = ch(E0) ch(E1). (1.2.9)

Remark 1.2.8. The identities (1.2.6), (1.2.7), (1.2.8) uniquely determine the Chern classes, [13,
I§4]. ut

Example 1.2.9. Suppose L → M is a hermitian line bundle. For any hermitian connection ∇ we
have

c(∇) = 1 +
i

2π
F (∇), ch(∇) =

∑
k≥0

1

k!

( i

2π
F (∇)

)k
= ec1(∇).

ut

1.2.4. Pontryagin classes. We now consider the case G = O(n). We will have to separate the
cases n = 2k and n = 2k + 1, but we will discuss in detail only the n-even case. The Lie algebra
of O(n) is the space o(n) of skew-symmetric n × n matrices. From now on we assume n := 2k.
We will denote by J the 2× 2 matrix

J :=

[
0 −1
1 0

]
.

The Cartan subalgebra of o(n) is the subspace Cartan(o(n)) consisting of skew-symmetric ma-
trices which have the quasi-diagonal form

Θ(λ1, . . . , λn) = λ1J ⊕ · · · ⊕ λkJ, λi ∈ R.
Every skew-symmetric matrix is conjugate with some element in the Cartan algebra. This ele-
ment is in general non-unique. Observe that for every permutation ϕ : {1, 2, · · · , k} 	 and every
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ε1, . . . , εk ∈ {±1} the matrix Θ(λ1, . . . , λk) is conjugate to Θ(ε1λϕ(1), · · · , εkλϕ(k)). In more
modern terms, consider the Weyl group

WO(2k) = Sk ×
{
±1
}k

An element (ϕ,~ε) ∈ WO(2k) acts on o(n) as above, and two elements in the Cartan algebra are
conjugate if and only if they belong to the same orbit of this group action. Thus, any Ad-invariant
function on o(n) is determined by its restriction to the Cartan subalgebra, which is a WO(2k)-
invariant function in the variables λi. In particular, an Ad-invariant polynomial on o(n) can be
viewed as a symmetric polynomial in the variables λ2

1, · · · , λ2
k, or equivalently, as a polynomial in

the variables

pj =
∑

i1<···<ij

x2
i1 · · ·x

2
ij , 1 ≤ ij ≤ k, xi = − λi

2π
.

Observe that for every Θ(~λ) ∈ Cartan(o(n)) we have

det
(
1− 1

2π
Θ
)

=
k∏
i=1

det(1 + xjJ) =
k∏
i=1

(1 + x2
j ) =

k∑
j=0

pj .

There is a more convenient way of reformulation this fact. This requires a brief algebraic digression.

Lemma 1.2.10. Let F denote one of the fields R or C. Consider the ring R = F[[z1 . . . , zN ]] of
formal power series in N -variables. Denote by M0 = M0(z1, . . . , zN ) the ideal R generated by
z, . . . , zN . Then for any f ∈M0 there exists a unique g ∈M0 such that

(1 + g)2 = 1 + f. (1.2.10)

Proof. An element h ∈M0 decomposes as

h =
∑
k≥1

[h]k,

where [h]k denotes the degree k homogeneous part of h. Given

f =
∑
k≥1

[f ]k

the equality (1 + f) = (1 + g)2 = 1 + 2g + g2, translates to the recurrence relations

2[g]1 = [f ]1, 2[g]2 + [g]21 = [f ]2, 2[g]n +
n−1∑
k=1

[g]k[g]n−k = [f ]n, ∀n > 1.

These have a unique solution. ut

For any f ∈ M0 we define (1 + f)
1
2 ∈ F[[z1, . . . , zN ]] to be the formal power series 1 + g,

where g ∈M0 is the unique solution of (??).

Thus

(1 + f)
1
2 = 1 +

1

2
[f ]1 +

(
1

2
[f ]2 −

1

4
[f1]2

)
+ · · · .

If Z is an n× n matrix, then

det(1 + Z) = 1 + f, f ∈M0(z11, . . . , z1n),
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and thus there exists a canonical square root

det
1
2 (1 + Z) ∈ 1 + M0(z11, . . . , znn) ∈ C[[z11, . . . , znn]].

Observe that if Z is a n× n matrix, then the direct sum Z ⊕ Z is a (2n)× (2n)-matrix and

det(1 + Z ⊕ Z) =

(
det(1 + Z)

)2

.

From the uniqueness of the square root construction we deduce

det
1
2 (1 + Z ⊕ Z) = det(1 + Z). (1.2.11)

Observe that given f, g ∈ F[[z1, . . . , zN ]] and a commutative F-algebra A we cannot speak of
the value of f or g at (a1, . . . , an) ∈ AN . However, we declare that

f(a1, . . . , aN ) = g(a1, . . . , aN )

for some (a1, . . . , aN ) ∈ AN if

[f ]k(a1, . . . , aN ) = [g]k(a1, . . . , aN ), ∀k ∈ Z≥0,

where [f ]k (respectively [g]k) denotes the degree k homogeneous part of f (respectively g).

We have the following useful result.

Proposition 1.2.11 (Analytic Continuation Principle). Let F denote one of the fields R or C. Sup-
pose that P,Q ∈ F[[X1, . . . , XN ]] are such that

P (t1, . . . , tN ) = Q(t1, . . . , tN ), ∀t1, . . . , tN ∈ R ⊂ F.

Then for any commutative F-algebra A, and any a1, . . . , an ∈ A, we have

P (a1, . . . , aN ) = Q(a1, . . . , aN ).

Proof. Clearly it suffices to prove the statement in the special case when P and Q are polynomials.
Also note that when F = R the statement folllows from the obvious fact that two polynomials
P,Q ∈ R[x1, . . . , xN ] are equal (as formal quantities) if and only if

P (t1, . . . , tN ) = Q(t1, . . . , tN ), ∀t1, . . . , tN ∈ R.

Thus, the only nontrivial case is when F = R.

Set F = P − Q. The polynomial D defines a holomorphic function F : CN → C such that
F |RN ≡ 0. If we set zk = xk + iyk and we notice that F satisfies the Cauchy-Riemann equations

∂F

∂xk
(~z) = −i ∂F

∂yk
, ∀k = 1, . . . , N, ∀~z ∈ CN .

Since F ≡ 0 on RN we deduce ∂F
∂xk

= 0 on Rn, for any k. From the Cauchy-Riemann equations
we deduce that

∂F

∂zk
= 0, ∀k, on RN .

Applying the same argument to the derivatives ∂F
∂zk

, and iteratively to higher and higher derivatives
∂αF
∂zα we deduce that ∂

αF
∂zα vanishes on RN for any multi-index α ∈ ZN≥0. This implies that the poly-

nomials P and Q have identical coefficients so that P = Q as elements of the ring C[X1, . . . , XN ].
ut
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We will use this result in a special case when A is the commutative algebra

A =
⊕
K≥0

Λ2kV ⊗ C,

where V is a finite dimensional real vector space. We denote by Xn(A) the space of skew-
symmetric n× n matrices with entries in A. Suppose that P,Q : Xn(A)→ A are two polynomial
functions

P (S) = P (sij , 1 ≤ i < j ≤ n), Q(S) = Q(sij , 1 ≤ i < j ≤ n), sij ∈ A.

The analytic continuation principle shows that if

P (sij , 1 ≤ i < j ≤ n) = P (sij , 1 ≤ i < j ≤ n), ∀sij ∈ R,

then
P (S) = Q(S), ∀S ∈Xn(A).

For any X ∈ o(n) we have
(1 +X)† = (1−X),

so that
1−X2 = (1 +X)(1 +X)†

and we deduce
det
(
1 +X

)
= det

1
2

(
1−X2

)
= det

1
2

(
1 + (iX)2

)
. (1.2.12)

If ±λj , j = 1, . . . , k, are the eigenvalues of iX , then we deduce

det
1
2

(
1 + (iX)2

)
= 1 +

k∑
j=1

λ2
j +

∑
1≤i<j≤k

λ2
iλ

2
j + · · · .

We define

p ∈ C[o(n)∗]O(n), p(X) = det
(
1 +

1

2π
X
)

= det
1
2

(
1 +

( i

2π
X
)2 )

.

Let us point out an important fact. Note that we have a canonical inclusion

o(n) ↪→ u(n).

Given X ∈ o(n) we get Xc ∈ u(n). More concretely, Xc is the same matrix as X , but viewed as a
complex matrix. If ±xj , j = 1, . . . , k, are the eigenvalues of i

2πX
c, then

p`(X) =
∑

1≤i1<···<i`≤k
x2
i1 · · ·x

2
i`
,

2k∑
`=1

c`(X
c) = c(Xc) = det

(
1 +

i

2π
Xc
)

=
k∏
j=1

(1− x2
j ) =

k∑
`=1

(−1)`p`(X).

By identifying the homogeneous components we deduce

c2j−1(Xc) = 0, p`(X) = (−1)`c2`(X
c). (1.2.13)

We can generate many more examples of Ad-invariant functions on o(n) as follows. Let

f(x) = 1 + a1x
2 + a2x

4 + · · · ∈ C[[x2]], a0 = 1,
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be an even power series. Then

f(x1) · · · f(xk) ∈ C[[x2
1, . . . , x

2
k]],

is WO(2k)-invariant.

Note that if X ∈ o(2k) and ±λj , j = 1, . . . , k, are the eigenvalues of iX , then

det f(iX) =
k∏
j=1

f(λj)f(−λj) =
k∏
j=1

f(λj)
2,

and thus

det
1
2 f(iX) =

k∏
j=1

f(λj). (1.2.14)

Define

Gf ∈ C[[o(n)∗]]O(n), Gf (X) := det1/2f
( i

2π
X
)
.

Of particular interests are the functions7

L(x) =
x

tanhx
= 1 +

∞∑
k=1

22kB2k

(2k)!
x2k = 1 +

1

3
x2 − 1

45
x4 + · · ·

and

Â(x) =
x/2

sinh(x/2)
= 1 +

∞∑
k=1

22k−1 − 1

22k−1(2k)!
B2kx

2k = 1− 1

24
x2 +

7

27 · 32 · 5
x4 + · · · .

Then, we set L := GL, Â := GÂ and we get

L(~x) = L(x2
1) · · ·L(x2

k) = 1 +
1

3
p1 +

1

45
(7p2 − p2

1) + · · ·

and

Â(~x) = Â(x2
1) · · · Â(x2

k) = 1− p1

24
+

1

27 · 32 · 5
(7p2

1 − 4p2) + · · ·

Suppose E → M is a real vector bundle equipped with a metric. Any connection compatible with
this metric can be viewed as a connection on the principal bundle of orthonormal frames of E.
Observe that the metric on E induces a hermitian metric on the complexification Ec := E ⊗ C
and any metric connection∇ on E induces a hermitian connection∇c on Ec. Denote by F (∇) the
curvature of∇.

p(∇) = 1 + p1(∇) + p2(∇) + · · · = det
(
1− 1

2π
F (∇)

)
= det

1
2

(
1 +

( i

2π
F (∇)

)2 )
.

From the unique continuation principle and the equality (1.2.12) we deduce

p(∇) = det1/2
(
1− 1

4π2
F (∇c) ∧ F (∇c)

)
= 1− tr

1

8π2
F (∇c) ∧ F (∇c) + · · · .

Observe that, as matrices with entries 2-forms, we have F (∇) = F (∇c). The closed forms

pj(∇) ∈ Ω4j(M)

7In many places L(x) is defined as x/2
tanh x/2

. We chose to stick to Hirzebruch’s original definition, [13].
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are called the Pontryagin forms associated to∇. Note for example that

p1(∇) = − 1

8π2
tr
(
F (∇) ∧ F (∇)

)
.

The cohomology classes determined by these forms are independent of the metric and the metric
compatible connection ∇ and therefore they are topological invariants of E. They are called the
Pontryagin classes of E and they are denoted by pj(E). The identity (1.2.13) shows that

pj(E) = (−1)jc2j(E ⊗ C).

Similarly, the L-genus and the Â-genus of E are the cohomology classes L(E) and Â(E) carried
by the closed forms

L(∇) = det1/2

(
i

2πF (∇)

tanh
(

i
2πF (∇)

) ) = 1 +
1

3
p1(∇) + · · · ,

Â(∇) = det1/2

(
i

4πF (∇)

sinh
(

i
4πF (∇)

)) = 1− 1

24
p1(∇) + · · · .

1.2.5. The Euler class. Consider now the group SO(2k). It is the index two subgroup of O(2k)
consisting of orthogonal matrices with determinant 1. It is convenient to think of these matrices as
orthogonal transformations of R2k preserving the canonical orientation

Ω := e1 ∧ e2 ∧ · · · ∧ e2k,

where e1, · · · , e2k is the canonical orthonormal basis of R2k. We deduce that its Lie algebra so(2k)
coincides with the Lie algebra o(2k). Any matrix X ∈ so(2k) will be SO(2k)-conjugate to a
matrix in the Cartan algebra Cartan(o(2k)). However, two matrices in the Cartan algebra which
are O(2k)-conjugate need not be SO(2k)-conjugate. For example, the matrix J ∈ o(2) is not
SO(2)-conjugate to −J . To describe this phenomenon in more detail consider the group

WSO(2k) =
{

(ϕ,~ε) ∈WO(2k); ε1 · · · εk = 1
}

Two matrices in the Cartan algebra Cartan(o(2k)) are SO(2k)-conjugate if and only if they be-
long to the same orbit of the Weyl group WSO(2k). We deduce that the polynomial functions on
o(2k) which are invariant under the conjugations action of the smaller group SO(2k) can be identi-
fied with the polynomial functions on the Cartan algebra invariant under the action of the subgroup
WSO(2k) of WO(2k). It is therefore natural to expect that there are more functions invariant under
WSO(2k) than function invariant under WO(2k).

This is indeed the case. We will describe one WSO(2k)-invariant function which is not WO(2k)-
invaraint. For a complete description of the ring of WSO(2k)-invariant polynomials we refer to [21,
Chap. 8]. Given

Θ(~λ) = λ1J ⊕ · · · ⊕ λkJ, λi ∈ so(2k)

we set

e(Θ) :=
n∏
i=1

xi, xi := − λi
2π
.

Clearly the polynomial function Θ 7→ e(Θ) is WSO(2k)-invariant and thus it is the restriction of an
invariant polynomial

e ∈ C[so(2k)∗]SO(2k).
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We would like to give a description of e(X) for any X ∈ so(2k). This will require the concept of
pfaffian.

First of all, let us observe that the volume form Ω depends only on the orientation of R2k and
not on the choice of orthonormal basis e1, . . . , e2k compatible with the fixed orientation. To any
skew-symmetric matrix X ∈ so(2k) we associate

ωX ∈ Λ2(R2k)∗, ωX(u, v) := g(Xu, v),

where g(−,−) denotes the standard Euclidean metric on R2k. For example,

ω
Θ(~λ)

=
k∑
j=1

λje2j−1 ∧ e2j = λ1e1 ∧ e2 + · · ·+ λke2k−1 ∧ e2k.

The 2k-form 1
k!ω

k
X will be a scalar multiple of Ω, and we define the pfaffian to be exactly this scalar

Pfaff(X) · Ω =
1

k!
ωkX .

From its definition we deduce that the pffafian is invariant under SO(2k)-conjugation.8 Moreover

Pfaff
(

Θ(~λ)
)

= λ1 · · ·λk. (1.2.15)

More generally, if we express X as a 2k × 2k-matrix X = (xij), where

xij = g(ei, Xej) = −g(Xei, ej) = −ωX(ei, ej)

then
ωX = −

∑
i<j

xijei ∧ ej

and we conclude after a simple computation that

Pfaff(X) =
(−1)k

2k · k!

∑
σ∈S2k

ε(σ)xσ(1)σ(2) · · ·xσ(2k−1)σ(2k),

where Sn denotes the symmetric group on n-elements and ε(σ) denotes the signature of a permuta-
tion σ ∈ Sn. Hence

e(X) = Pfaff
(
− 1

2π
X
)
.

Suppose E → M is an oriented rank 2k real vector bundle. Fix a metric g on E. Then any
connection ∇ on E compatible with g induces a connection on the principal SO(2k)-bundle of
orthonormal frames of E compatible with the orientation of E. The Euler form determined by∇ is
the closed 2k-form

e(∇) = Pfaff
(
− 1

2π
F (∇)

)
.

The cohomology class it determines is independent of the metric g and the connection A. It is a
topological invariant of E called the Euler class of E and it is denoted by e(E).

8The only time we relied on an orthonormal basis in its description was in the definition of Ω which as pointed out, is independent
of the choice of an oriented orthonormal basis.
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1.3. Calculus on Riemann manifolds

Definition 1.3.1. A Riemann manifold is a pair (M, g) where M is a smooth manifold and g is a
metric on the tangent bundle TM . g is called a Riemann metric on M .

If we choose local coordinates (x1, . . . , xn) near a point p0 ∈ M then the vectors ∂i = ∂
∂xi

define a local frame of TM and the metric g is described near p0 by the symmetric form

gij(x) = gx(∂i, ∂j), 1 ≤ i, j ≤ n.

The metric g induces metrics in the cotangent bundle and in all the tensor bundles

TrsM = TM⊗r ⊗ (T ∗M)⊗s.

In particular it induces metrics in the exterior bundles ΛkT ∗M . When no confusion is possible we
will continue to denote these induced metrics by g or (•, •). For every section u of TrsM we set

|u|g =
√
g(u, u) : M → R.

Fix a Riemann metric g on M . An orientation on M , that is a nowhere vanishing section of ω ∈
C∞(detTM) canonically defines a volume form on M , i.e a nowhere vanishing form on M of top
degree. This form, denoted by dVg is uniquely determined by the following conditions.

dVg(ω) > 0 |dVg|g ≡ 1 on M.

In local coordinates we have

dVg =
√

det(gij)dx
1 ∧ · · · ∧ dxn.

For every vector field X on M we denote by LX the Lie derivative of a tensor field on M . In
particular LXdVg is a n-form on M and thus it is a multiple of dVg

LX(dVg) = λ(X)dVg.

Definition 1.3.2. The scalar λ(X) is called the divergence of X with respect to the metric g. It is
denoted by divg X . ut

Example 1.3.3. Suppose M is the vector space Rn equipped with the natural Euclidean metric g0.
The associated volume form is

dV0 = dx1 ∧ · · · ∧ dxn.
Given a vector field X =

∑
iX

i∂i on Rn we have

LX(dV0) = (LXdx
1) ∧ dx2 ∧ · · · ∧ dxn + · · ·+ dx1 ∧ dx2 ∧ · · · ∧ (LXdx

n).

Using Cartan formula
LX = diX + iXd

where iX denotes the contraction by X we deduce LXdxj = d(iXdx
j) = dXj . This shows that

LX(dV0) =

(∑
i

∂iX
i

)
dV0 =⇒ divg0 X =

∑
i

∂iX
i.

ut
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Proposition 1.3.4 (Divergence Formula). Suppose (M, g) is an oriented Riemann manifold. Then
for every compactly supported smooth functions u, v : M → R we have∫

M
(LXu)vdVg =

∫
M
u(−LX − divgX)vdVg.

Proof We have

LX(uvdVg) = (LXu)vdV g + u(LXv)dVH + uv divg(x)dVg.

Using Cartan formula LX = iXd + diX again and observing that d(uvdVg) = 0 since the form
uvdVg is top dimensional we deduce

d
(
iX(uvdVg)

)
= (LXu)vdVg + u(LX + divg(X))vdVg.

Integrating over M (which is possible since all the above objects have compact support we deduce∫
M
d
(
iX(uvdVg)

)
=

∫
M

(LXu)vdVg +

∫
M
u(LX + divg(X))vdVg.

Stokes formula now implies that the integral in the left hand side is zero since the integrand is the
exact differential of a compactly supported form.

ut

The metric g is a section of T ∗M ⊗ T ∗M ∼= Hom(TM, T ∗M) and thus we can regard it as a
bundle morphism

TM → T ∗M.

This is an isomorphism called the metric duality. Thus, the metric associates to every vector field X
a 1-form X† called the metric dual of X . More concretely, X† is the 1-form uniquely determined
by the equality

X†(Y ) = g(X,Y ), ∀Y ∈ Vect(M).

In local coordinates, if X =
∑

iX
i∂i then

X† =
∑
i

∑
j

gijX
j

 dxi.

Conversely, to any 1-form αwe can associate by metric duality a vector field onM which we denote
by α†. It is the vector field uniquely determined by the equality

α(X) = g(α†, X), ∀X ∈ Vect(X).

In local coordinates, if α =
∑

i αidx
i and if gij denotes the inverse of the matrix gij then

α† =
∑
i

∑
j

gijαj

 ∂i.

In particular, the gradient of a function f : M → R is the vector field dual to df

gradg f = (df)†.

In local coordinates we have
gradg f =

∑
i

(
∑
j

gij∂jf)∂i.
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Definition 1.3.5. The scalar Laplacian on an oriented Riemann manifold is the operator

∆M : C∞(M)→ C∞(M), f 7→ ∆Mf = −div(grad f).

ut

A Riemann metric together with an orientation define a more sophisticated type of duality.

Definition 1.3.6. Suppose (M, g) is an oriented Riemann manifold of dimension n. The Hodge
∗-operator is the linear operator

∗ = ∗g : Ω•(M)→ Ωn−•(M)

uniquely determined by the requirement

ω ∧ ∗η = g(ω, η)dVg, ∀ω, η ∈ Ω•(M).

ut

Example 1.3.7. Consider the Euclidean space Rn equipped with the natural metric and orientation
defined by the n-form dV0 = dx1 ∧ · · · ∧ dxn. Then

∗dx1 = dx1 ∧ · · · ∧ dxn, ∗dx1 ∧ dx2 = dx3 ∧ · · · ∧ dxn,

∗(dx1 ∧ · · · ∧ dxi) = dxi+1 ∧ · · · ∧ dxn.
ut

The Hodge ∗-operator has a quasi-involutive behavior. More precisely,

∗ (∗α) = (−1)k(n−k)α, ∀α ∈ Ωk(M). (1.3.1)

Using the Hodge ∗-operator we can define δ : Ω•(M)→ Ω•−1(M) by

δω = ∗d ∗ ω.

Proposition 1.3.8. For any compactly supported forms ω ∈ Ωk−1(M) and η ∈ Ωk(M) we have∫
M

(dω, η)dVg = ε(n, k)

∫
M

(ω, δη)dVg,

where ε(n, k) = (−1)nk+n+1. ut

For a proof we refer to [21].

Remark 1.3.9. Observe that if n is even, then ε(n, k) = −1, ∀k. ut

We have the following fundamental result. Its proof can be found in any modern book of
riemannian geometry, e.g. [7, 21].

Theorem 1.3.10. Suppose (M, g) is a Riemann manifold. Then there exists a unique metric con-
nection∇ on TM satisfying the symmetry condition

∇XY −∇YX = [X,Y ], ∀X,Y ∈ Vect(M). ut
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We include here an explicit description of the Levi-Civita connection.

g(∇XY,Z) =
1

2

{
LXg(Y,Z)− LZg(X,Y ) + LY g(Z,X)

−g(X, [Y,Z]) + g(Z, [X,Y ]) + g(Y, [Z,X])
}
.

(1.3.2)

If we choose local coordinates (x1, · · · , xn) and we set ∇i = ∇∂i then the Levi-Civita connection
is completely determined by the Christoffel symbols Γkij defined by

∇i∂j =
∑
k

Γkij∂k.

The symmetry of the condition translates into the equalities

Γkij = Γkji, ∀i, j, k.
Using (1.3.2) for X = ∂i, Y = ∂j , Z = ∂k we deduce that∑

`

g`kΓ
`
ij =

1

2
{∂igjk − ∂kgij + ∂jgki}.

If we denote by (gij) the inverse matrix of gij so that∑
j

gijgjk = δik

then we deduce
Γmij =

1

2

∑
k

gmk
(
∂igjk − ∂kgij + ∂jgki

)
. (1.3.3)

The Riemann curvature (or tensor) of a Riemann manifold is the curvature of the Levi-Civita
connection. It is a section R ∈ Ω2(EndTM). For every X,Y we get an endomorphism of
R(X,Y ) of TM . In local coordinates we have

R(∂i, ∂j)∂k =
∑
`

R`kij∂`.

We set
Rmkij =

∑
`

gm`R
`
kij = g(∂m, R(∂i, ∂j)∂k)

The Riemann tensor enjoys several symmetry properties.

Rijk` = −Rjik`, Rijk` = Rk`ij , (1.3.4a)

Rijk` +Rik`j +Ri`jk = 0, (1.3.4b)

(∇iR)jmk` + (∇`R)jmik + (∇kR)jm`i = 0. (1.3.4c)
The identity (1.3.4b) is called the first Bianchi identity while the (1.3.4c) is called the second Bianchi
identity.

Using the Riemann tensor we can produce new tensors which contain partial information about
the curvature. Given two linearly independent tangent vectors X,Y ∈ TpM we can define the
sectional curvature at p along the 2-plane spanned by X,Y to be the scalar

Kp(X,Y ) =
(R(X,Y )Y,X)

|X ∧ Y |
,
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where |X ∧ Y | is the Gramm determinant

|X ∧ Y | :=
∣∣∣∣ (X,X) (X,Y )

(Y,X) (Y, Y )

∣∣∣∣ .
This determinant is the square of the area of the parallelogram spanned by X and Y .

The Ricci curvature is a symmetric tensor Ric ∈ C∞(T ∗M) defined by

Ric(X,Y ) = tr
{
Z 7→ R(Z,X)Y )

)
}

In local coordinates
Ric =

∑
ij

Ricij dx
idxj , Ricij =

∑
k

Rkjki

The scalar curvature is the trace of the Ricci curvature

s =
∑
i

gij Ricij .

A vector field on a Riemann manifold is said to be parallel along a smooth path if it is parallel
along that path with respect to the Levi-Civita connection. Suppose γ : [0, 1] → M is a smooth
path. If the tangent vector γ̇ is parallel along γ then we say that γ is a geodesic. Formally this means
that

∇γ̇ γ̇ = 0.

Using local coordinates (x1, . . . , xn) in which γ is described by a smooth function

t 7→ (x1(t), . . . , xn(t))

we deduce from (1.1.8) that the functions xi(t) satisfy the second order, nonlinear system of differ-
ential equations

d2xi

dt2
+
∑
j,k

Γijkẋ
j ẋk = 0, 1 ≤ i ≤ n. (1.3.5)

Observe that if γ(t) is a geodesic then so is the rescaled path t 7→ γ(ct), where c is a real constant.
Existence results for ordinary differential equations show that given a point p ∈ M , a vector X ∈
TpM , there exists a geodesic γ : (−ε, ε) → M such that γ(0) = p and γ̇(0). Moreover any
two such geodesics must coincide on their common interval of existence. We denote this unique
geodesic by

t 7→ expp(tX).

expp(tX) is the point on the manifold M reached after t-seconds by the geodesic which starts at
p and has initial velocity X . Observe that for every real constant c and any sufficiently small t we
have

expp(t · (cX)) = expp((ct) ·X).

We have the following result.

Theorem 1.3.11. For every p ∈M , there exists r = r(p) > 0 with the following properties.

(a) For any tangent vector X ∈ TpM of length |X|gp < r the geodesics t 7→ expp(tX) exists for
all |t| ≤ 1. Denote by Br(p) ⊂ TpM the open ball of radius r.

(b) The map
expp : Br(p)→M, X 7→ expp(X)
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is a diffeomorphism onto an open neighborhood of p ∈M . We denote this open neighborhood of p
by Br(p). ut

For a proof we refer to [21]. Exercise 1.4.15 probably explains the importance of this special
choice of local coordinates.

The map X 7→ expp(X) defined in a neighborhood of 0 ∈ TpM is called the exponential map
of (M, g) at p. The neighborhood Br(p) is called the geodesic ball of radius r centered at p.
If we fix an orthonormal frame of TpM we obtain Euclidean coordinates xi on TpM and via the
exponential map coordinates on Bp(r). The coordinates obtained in this fashion are called normal
coordinates near p. We will continue to denote them by (xi). In these coordinates, the Christofell
symbols vanish at p.
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1.4. Exercises for Chapter 1

Exercise 1.4.1. Two vector bundles over the same manifold B described by gluing cocycles gαβ :
Uαβ → Aut(V ) and hαβ : Uαβ → Aut(V ) subordinated to the same open cover U are isomorphic
if and only if they are cohomologous, i.e. there exist smooth maps

Tα : Uα → Aut(V )

such that for every α, β and every u ∈ Uαβ the diagram below is commutative.

V V

V V

w
Tα(u)

u
gβα(u)

u
hβα(u)

w
Tβ(u)

⇐⇒ Tβ(u) · gβα(u) = hβα(u) · Tα(u).

ut

Exercise 1.4.2. Recall that a refinement of an open cover U = (Ui)i∈I is an open cover U′ =
(U ′α)α∈A such that there exists a map ϕ : A→ I with the property

Uα ⊂ Uϕ(α), ∀α ∈ A.

We write this U′ ≺ϕ U. Given a gluing cocycle gij subordinated to U then its restriction to U′ is the
gluing cocycle g |•• defined by.

g |αβ= gϕ(α)ϕ(β) |Uαβ
Prove that the bundles (g••,U,W ) and (g′••,U

′,W ) are isomorphic if and only if there exist an
open cover V ≺ U,U′ such that the restrictions of g and h to V are cohomologous. ut

ut

Exercise 1.4.3. Prove that for every vector bundle E → B the space of smooth sections C∞(E) is
infinite dimensional. ut

Exercise 1.4.4. (a) Show that a metric on a real vector bundleE →M of rankm defines a canonical
O(m) structure on E, and conversely, a O(m)-structure on E defines a metric on E.

(b) Suppose that E → M is a rank r K-vector bundle. Prove that a trivialization of detE defines
a canonical SLr(K)-structure on E, and conversely, every SLr(K)-structure defines a trivialization
of detE. ut

Exercise 1.4.5. Prove Proposition 1.1.20. ut

Exercise 1.4.6. Suppose ∇0 and ∇1 are connections on the vector bundles E0, E1 → M . They
induce a connection∇ on E1⊗E∗0 ∼= Hom(E0, E1). Prove that for every X ∈ Vect(M) and every
bundle morphism T : E0 → E1 the covariant derivative of T along X is the bundle morphism
∇XT defined by

(∇XT )s = ∇1
X(Ts)− T (∇0

Xs), ∀s ∈ C∞(E0).

In particular if E0 = E1 and∇0 = ∇1 then we have

∇XT = [∇0
X , T ],
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where [A,B] = AB −BA for any linear operators A and B. ut

Exercise 1.4.7. Let∇ be a connection on the vector bundle E →M . Then the operator

d∇ : Ω•(EndE)→ Ω•+1(EndE)

satisfies
(d∇)2u = F∇ ∧ u, ∀u ∈ Ωk(EndE),

and the Bianchi identity
d∇F∇ = 0.

ut

Exercise 1.4.8. (a) Construct a connection on the tautological line bundle over CP1 compatible
with the natural hermitian metric.

(b) The curvature of the hermitian connection A you constructed in part (a) is a purely imaginary
2-form F (A) on CP1. Show that∫

CP1

c1(A) =
i

2π

∫
CP1

F (A) = −1.

(c) Prove that the tautological line bundle over CP1 cannot be trivialized. ut

Exercise 1.4.9. Prove Proposition 1.1.25. ut

Exercise 1.4.10. Suppose g is a metric on a vector bundleE →M and∇ is a connection compatible
with g. Prove that F∇ ∈ Ω2(End−h E).

ut

Exercise 1.4.11. Suppose g : Rn → GLr(K) is a smooth map. Prove that

dg−1 = −g−1 · dg · g,

i.e. for every smooth path (−1, 1) 3 t→ γ(t) ∈ Rn if we set gt = g(γ(t)) we have

d

dt
g−1
t = −g−1

t ·
dgt
dt
· g−1
t .

ut

Exercise 1.4.12. Suppose E → M is a rank two hermitian complex vector bundle and A1, A0 are
two hermitian connections on E. Assume A0 is flat, i.e. F (A0) = 0. Describe the transgression
Tc2(A1, A0) in terms of C = A1 −A0. The correspondence

Ω1(End−h E) 3 C 7→ Tc2(A0 + C,A0)

is known as the Chern-Simons functional9. ut

Exercise 1.4.13. Prove that the Chern classes are independent of the hermitian metric used in their
definition. ut

9Yes, the same Simons as in the Simons Foundation.
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Exercise 1.4.14. Suppose (M, g) is a Riemann manifold and∇ denotes the Levi-Civita connection
on M . Prove that for every Ω ∈ Ωk(M) and every X0, X1, . . . , Xk ∈ Vect(M) we have

dω(X0, . . . , ωk) =

k∑
i=0

(∇Xiω)(X0, . . . , X̂i, . . . , Xk)

where a hat indicates a missing entry. ut

Exercise 1.4.15. Suppose (x1, . . . ,xn) are normal coordinates near a point p on a Riemann mani-
fold. Denote by gij the coefficients of the Riemann metric in this coordinate system

g =
∑
i,j

gijdx
idxj ,

and by Γijk the Christoffel symbols in this coordinate system. Set r2 := (x1)2 + · · · + (xn)2,
ei = ∂

∂xi .

(a) Prove that near p we have the Taylor expansion

gij(x) = δij +
1

3

∑
k,`

Rkij`x
kx` +O(r3).

(b) If near pwe write the volume form dVg as ρ(x)dx1∧· · ·∧dxn then we have the Taylor expansion

ρ(x) = 1− 1

6

∑
i,j

Ricij x
ixj +O(r3).

ut

Exercise 1.4.16. Suppose E → M is a complex vector bundle of rank r. Viewed as a real vector
bundle it has rank 2r and it is equipped with a natural orientation. Show that

cr(E) = e(E).

ut



Chapter 2

Elliptic partial differential
operators

2.1. Definition and basic constructions

2.1.1. Partial differential operators. Suppose E,F are smooth complex vector bundles over the
same smooth manifoldM of dimension n. We denote by OP(E,F ) the space of C-linear operators

L : C∞(E)→ C∞(F ).

For every f ∈ C∞(M) and any L ∈ OP(E,F ) define ad(f)L ∈ OP(E,F ) by

ad(f)Ps = [L, f ]s = L(fs)− fL(s).

Observe that if Q ∈ OP(E,F ), P ∈ OP(F,G) and f ∈ C∞(M) we have

ad(f)(PQ) = (ad(f)P )Q+ P (ad(f)Q). (2.1.1)

We define inductively

PDO(0)(E,F ) =
{
L ∈ OP(E,F ); ad(f)L = 0, ∀f ∈ C∞(M)

}
,

PDO(m)(E,F ) :=
{
L ∈ OP(E,F ); ad(f)L ∈ PDO(m−1)(E,F ), ∀f ∈ C∞(M)

}
,

PDO(E,F ) =
⋃
m≥0

PDO(m)(E,F ).

When E = F we set PDO(E) = PDO(E,E).

Definition 2.1.1. The elements of PDO(E,F ) are called partial differential operators (p.d.o.’s)
(from E to F ). A partial operator L ∈ PDO(E,F ) is said to have order m if it belongs to
PDO(m) \PDO(m−1). We denote by PDOm the set of p.d.o.’s of order m. ut

We need to justify the above definition. We will do this via some basic examples.

45
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Example 2.1.2. (a) Observe that L ∈ PDO(0)(E,F ) if and only if

L(fs) = fL(s), ∀f ∈ C∞(M), s ∈ C∞(E)

so that L : E → F is a bundle morphism. Thus

PDO(0)(E,F ) = Hom(E,F ).

(b) Assume E = F = CM , M = Rn. Then ∂i ∈ PDO(1)(CM ), ∀i = 1, . . . , n. Indeed,

ad(f)∂i(u) = ∂i(fu)− f(∂iu) = (∂if)u,

so that
ad(f)∂i = (∂if) ∈ PDO(0) .

Observe that OP(C) is an algebra and (2.1.1) implies that for any f ∈ C∞(M) the map

ad(f) : OP(C)→ OP(C)

is a derivation, i.e., it satisfies the product rule. This implies inductively that

PDO(j) ·PDO(k) ⊂ PDO(j+k),

i.e., the space PDO(C) is a filtered algebra. In particular, for every multi-index ~α = (α1, . . . , αn) ∈
(Z≥0)n the operator

∂~α = ∂α1
1 · · · ∂

αn
n

is a p.d.o. of order |~α| = α1 + · · ·+ αn.

(c) Suppose ∇ is a connection on the vector bundle E. Then ∇ ∈ PDO(1)(E, T ∗M ⊗ E). Indeed
given f ∈ C∞(M) and s ∈ C∞(E) we have

ad(f)∇(s) = ∇(fs)− f(∇s) = df ⊗ s

so that
ad(f)∇ = df⊗ ∈ Hom(E, T ∗M ⊗ E) = PDO0(E, T ∗M ⊗ E).

Similarly, we can show that for every vector field X on M we have

∇X ∈ PDO1(E).

(d) Consider the exterior derivative d : Ωk(M)→ Ωk+1(M) viewed as an operator

d ∈ OP(ΛkT ∗M ⊗ C,Λk+1T ∗M ⊗ C).

Then d ∈ PDO1(ΛkT ∗M ⊗C,Λk+1T ∗M ⊗C). Indeed, given f ∈ C∞(M) and ω ∈ Ωk(M) we
have

ad(f)dω = d(fω)− fdω = df ∧ ω + fdω − fdω = df ∧ ω
so that

ad(f)d = df∧ ∈ Hom(ΛkT ∗M,Λk+1T ∗M).

ut

Lemma 2.1.3. The p.d.o.’s are local, i.e., given L ∈ PDO(m)(E,F ) and u ∈ C∞(E) we have

suppLu ⊂ suppu.
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Proof. We argue inductively. The result is true for m = 0. In general, for any open set U ⊃ suppu
we choose a smooth function f such that such that f ≡ 1 on suppu and f ≡ 0 outside U . Then

u = fu.

Then
Lu = L(fu) = [L, f ]u+ fLu

so that
suppLu ⊂ U, ∀U ⊃ suppu.

ut

Remark 2.1.4. One can show that an operator L ∈ OP(E,F ) is local if and only if it is a p.d.o.,
[23, 24]. ut

Using partitions of unity and the local nature of the p.d.o.’s we deduce that in order to understand
the structure of these objects it suffices to understand the special case when M itself is a coordinate
patch and the bundles E and F are trivial.

Suppose L ∈ PDOm(E,F ). Then for every f1, . . . , fm ∈ C∞(M) we have

ad(f1) ad(f2) · · ·ad(fm)L ∈ Hom(E,F ).

We denote this operator by ad(f1, · · · , fm). Using the Jacobi identity for the commutators we
deduce

ad(f) ad(g)L = [[L, g], f ] = [[L, f ], g] + [L, [g, f ]]︸ ︷︷ ︸
=0

= ad(g) ad(f)L.

This shows that ad(f1, . . . , fm)L is symmetric and C-multi-linear in the variables f1, . . . , fm. Thus
ad(f1, . . . , fm)L is uniquely determined by

ad(f)mL = ad( f, . . . , f︸ ︷︷ ︸
m

)L.

via the polarization identity

ad(f1, · · · , fm)L =
1

m!

∂m

∂t1 · · · ∂tm
ad(t1f1 + · · ·+ tmfm)mL.

Fix a point p0 ∈M and denote by Ip0 the ideal of C∞(M) consisting of functions vanishing at p0.
From the identity

ad(fg)P = Pfg − fgP = [P, f ]g + fPg − fgP
= (ad(f)P )g + f(ad(g)P ), ∀P ∈ OP(E,F )

we deduce that if f1 = gh, g, h ∈ Ip0 , then

ad(f1, . . . , fm)L = ad(gh) ad(f2, . . . , fm)L︸ ︷︷ ︸
:=P

= (ad(g)P )h+ g(ad(h)P ).

On the other hand ad(h)P is a zeroth order p.d.o. so that (ad(g)P )h = had(g)P . We conclude

ad(f1, . . . , fm)L = had(g)P + g ad(h)P.

Both ad(g)P and ad(h)P are bundle morphisms and for every section s of E we have(
ad(f1, . . . , fm)L

)
s(p0) = h(p0)

(
ad(g)P

)
s(p0) + g(p0)

(
ad(h)P

)
s(p0) = 0.
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Hence ad(f1, . . . , fm)L |p0= 0 when one of the fi belongs to I2
p0

. This shows that we have a
symmetric, m-linear map

σ(L) = σp0(L) :
(
Ip0/I

2
p0

)m → Hom(Ep0 , Fp0),(
Ip0/I

2
p0

)m 3 (ξ1, . . . , ξn) 7→ σ(P )(ξ1, · · · , ξn) 7→ 1

m!
ad(f1, . . . , fm)L |p0

fi ∈ Ip0 , fi ≡ ξi mod I2
p0
.

This function is uniquely determined by

σ(L)(ξ) := σ(L)( ξ, . . . , ξ︸ ︷︷ ︸
m

)

To obtain a more explicit description of σ(L) we need to use the following classical result whose
proof is left as an exercise.

Lemma 2.1.5 (Hadamard Lemma).

f ∈ I2
p0
⇐⇒ f(p0) = 0, df(p0) = 0,

so that we have a natural isomorphism of vector spaces

T ∗p0
M ⊗ C ∼= Ip0/I

2
p0
.

ut

Thus we have a linear map

σ(L) = σp0(L) : Symm T ∗p0
M ⊗ C→ Hom(Ep0 , Fp0).

It is called the symbol of the p.d.o. L at p0.

Observe that if L0 ∈ OP(E0, E1), L1 ∈ OP(E1, E2) and f ∈ C∞(M), then an iterated
application of (2.1.1) yields the identity

ad(f)m(L1L0) =

m∑
j=0

(
m

j

)
(ad(f)jL1)(ad(f)m−j(L0).

This shows that if L0 ∈ PDOm0(E0, E1), L1 ∈ PDOm1(E1, E2) then

ad(f)m0+m1(L1L0) =

(
m0 +m1

m0

)
ad(f)m1(L1) ad(f)m0(L0)

=
(m0 +m1)!

m0!m1!
ad(f)m1(L1) ad(f)m0(L0)

and in particular, for every p ∈M and every ξ ∈ T ∗pM we have

σp(L1L0) = σp(L1)(ξ)σp(L0)(ξ). (2.1.2)

The symbols of a p.d.o. L ∈ PDOm(E,F ) can be put together to form a global geometric object

σ(L) ∈ Hom
(

Symm(T ∗M),Hom(E,F )
) ∼= Hom

(
Symm(T ∗M)⊗ E,F

)
∼= PDO0

(
Symm(T ∗M)⊗ E,F

)
.

It is time to look at some simple examples.
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Example 2.1.6. (a) Assume M = Rn, E = F = CM . Suppose for simplicity that p0 = 0. Let
ξ = (ξ1, ξ2, · · · , ξn) ∈ T ∗0M and f ∈ C∞(M such that f(0) = 0 and df(0) = ξ·, i.e.,

ξi = ∂if(0), ∀i = 1, . . . , n.

Then
ad(f)∂i = (∂if)

so that
σ0(∂i) = (∂if)(0) = ξi.

Using (2.1.2) we deduce
σ0(∂α)(ξ) = ξα = ξα1

1 · · · ξ
αn
n .

(b) Suppose ∇ is a connection on the vector bundle E. Then for every p ∈M and every ξ ∈ T ∗pM
we have

σp(∇)(ξ) : Ep → T ∗pM ⊗ E, s 7→ ξ ⊗ s.
We write this briefly as

σ(∇(ξ) = ξ ⊗ .
Indeed, as we have seen in Example 2.1.2 (c) we have

ad(f)∇ = df⊗

Now replace df with ξ. Similarly

σp(d) = ξ∧ : ΛkT ∗pM → Λk+1.T ∗pM.

Proposition 2.1.7. For any complex vector bundleE →M , and any positive integerm, there exists
a p.d.o. of order k, Lm ∈ PDOm(E,Symm T ∗M ⊗ E) so that its symbol, viewed as a bundle
morphism Symm T ∗M ⊗ E → Symm T ∗M ⊗ E, is the identity morphism.

Proof. Fix a connection∇E on the complex vector bundleE →M and a connection∇M on T ∗M .
We obtain connections∇(k) on T ∗M⊗k ⊗ E and then a differential operator

Pm ∈ PDO(m)(E, T ∗M⊗m ⊗ E)

defined as the composition of first order operators

C∞(E)
∇E−→ C∞(T ∗M ⊗ E)

∇(1)

−→ · · · ∇
(m−1)

−→ C∞(T ∗M⊗m ⊗ E).

For any x ∈M and any ξ ∈ T ∗xM we have

σx(Pm)(ξ) = σx
(
∇(m−1)

)
(ξ) · · ·σx

(
∇(1)

)
(ξ) · σx

(
∇E

)
(ξ) = (ξ⊗) · · · (ξ⊗) · (ξ⊗)︸ ︷︷ ︸

m

.

Denote by Sm the natural bundle morphism (symmetrization)

Sm : T ∗M⊗m → Symm T ∗M.

It induces a bundle morphism

Sm(E) : T ∗M⊗m ⊗ E → Symm T ∗M ⊗ E.

Now define
Lm = Sm(E) ◦ Pm.
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The above discussions shows that the symbol of Lm, viewed as a bundle morphism Symm T ∗M ⊗
E → Symm T ∗M ⊗ E is the identity morphism. ut

Corollary 2.1.8. Suppose E,F are complex vector bundles and S ∈ Hom(Symm T ∗M ⊗ E,F ).
Then there exists P ∈ PDOm(E,F ) such that

σ(P ) = S.

Proof. Consider the operator Lm ∈ PDOm(E,Symm T ∗M ⊗ E) and set

P = S ◦ Lm.
ut

Corollary 2.1.9. Suppose E,F are complex vector bundles and L ∈ PDO1(E,F ). Then for any
connection∇ on E, there exists a bundle morphism T = T (∇) : E → F such that

L = σ(L) ◦ ∇+ T (∇),

where σ(L) ◦ ∇ is the p.d.o. defined as the composition

C∞(E)
∇−→ C∞(T ∗M ⊗ E)

σ(L)−→ C∞(E).

Proof. Observe that the operators L, σ(L) ◦ ∇ ∈ PDO1(E,F ) have the same symbol so that

L− σ(L) ◦ ∇ ∈ PDO0(E,F ) = Hom(E,F ).

Now set T (∇) = L− σ(L) ◦ ∇. ut

Arguing in a similar fashion using Corollary 2.1.1 we deduce the following structural result.

Corollary 2.1.10. Any p.d.o. is a sum of basic operators, where a basic operator is an iterated
composition of bundle morphisms with first order p.d.o.-s defined by connections. ut

Finally we need to introduce the concept of formal adjoint of a p.d.o. For simplicity, we will
discuss this concept in a more restricted geometric context. More precisely, we will assume that all
our manifolds are oriented, equipped with Riemann metrics, and that all the bundles are equipped
with hermitian metrics.

Let (M, g) be an oriented Riemann manifold. We denote by dVg the induced Riemannian
volume form. Assume E, F are complex vector bundles over M equipped with hermitian metrics
〈−,−〉E and 〈−,−〉F . We will denote by C∞0 (E) the space of compactly supported sections of E.

Definition 2.1.11. A formal adjoint for the p.d.o. L ∈ PDO(E,F ) is a p.d.o. L∗ ∈ PDO(F,E)
such that ∫

M
〈Lu, v〉FdVg =

∫
M
〈u, L∗v〉EdVg, ∀u ∈ C∞0 (E), v ∈ C∞0 (F ).

ut

The following result list some immediate consequences of the definition. Its proof is left as an
exercise.
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Proposition 2.1.12. (a) A p.d.o. L ∈ PDO(E,F ) has at most one formal adjoint. When it exists
we have the equality

L = (L∗)∗.

(b) If L0, L1 ∈ PDO(E,F ) have formal adjoints then their sum has a formal adjoint and

(L0 + L1)∗ = L∗0 + L∗1.

(c) If L0 ∈ PDO(E0, E1) and L1 ∈ PDO(E1, E2) have formal adjoints, then their composition
has a formal adjoint and

(L1L0)∗ = L∗0L
∗
1.

(d) Every zeroth order p.d.o. has a formal adjoint. ut

Here are a few fundamental examples.

Example 2.1.13. (a) Suppose E ∼= F ∼= CM are equipped with the canonical hermitian metric. For
every vector field X on M the Lie derivative LX : C∞(M)→ C∞(M) is a first order p.d.o. From
the divergence formula we deduce that for every u, v ∈ C∞0 (CM ) we have∫

M
(LXu) · v̄dVg =

∫
M
u · (−LX − divg(X))vdVg

so that
L∗X = −LX − divg(X).

(b) Proposition 1.3.8 can be interpreted as stating that the formal adjoint of

d : Ωk−1(M)→ Ωk(M)

is (n = dimM )
d∗ = (−1)nk+n+1 ∗ d ∗ .

(c) Suppose E → M is a hermitian vector bundle and ∇ is a hermitian connection on E. Then for
every vector field X on M we obtain a p.d.o. ∇X ∈ PDO(E). Given u, v ∈ C∞0 (E) we have

LX〈u, v〉E = 〈∇Xu, v〉E + 〈u,∇Xv〉

Integrating over M and using the divergence formula again we deduce∫
M

(
〈∇Xu, v〉E + 〈u,∇Xv〉

)
dVg =

∫
M

1 · (LX〈u, v〉E)dVg = −
∫
M

divg(X)〈u, v〉dVg

so that
∇∗X = −∇X − divg(X).

(d) The above connection ∇, viewed as a p.d.o. has a formal adjoint ∇∗ ∈ PDO(T ∗M ⊗ E,E).
We describe it in a local coordinate patch U where∇ has the form

∇ =
∑
i

dxi ⊗ (∇∂i +Ai), Ai ∈ End(E |U ).

Then
∇∗ =

∑
i

(∇∂i +Ai)
∗(dxi⊗)∗
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The adjoint of dxi⊗ : C∞(E)→ C∞(T ∗M ⊗ E) is the contraction (dxi)† : C∞(T ∗M ⊗ E)→
C∞(E) by the vector field (dxi)†, the metric dual of dxi, which is

(dxi)† =
∑
j

gij∂j .

ut

Corollary 2.1.14. Every p.d.o. has a formal adjoint.

Proof. Using Corollary 2.1.10 and the computations in Example 2.1.13 (d) we deduce that that
every p.d.o. is a product of operators that have formal adjoints.

ut

Proposition 2.1.15. Suppose L ∈ PDOm(E,F ). Then for every p ∈ M and every ξ ∈ T ∗pM we
have

σp(ξ)(L
∗) = (−1)mσp(ξ)(L)∗.

Proof. Observe that for every smooth function f : M → R we have

ad(f)L∗ = (L∗f − fL∗) = (fL− Lf)∗ = −(ad(f)L)∗

so that
ad(f1, . . . , fm)L∗ = (−1)m(ad(f1, . . . , fm)L)∗.

ut

Definition 2.1.16. A p.d.o. L ∈ PDO(E) is called formally self-adjoint or symmetric if

L = L∗.

ut

There is a very simple way of constructing symmetric operators. Given L ∈ PDO(E,F ) the
operators

L∗L ∈ PDO(E), LL∗ ∈ PDO(F )

are symmetric.

When ∇ is a hermitian connection on E then we can form a symmetric second order p.d.o.
∇∗∇ ∈ PDO2(E). It is usually known as the covariant Laplacian. Observe that

σp(∇∗∇)(ξ) = −σp(∇)(ξ)∗σp(∇)(ξ) = −|ξ|2g1E ,

where |ξ|g denotes the length of ξ ∈ T ∗pM with respect to the Riemann metric g on M .

Definition 2.1.17. (a) A generalized Laplacian on the hermitian bundle E over the oriented Rie-
mann manifold (M, g) is a symmetric second order p.d.o. L ∈ PDO2(E) such that

σp(L)(ξ) = −|ξ|2g1E , ∀p ∈M, ξ ∈ T ∗pM.

(b) A first order p.d.o. D ∈ PDO1(E,F ) is called a Dirac type operator if the operators D∗D
and DD∗ are generalized Laplacians. ut
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Example 2.1.18. Suppose (M, g) is an oriented Riemann manifold. Consider the Hodge-DeRham
operator

d+ d∗ : Ω•(M)→ Ω•(M)

It is a symmetric operator and

σ(d+ d∗)(ξ) = σ(d)(ξ)− σ(d)(ξ)∗.

The symbol of d is σ(d)(ξ) = e(ξ) = ξ∧ : Λ•T ∗M → Λ•T ∗M , and its adjoint is i(ξ) = −ξ† the
contraction by the tangent vector ξ† metric dual to the covector ξ. We have a Cartan formula

e(ξ)i(ξ) + i(ξ)e(ξ) = |ξ|2 · 1 (2.1.3)

and using the identities e(ξ)2 = i(ξ)2 = 0 we deduce(
e(ξ) + i(ξ)

)2
= e(ξ)i(ξ) + i(ξ)e(ξ) = |ξ|2 · 1

so that
σ(d+ d∗)(ξ)2 = −|ξ|2 · 1.

Hence the Hodge-DeRham operator is a Dirac type operator.

ut

Definition 2.1.19. An operator L ∈ PDO(E,F ) is called elliptic if for all p ∈ M and all ξ ∈
T ∗pM \ 0 the operator

σp(L)(ξ) : Ep → Fp

is a linear isomorphism.

Example 2.1.20. (a) If L is elliptic iff L∗ is also elliptic. If L0, L1 are elliptic then so is their
composition L1L0 (when it makes sense). If L,K ∈ PDO(E,F ) and the order of K is strictly
smaller than the order of L then

σ(L) = σ(L+K)

so that L is elliptic iff L+K is elliptic.

(b) Any generalized Laplacian is an elliptic operator.

(c) Any Dirac type operator is elliptic. In particular, the Hodge-DeRham operator is elliptic. ut

The next proposition shows that the generalized Laplacians are zeroth order perturbations of
covariant Laplacians.

Proposition 2.1.21. ([4, Sec. 2.1], [10, Sec. 4.1.2]) Suppose L is a generalized Laplacian on E.
Then there exists a unique hermitian connection ∇̃ on E and a unique selfadjoint endomorphism R

of E such that
L = ∇̃∗∇̃+ R (2.1.4)

We will refer to this presentation of a generalized Laplacian as the Weitzenböck presentation of L.

Proof. Choose an arbitrary hermitian connection∇ on E. Then L0 = ∇∗∇ is a generalized Lapla-
cian so that L− L0 is a first order operator which can be represented as

L− L0 = A ◦ ∇+B
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where
A : C∞(T ∗M ⊗ E)→ C∞(E)

is a bundle morphism and B is an endomorphism of E. We will regard A as an End (E)-valued
1-form on M , i.e.,

A ∈ C∞
(
T ∗M ⊗ E∗ ⊗ E︸ ︷︷ ︸

∼=End(E)

)
.

Hence
L = ∇∗∇+A ◦ ∇+B. (2.1.5)

The connection∇ induces a connection on End(E) which we continue to denote with∇

∇ : C∞(End (E))→ Ω1(End (E)).

We define the divergence of A by
divg(A) := −∇∗A.

If (ei) is a local synchronous frame at x0 and, if A =
∑

iAie
i, then, at x0, we have

divg(A) =
∑
i

∇iAi.

Note that since (L− L0) =
∑

iAi∇i +B is formally selfadjoint we deduce

A∗i = −Ai, divg(A) = B −B∗. (2.1.6)

We seek a hermitian connection ∇̃ = ∇ + C , C ∈ Ω1(End (E)) and an endomorphism R of E
such that

∇̃∗∇̃+ R = ∇∗∇+A ◦ ∇+B.

We set Ci := ei C so that we have the local description

∇̃ =
∑
i

ei ⊗ (∇i + Ci), C∗i = −Ci, ∀i.

We deduce that, at x0

∇̃∗∇̃ = −
∑
i

(∇i + Ci)(∇i + Ci)

(〈Ci〉2 := CiC
∗
i = −C2

i )

= −
∑
i

∇2
i −

∑
i

∇iCi − 2
∑
i

Ci∇i +
∑
i

〈Ci〉2

(〈C〉2 =
∑

i〈Ci〉2)

= ∇∗∇− 2C ◦ ∇ − divg(C) + 〈C〉2 = ∇∗∇+A ◦ ∇+B − R.

We deduce immediately that

C = −1

2
A, R = B − 1

2
divg(A)− 〈C〉2 (2.1.6)

=
1

2
(B +B∗)− 1

4
〈A〉2. (2.1.7)

This completes the existence part of the proposition. The uniqueness follows from (2.1.7). ut

The connection ∇̃ produced in the above proposition is called the Weitzenböck connection de-
termined by L while R is called the Weitzenböck remainder.
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2.1.2. Analytic properties of elliptic operators. We would like to describe some features of el-
liptic partial differential equations. We begin by introducing an appropriate functional framework.

Suppose E → M is a hermitian vector bundle over the connected oriented Riemann manifold
(M, g). The volume form dVg induces a (regular) Borel measure on M which we continue to
denote by dVg. A (possibly discontinuous) section u : M → E is called measurable if for any
Borel set B ⊂ E the preimage u−1(B) is a Borel subset of M . We denote by Γmeas(E) the space
of measurable sections of E and “ .=” the almost everywhere (a.e.) equality of measurable sections.

Let 1 ≤ p <∞. A measurable section u : M → E is called p-integrable if∫
M
|u|pdVg <∞.

We denote by Lp(E) the vector space of .=-classes of p-integrable spaces. It is a Banach space with
respect to the norm

‖u‖p = ‖u‖p,E =

(∫
M
|u|pdVg

)1/p

.

We want to emphasize that this norm depends on the metric on M and in the noncompact case it
is possible that different metrics induce non-equivalent norms. When p = 2 this is a Hilbert space
with respect to the inner product

(u, v) = (u, v)L2(E) =

∫
M
〈u, v〉EdVg.

A measurable section u → E is called locally p-integrable if for any compactly supported smooth
function ϕ : M → C the section ϕu is p-integrable. We denote by Lploc(E) the vector space of
.
=-equivalence classes of locally p-integrable functions.

Suppose E,F → M are two hermitian vector bundles over the same connected, oriented Rie-
mann manifold (M, g).

Definition 2.1.22. (a) Let L ∈ PDO(E,F ), u ∈ L1
loc(E) and v ∈ L1

loc(F ). We say that u is a
weak solution of

Lu = v

or that Lu = v weakly if for any ϕ ∈ C∞0 (F ) we have∫
M
〈u, L∗ϕ〉EdVg =

∫
M
〈v, ϕ〉FdVg.

(b) Suppose ∇ is a Hermitian connection on E. A locally integrable section u ∈ L1(E) is said to
be weakly differentiable (with respect to ∇) if there exists v ∈ L1

loc(T
∗M ⊗ E) such that ∇u = v

weakly, i.e., ∫
M
〈u,∇∗ϕ〉dVg =

∫
M
〈v, ϕ〉dVg, ∀ϕ ∈ C∞0 (T ∗M ⊗ E).

ut

Suppose E → M is a hermitian bundle equipped with a hermitian connection ∇. The Levi-
Civita connection∇M induces connections in each of the bundles T ∗M⊗j , and using the connection
∇ onE we obtain connections in each of the bundles T ∗M⊗j⊗E which for simplicity we continue
to denote by∇. These are partial differential operators

C∞(T ∗M⊗j ⊗ E)→ C∞(T ∗M⊗(j+1) ⊗ E).
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For any positive integer j we denote by∇j the p.d.o.

∇j : C∞(E)→ C∞(T ∗M⊗j ⊗ E)

defined as the composition

C∞(E)
∇−→ C∞(T ∗M ⊗ E)

∇−→ · · · ∇−→ C∞(T ∗M⊗(j−1) ⊗ E)
∇−→ C∞(T ∗M⊗j ⊗ E).

For every non-negative integer k and every p ∈ [1,∞) we denote by Lk,p(E) the subspace of
Lp(E) consisting of sections u which are k-times weakly differentiable with respect to ∇ and their
differentials ∇ju ∈ Γmeas(T

∗M⊗j ⊗ E), j = 1, . . . , k, are p-integrable. This space is a Banach
space with respect to the norm

‖u‖k,p =

(
k∑
j=0

∫
M
|∇ju|pdVg

)1/p

.

For p > 1 they are reflexive. When p = 2 they are Hilbert spaces with respect to the obvious
inner product. These Banach spaces are generically called the Sobolev spaces of section. We want
to emphasize that the norms ‖ − ‖k,p depend on the metric g on M , the metric h on E and the
hermitian connection∇ on E. To indicate this dependence we will sometime write Lp(E, g, h,∇).
The situation is much better in the compact case. For a proof of the following result we refer to [3,
Chap.2].

Proposition 2.1.23. (a) Suppose M is a compact, oriented manifold without boundary, and E →
M . For i = 0, 1 denote by gi a Riemann metric on M , hi a hermitian metric on E and ∇i a
connection on E compatible with hi. Then for every k ∈ Z≥0 and every p ∈ [1,∞) we have an
equality

Lk,p(E, g0, h0,∇0) = Lk,p(E, g1, h1,∇1)

Moreover the two norms are equivalent, i.e., ∃C > 0 such that

1

C
‖u‖k,p;g0,h0,∇0 ≤ ‖u‖k,p;g1,h1,∇1 ≤ C‖u‖k,p;g0,h0,∇0 , ∀u ∈ Lk,p(E).

(b) The space C∞(E) is dense in any Sobolev space Lk,p(E). ut

In the remainder of this section we will assume that the manifold M is compact, oriented with-
out boundary. We set n := dimM . In particular, the dependence of the Sobolev norms on the
additional data will not be indicated in the notation.

The conformal weight of the Sobolev space Lk,p(E) is the real number

wn(k, p) =
n

p
− k.

Observe that if we regard a section u as a dimensionless quantity, then the volume form dVg is
measured in metersn, ∇ku is measured in meters−k, and thus(∫

M
|∇ku|pdVg

)1/p

is measured in meterswn(k,p).
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Denote by Ck(E) the vector space of k-times differentiable functions with continuous differ-
entials. It is a Banach space with respect to the norm

‖u‖k = sup
x∈M

k∑
j=0

|∇ju(x)|

The conformal weight of Ck is wn(k) = −k. We have the following fundamental result whose
proof can be found in [3, Chap.2].

Theorem 2.1.24 (Sobolev Embedding). Suppose E → M is a hermitian vector bundle equipped
with a Hermitian connection, and (M, g) is a compact, oriented Riemann manifold without bound-
ary.

(a) Let k,m ∈ Z≥0, p, q ∈ [1,∞). If

k ≥ m and wn(k, p) ≤ wn(m, q)⇐⇒ k ≥ m and
n

p
− k ≤ n

q
−m, (2.1.8)

then Lk,p(E) ⊂ Lm,q(E) and the natural inclusion is continuous, i.e.

∃C > 0 : ‖u‖m,q ≤ C‖u‖k,p, ∀u ∈ Lk,p(E).

(b) Let k,m ∈ Z≥0, p ∈ [1,∞). If

wn(k, p) ≤ −m⇐⇒ n

p
− k ≤ −m, (2.1.9)

then Lk,p(E) ⊂ Cm(E) and the natural inclusion is continuous.

(c) If in (2.1.8) and in (2.1.9) we have strict inequalities, then the corresponding inclusions are
compact operators, i.e., they map bounded sets to pre-compact subsets.

We will frequently use the following special case of the Sobolev theorem.

Corollary 2.1.25. Let E →M be as in Theorem 2.1.24.

(a) If ‖u‖Lm,2(E) <∞ and m > k+ n
2 then there exists a k-times differentiable section û of E such

that u .
= û.

(b) If m > k then any sequence of sections of E bounded in the Lm,2-norm contains a subsequence
convergent in the Lk,2-norm.

We can now state the central results of the theory of elliptic p.d.e.’s. For a proof we refer to [21,
Chap. 10].

Theorem 2.1.26 (The Fundamental Theorem of Elliptic P.D.O.s). Suppose E,F →M are hermit-
ian vector bundles over the closed, oriented Riemann manifold M and L ∈ PDOm(E,F ) is an
elliptic operator.

(a) (A priori estimate) Let k ∈ Z≥0, 1 < p < ∞. There exists a constant C > 0 such that for all
u ∈ Lk+m,p(E) we have

‖u‖k+m,p ≤ C
(
‖Lu‖k,p + ‖u‖0,p

)
.

(b) (Regularity) Let k ∈ Z≥0, 1, p < ∞. Suppose u ∈ Lp(E), v ∈ Lk,p(F ) and Lu = v weakly.
Then u ∈ Lk+m,p(E).
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Corollary 2.1.27 (Weyl Lemma). Let E and L as above and 1 < p < ∞. If u ∈ Lp(E), v ∈
C∞(F ) and Lu = v weakly then u ∈ C∞(E). In particular if u ∈ Lp(E) and Lu = 0 weakly then
u ∈ C∞(E).

Proof.
v ∈ C∞(F ) =⇒ v ∈

⋂
k≥0

Lk,p(F ) =⇒ u ∈
⋂
k≥0

Lk+m,p(E).

The Sobolev embedding theorem implies that⋂
k≥0

Lk+m,p(E) = C∞(E).

ut

2.1.3. Fredholm index. Suppose E,F ∈ M are hermitian vector bundles over a closed, oriented
Riemann manifold (M, g) and L ∈ PDOm(E,F ) is an elliptic operator of order m. Let

kerL :=
{
u ∈ C∞(E); Lu = 0

}
.

Weyl Lemma shows that a measurable section of E belongs to kerL if and only if it is p-integrable
for some p > 1 and Lu = 0 weakly.

Proposition 2.1.28. kerL is a finite dimensional vector space.

Proof. We first prove that kerL is a closed subspace of L2(E), i.e.,

ui → u ∈ L2(E), ui ∈ kerE, ∀n =⇒ u ∈ kerE.

Indeed

(ui, L
∗ϕ)L2(F ) =

∫
M
〈ui, L∗ϕ〉dVg = 0, ∀ϕ ∈ C∞0 (F ).

Letting i→∞ we deduce ∫
M
〈u, L∗ϕ〉dVg = 0 ∀ϕ ∈ C∞0 (F ).

so that u ∈ kerE.

We will now show that any ball in kerE which is closed with respect to the L2-norm must
be compact in the topology of this norm. The desired conclusion will then follow from a classical
result of F. Riesz, [6, Ch. VI] according to which a Banach space is finite dimensional if and only if
it is locally compact.

Suppose {ui} is a L2-bounded sequence in kerL. From the a priori inequality we deduce

‖ui‖m,2 ≤ C‖u0‖0,2
we deduce that (ui) is also bounded in the Lm,2-norm as well. Since the inclusion Lm,2 ↪→ L2 is
compact we deduce that the sequence (ui) has a subsequence convergent in the L2-norm. ut

Observe that L defines a bounded linear operator

L : Lm,2(E)→ L2(F )

and we denote by R(L) its range.
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Theorem 2.1.29 (Fredholm alternative). The range of L is a closed subspace of L2(F ). More
precisely

R(L) = (kerL∗)⊥, R(L∗) = (kerL)⊥.

Proof. The proof is based on the following important fact.

Lemma 2.1.30 (Poincaré Inequality). There exists C > 0 such that for all u ∈ Lm,2(E)∩ (kerL)⊥

we have
‖u‖m,2 ≤ C‖Lu‖0,2.

Proof. We argue by contradiction. Suppose that for every k > 0 there exists

uk ∈ Lm,2(E) ∩ (kerL)⊥ : ‖uk‖0,2 = 1, ‖uk‖m,2 ≥ k‖Luk‖0,2
From the elliptic estimate we deduce that there exists C > 0 such that

‖uk‖m,2 ≤ C(‖Luk‖0,2 + ‖uk‖0,2) = C(‖Luk‖0,2 + 1). (2.1.10)

Hence
k‖Luk‖0,2 ≤ C(‖Luk‖0,2 + 1).

so that
‖Luk‖0,2 → 0, as k →∞.

Using this information in (2.1.10) we deduce that ‖uk‖m,2 = O(1). Since the inclusion Lm,2 ↪→ L2

is compact we deduce that a subsequence of uk which we continue to denote by uk converges
strongly inL2 to some u∞. Since ‖uk‖0,2 = 1 and uk ∈ (kerL)⊥ we deduce

‖u∞‖0,2 = 1, u∞ ∈ (kerL)⊥. (2.1.11)

Set vk := Luk. We know that Luk = vk weakly so that∫
M
〈uk, L∗ϕ〉dVg =

∫
M
〈vk, ϕ〉DVg, ∀ϕ ∈ C∞0 (F ).

We let k →∞ in the above equality and use the fact that uk
L2

−→ u∞, vk
L2

−→ 0 to conclude that∫
M
〈u∞, L∗ϕ〉dVg = 0, ∀ϕ ∈ C∞0 (F ).

Hence Lu∞ = 0 weakly so that u∞ ∈ kerL. This contradicts (2.1.11) and concludes the proof of
the Poincaré inequality. ut

Now we can finish the proof of the Fredholm alternative. Suppose we have a sequence uk ∈
Lm,2(E) such that vk = Luk converges in L2 to some v∞. We have to show that there exists
u∞ ∈ Lm,2(E) such that Lu∞ = v∞. We decompose

uk = [uk] + u⊥k , [uk] ∈ kerL, u⊥k ∈ (kerL)⊥.

Clearly vk = Lu⊥k and from the Poincaré inequality we deduce that

‖u⊥k ‖m,2 ≤ C‖vk‖0,2.
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Since the sequence (vk) converges in L2 it must be bounded in this space so we conclude that

‖u⊥k ‖m,2 = O(1).

Using again the fact that the inclusion Lm,2 ↪→ L2 is compact we deduce that a subsequence of u⊥k
converges in L2 to some u∞. Since Lu⊥k = vk weakly we deduce∫

M
〈u⊥k , L∗ϕ〉dVg =

∫
M
〈vk, ϕ〉DVg, ∀ϕ ∈ C∞0 (F ).

If we let k →∞ we deduce
Lu∞ = v∞ weakly.

This proves that the range of L is closed. We still have to prove the equality

R(L) = (kerL∗)⊥

Observe that if v ∈ R(L), there exists u ∈ Lm,2(E) such that Lu = v weakly. In particular, if
w ∈ kerL∗, then w ∈ C∞(F ) and

Lu = v =⇒ 0 =

∫
M
〈u, L∗w〉dVg =

∫
M
〈v, w〉dVg =⇒ v ∈ (kerL∗) ⊥ .

Hence R(L) ⊂ (kerL∗)⊥.

Suppose conversely that v ∈ (kerL∗)⊥, but v 6∈ R(L). Since R(L) is closed, the Hahn-Banach
theorem implies the existence of w ∈ L2(F ) such that

〈w, v〉 6= 0, w ∈ R(L)⊥.

Hence
〈w, (L∗)∗u〉 = 0, ∀u ∈ Lm,2(E).

In particular
〈w, (L∗)∗u〉 = 0, ∀u ∈ C∞(E)

so that L∗w = 0 weakly, i.e., w ∈ kerL∗. We have reached a contradiction since 〈v, w′〉 = 0 for all
w′ ∈ kerL∗. This concludes the proof of the Fredholm alternative.

ut

Definition 2.1.31. The Fredholm index of an elliptic operator L between K-vector bundles over a
closed oriented manifold is the integer

indK L := dim kerK L− dimK kerL∗ = dimK kerL− dimK cokerL. ut

Fix two smooth complex vector bundles E,F → M over the smooth, compact oriented Rie-
mann manifold (M, g). We denote by Ellm(E,F ) the space of elliptic p.d.o.’s of order m L :
C∞(E)→ C∞(F ). Observe that

L ∈ Ellm(E,F )⇐⇒ L∗ ∈ Ellm(F,E).

Thus, any L ∈ Ellm(E,F ) defines two bounded linear operators

L : Lm,2(E)→ L2(F ), L∗ : Lm,2(F )→ L2(F ). (2.1.12)

We define the norm of an operator L ∈ Ellm(E,F ) to be the quantity

‖L‖Ell := sup
{
‖Lu‖L2(F ); ‖u‖Lm,2(E) = 1

}
+ sup

{
‖Lv‖L2(E); ‖v‖Lm,2(F ) = 1

}
.

In other words ‖L‖Ell is the sum of the norms of the two bounded operators in (2.1.12).
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Theorem 2.1.32 (Continuos dependence of the index). Suppose that we have a continuous path

[0, 1] 3 t 7→ Lt ∈ Ellm(E,F ),

where Ellm(E,F ) is equipped with the topology of the norm ‖ − ‖Ell. Then

indLt = indL0, ∀t ∈ [0, 1].

Proof. It suffices to show that for any t0 ∈ [0, 1] there exists r > 0, such that

indLt = indLt0 , ∀|t− t0| < r. (2.1.13)

For notational simplify we assume that t0 = 0. Consider the Hilbert spaces

H0 = Lk,2(E)⊕ kerL∗0, H1 = L2(F )⊕ kerL0,

and the bounded linear operators At : H0 →H1 given by the block decomposition

At

[
u
v0

]
=

[
Lt 1kerL∗0

PkerL0 0

]
·
[
u
v0

]
, ∀u ∈ Lm,2(E), v0 ∈ kerL∗0,

where PkerL0 : L2(E)→ L2(E) denotes the orthogonal projection onto kerL0.

Lemma 2.1.33. The operator A0 is invertible.

Proof. 1. A0 is injective. Indeed, if u⊕ v0 ∈ ker A0 we deduce

L0u+ v0 = 0, PkerL0u = 0.

From the Fredholm alternative theorem we deduce that L0u ⊥ kerL∗0 and the equality L0u+v0 = 0
implies L0u = 0 and v0 = 0. We deduce u ∈ kerL0 so that

u = PkerL0u = 0.

This proves the injectivity of A0.

2. A0 is surjective. Let v ⊕ u0 ∈ L2(F )⊕ kerL0. Decompose v as an orthogonal sum

v = v0 ⊕ v⊥, v0 ∈ kerL∗0, v⊥ ∈ (kerL∗0)⊥ = R(L0).

We can find u⊥in(kerL0)⊥ ∩ Lm,2(E) such that Lu⊥ = v⊥. Now define

u = u⊥ + u0,

and observe that A0(u⊕ v0) = v ⊕ u0. ut

Since Lt depends continuously on t we deduce that At is a continuous family of bounded
operators H0 → H1. The operator A0 is invertible so that there exists r0 > 0 such that At is
invertible for any |t| < r0.

Lemma 2.1.34. For any |t| < t0 we have

indL0 ≤ indLt. (2.1.14)
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Proof. To prove (2.1.14) we will show that for any |t| < r0 there exists an injective map

kerL∗t ⊕ kerL0 ↪→ kerLt ⊕ kerL∗0,

so that
dim kerL∗t + dim kerL0 ≤ dim kerLt + dim kerL∗0.

We can then conclude that

indL0 = dim kerL0 − dim kerL∗0 ≤ dim kerLt − dim kerL∗t = indLt.

Let |t| < r0. Decompose

Lm,2(E) = (kerLt)
⊥ ⊕ kerLt, L2(F ) = (kerL∗t )

⊥ ⊕ kerL∗t ,

so that
H0 = (kerLt)

⊥ ⊕ kerLt ⊕ kerL∗0︸ ︷︷ ︸
=:Ut

, H1 = (kerL∗t )
⊥ ⊕ kerL∗t ⊕ kerL0︸ ︷︷ ︸

=:Vt

.

We have to construct an injective linear map

Vt ↪→ Ut.

We regard At as a bounded operator (kerLt)
⊥ ⊕ Ut → (kerL∗t ) ⊕ Vt and as such it has a block

decomposition

At =

[
S A
B C

]
.

Above S is a bounded operator

(kerLt)
⊥ ∩ Lm,2(E)→ (kerLt)

∗ = R(Lt) ⊂ L2(F ).

More precisely, S is the restriction ofLt to (kerLt)
⊥∩Lm,2(E). This shows that that S is invertible.

For any v ∈ Vt we can find a unique pair φ⊕ u ∈ (kerLt)
⊥ ⊕ Ut such that[

S A
B C

]
·
[
φ
u

]
=

[
0
v

]
.

We can regard φ and u as linear functions of v, φ = φ(v), u = u(v). These are clearly injective
maps because the invertibility of At implies that φ(0) = 0, u(0) = 0. Thus, the linear map

Vt 3 v 7→ u(v) ∈ Ut
is injective. ut

Using the family of operators

Bt =

[
L∗t 1kerL0

PkerL∗0
0

]
:
Lm,2(F )
⊕

kerL0

→
L2(E)
⊕

kerL∗0

we deduce exactly as above that there exists r∗0 > 0 such that

indL∗0 ≤ indL∗t , ∀|t| < r∗0.

Since indL∗t = − indLt we deduce that

indL0 ≥ indLt, ∀|t| ≤ r∗0.
Hence

indL0 = indLt, ]∀|t| < min(r0, r
∗
0).
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ut

Corollary 2.1.35. Let L ∈ Ellm(E,F ) and R ∈ PDO(m−1)(E,F ). Then L+R is elliptic and

indL = ind(L+R).

Proof. Lower order perturbations do not affect the principal symbol so that L and L+R are p.d.o.-s
of order m with identical symbols. If we define Lt = L+ tR we observe that the resulting map

[0, 1] 3 t 7→ Lt ∈ Ellm(E,F )

is continuous and thus
ind(L+R) = indL1 = indL.

ut

2.1.4. Hodge theory.

Proposition 2.1.36 (Finite dimensional Hodge theorem). Suppose

0→ V 0 D0−→ V 1 D1−→ · · · Dn−1−→ V n → 0

is a co-chain complex of finite dimensional C-vector spaces and linear maps. Suppose each of the
spaces Vi is equipped with a hermitian metric. Then for every i = 0, 1, · · · , n the induced map

πi : Hi(V •) := kerDi ∩ kerD∗i−1 → H i(V •, D•) = kerDi/R(Di−1)

is an isomorphism. If we set D = ⊕Di : ⊕iV i → ⊕iV i and ∆ := (D +D∗)2 then

H•(V •) := ⊕iHi(V •) = ker(D +D∗) = ker ∆.

In particular, the complex is acyclic if and only if D +D∗ is a linear isomorphism.

Proof. Let us first prove that πi is an isomorphism. We first prove it is injective.

Let v ∈ kerπi. Hence Div = D∗i−1v = 0 and v = 0 ∈ H i(V •), i.e., there exists u ∈ V i−1

such that u = Di−1v. Hence

0 = D∗i−1v = D∗i−1Diu = 0 =⇒ 0 = 〈D∗i−1Diu, u〉 = 〈Di−1u,Di−1u〉 = |Di−1u|2 = |v|2.

This shows that πi is injective.

To prove the surjectivity we have to show that every u ∈ kerDi is cohomologous to an element
in kerD∗i−1. Let v ∈ kerDi. The cohomology class it determines can be identified with the affine
subspace

Cv =
{
v +Di−1u; u ∈ V i−1

}
.

We denote by [v] the point on Cv closest to the origin (see Figure 1). This point exists since V i−1 is
finite dimensional.

We claim that D∗i−1[v] = 0. For every u ∈ V i−1 we consider the function

fu : R→ [0,∞), fu(t) = dist ([v] + tDi−1u, 0)2 = |[v] + tDi−1u|2.

Since [v] + tDi−1u ∈ Cv we deduce

dist ([v], 0) ≤ dist ([v] + tDi−1u, 0), ∀t =⇒ fu(0) ≤ fu(t), ∀t.
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O

v

vC

[v]

Figure 1. Finding the harmonic representative of a cocycle.

Hence f ′u(0) = 0, i.e.

0 =
d

dt
|t=0 〈[v] + tDi−1u, [v] + tDi−1u = 2 Re〈[v], Di−1u〉.

Hence
0 = Re〈[v], Di−1u〉 = Re〈D∗i−1[v], u〉, ∀u ∈ V i−1.

If in the above equality we take u = D∗i−1[v] we conclude D∗i−1[v] = 0 which shows that πi is a
surjection.

The equality
H•(V •) = ker(D +D∗)

is simply a reformulation of the fact that πi is an isomorphism.

If we let D = D +D∗, then ∆ = D2 and thus ker D ⊂ ker ∆. Conversely, if u ∈ ker ∆ then

0 = 〈∆u, u〉 = 〈D2u, u〉 = |Du|2

so that ker D ⊂ ker ∆. ut

Definition 2.1.37. Suppose E0, E1, . . . , EN are hermitian vector bundles over the Riemann mani-
fold (M, g) and Di ∈ PDO1(Ei, Ei+1) are first order p.d.o. such that

DiDi−1 = 0, ∀i.

Then the cochain complex

0→ C∞(E0)
D0−→ C∞(E1)→ · · · → C∞(EN )→ 0 (2.1.15)

is called elliptic if for any p ∈M and any ξ ∈ T ∗pM \ 0 the complex of finite dimensional spaces

0→ E0
p

σp(D0)(ξ)−→ E1
p → · · · → ENp → 0 (2.1.16)

is acyclic.

We set
E = ⊕kEk, D = ⊕kDk : C∞(E)→ C∞(E),

D = D +D∗, ∆ = D2. ut
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Applying the finite dimensional Hodge theory to the complex (2.1.16) we deduce that the com-
plex (C∞(E•), D•) is elliptic if and only if the operator D is elliptic.

Theorem 2.1.38 (Hodge). Suppose

0→ C∞(E0)
D0−→ C∞(E1)→ · · · → C∞(EN )→ 0

is an elliptic complex. Then the following hold.

(a) The natural map

πi : Hi(E•, D•) := kerDi ∩ kerD∗i−1 → H i(E•, D•) =: kerDi/R(Di−1)

is an isomorphism.

(b) The spaces Hi(E•, D•) are finite dimensional and the Euler characteristic of the complex
(E•, D•) equals the Fredholm index of the elliptic operator

D = D +D∗ : C∞(Eeven)→ C∞(Eodd).

(c) ker D = ker ∆.

Proof. (a) We set V i := C∞(Ei). These spaces are equipped with the L2-inner product but they
are not complete with respect to this norm. We imitate the strategy used in the proof of Proposition
2.1.36. The only part of the proof that requires a modification is the proof of the surjectivity of
πi. In the finite dimensional case it was based on the existence of the element [v], the point in the
affine space Cv closest to the origin. A priori this may not exist1 since in our case V i is infinite
dimensional and incomplete with respect to the L2-norm. In the infinite dimensional case we will
bypass this difficulty using the Fredholm alternative. Set ‖ − ‖ := ‖ − ‖0,2.

Observe first that Hi(E•, D•) is finite dimensional since it is a subspace of ker D which is
finite dimensional since D is elliptic. Let v ∈ C∞(Ei) such that Dv = 0. We have to prove that
∃U ∈ C∞(Ei−1) such that, if we set [v] = v +Du, then D∗[v] = 0.

Denote by [v] the L2-orthogonal projection of v on Hi. This projection exists since Hi is finite
dimensional hence closed. We claim that [v] is cohomologous to v, i.e., there exists u ∈ C∞(Ei−1)
so that

[v] = v +Du.

By definition v − [v] ⊥ ker D so that by the Fredholm alternative there exists u ∈ L1,2(E•) such
that

v − [v] = Du = (D +D∗)u.

Since v, [v] are smooth we deduce from Weyl’s Lemma that u is smooth. Since D(v − [v]) = 0 we
deduce DD∗u = 0 so that

0 = (DD∗u, u)L2 = ‖D∗u‖2.
Hence D∗u = 0, i.e., v − [v] = Du which shows that v and [v] are cohomologous. ut

Example 2.1.39. Suppose (M, g) is a compact oriented Riemann manifold without boundary. Let
n := dimM . Then the DeRham complex

0→ Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)→ 0

1This is in essence the criticism Weierstrass had concerning Riemann’s liberal usage of the Dirichlet principle, i.e. the existence
of a shortest element. A few decades later Hilbert and Weyl rehabilitated Riemann’s insight and placed it on solid foundational ground.
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is an elliptic complex (see Exercise 2.3.5). We denote its cohomology by H•DR(M). We set

Hk(M, g) :=
{
ω ∈ Ωk(M); dω = d∗ω = 0

}
.

The forms in Hk(M, g) are called harmonic forms with respect to the metric g. The Hodge theorem
implies that

Hk(M, g) ∼= Hk
DR(M) ∼= Hk(M,R).

This shows that once we fix a Riemann metric on M we have a canonical way of selecting a repre-
sentative in each DeRham cohomology class, namely the unique harmonic form in that cohomology
class. The above arguments shows that it is the form in the cohomology class with the shortest L2-
norm. One can show (see Exercise 2.3.5) that the Hodge ∗-operator

∗g : Ωk(M)→ Ωn−k(M)

induces an isomorphism
∗g : Hk(M, g)→ Hn−k(M, g).

In this case we have

χ(M) = indR

(
d+ d∗ : Ωeven(M)→ Ωodd(M)

)
.

On the left-hand side we have a topological invariant while on the right-hand side we have an
analytic invariant. This phenomenon is a manifestation of the Atiyah-Singer index theorem. ut
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2.2. Dirac operators

2.2.1. Clifford algebras and their representations. Suppose (M, g) is an oriented Riemann man-
ifold, E+, E− →M are complex hermitian vector bundles and

D : C∞(E+)→ C∞(E−)

is a Dirac type operator. Recall that this means that the symmetric operators

D∗D : C∞(E+)→ C∞(E+), DD∗ : C∞(E−)→ C∞(E−)

are both generalized Laplacians. It is convenient to super-symmetrize this formulation. Set

E := E+ ⊕ E−,

and define,

D =

[
0 D∗

D 0

]
: C∞(E)→ C∞(E).

Then

D∗ = D , D2 =

[
D∗D 0

0 DD∗

]
.

We denote by c the symbol of D . Observe that for every x ∈ M , and every ξ ∈ T ∗xM the linear
map c(ξ) : Eξ → Ex satisfies

c(ξ)∗ = −c(ξ), c(ξ)2 = −|ξ|2g1E , c(ξ)E±x ⊂ E∓x . (2.2.1)

Thus, for fixed x ∈ M we can view the symbol as a linear map c : T ∗xM → End(Ex) satisfying
(2.2.1) for any ξ ∈ TxM . Observe that

−|ξ + η|2 = c(ξ + η)2 =
{
c(ξ) + c(η)

}2
= c(ξ)2 + c(η)2 + c(ξ)c(η) + c(η)c(ξ)

= −|ξ|2 − |η|2 + c(ξ)c(η) + c(η)c(ξ).

Hence
|ξ|2 + |η|2 − c(ξ)c(η)− c(η)c(ξ) = |ξ + η|2 = |ξ|2 + |η|2 + 2g(ξ, η)

so that
c(ξ)c(η) + c(η)c(ξ) = −2g(ξ, η), ∀ξ, η ∈ T ∗xM. (2.2.2)

Definition 2.2.1. Suppose (V, g) is a finite dimensional real Euclidean space. We define the Clifford
algebra of (V, g) to be the associative R-algebra with 1 generated by V and subject to the relations

u · v + v · u = −2g(u, v), ∀u, v ∈ V.

Equivalently, it is the quotient of the tensor algebra
⊕

n≥0 V
⊗n modulo the bilateral ideal generated

by the set {
u⊗ v + v ⊗ u+ 2g(u, v); u, v ∈ V

}
.

We will denote this algebra by Cl(V, g). When no confusion is possible, we will drop the metric
g from our notations. When (V, g) is the Euclidean metric space Rn equipped with the canonical
metric geucl we write

Cln := Cl(Rn, geucl). ut
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We see that the symbol of the Dirac type operator D defines a representation of the Clifford
algebra Cl(T ∗xM, g) on the complex Hermitian vector space Ex. We are thus forced to investigate
the representations of Clifford algebras. We need to introduce a bit of terminology.

For any elements a, b in an associative algebra A we define their anti-commutator by

{a, b} := ab+ ba.

A super-space (or s-space) is a vector space E equipped with a Z/2-grading, i.e., a direct sum
decomposition E = E+ ⊕ E−. The elements in E± are called even/odd.

If E = E+ ⊕ E− is a s-space and T ∈ End(E), then we say that T is even (resp. odd) if it
preserves (reap. reverses) parity, i.e.,

TE± ⊂ E± (resp. TE± ⊂ E∓).

The even endomorphisms have the diagonal form[
A 0
0 B

]
and the odd endomorphisms have the anti-diagonal form[

0 C
D 0

]
.

We see that every endomorphism T decomposes in homogeneous components

T = Teven + Todd.

The supertrace (or s-trace) of an even endomorphism T of E is defined by

str(T ) = tr(T |E+)− tr(T |E−).

in general we set
strT := strTeven.

The grading of E is the operator

γ = γE = 1E+ ⊕−1E−
[
1E+ 0

0 −1E−

]
.

Then
strT = tr(γT ).

A linear operator T : E0 → E1 between two s-spaces is even iff T (E±0 ) ⊂ E±1 and odd iff
T (E±0 ) ⊂ E∓1 .

A super-algebra over the field K is an associative K-algebra A equipped with a Z/2-grading,
i.e., a direct sum decomposition

A = A + ⊕A −

such that
A + ·A + ⊂ A +, A + ·A − ⊂ A −, A − ·A − ⊂ A +.

The elements of A ± are called even/odd, while the elements in A +∪A − are called homogeneous.
For a ∈ A ± we set

sign(a) := ±1.

We see that if E is a K-vector s-space, then EndK(E) is a s-algebra. We will use the notation
ÊndK(E) to indicate the presence of a s-structure.
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The supercommutator on a s-algebra is the bilinear map

[−,−]s : A ×A → A

uniquely determined by the requirements

• [a±, b+]s = [a±, b+] = a±b+ − b+a±,

• [a+, b±]s = [a+, b±] = a+b± − b±a+,

• [a−, b−]s = {a−, b−} = a−b− + b−a−,

∀a±, b± ∈ A ± . Two elements a, b are said to super-commute if [a, b]s = 0.

If A ,B are two s-algebras, then their s-tensor product A ⊗̂B is defined by(
A ⊗̂B

)+
=
(
A + ⊗B+

)
⊕
(
A − ⊗B−

)
,(

A ⊗̂B
)−

=
(
A + ⊗B−

)
⊕
(
A − ⊗B+

)
,

and the product is defined by

(a1 ⊗ b1) · (a1 ⊗ b2) = sign(a2) sign(b1)(a1a2)⊗ (b1b2),

for every homogeneous elements a1, a2 ∈ A , b1, b2 ∈ B.

If A = ÊndK(E), then str
(

[S, T ]s
)

= 0, so that the supertrace is uniquely determined by the
induced linear map

str : ÊndK(E)/
[

ÊndK(E), ÊndK(E)
]
s
→ K.

A s-module over the s-algebra A = A + ⊕A − is a K-super-space E = E+ ⊕E− together with a
morphism of s-K-algebras

A → ÊndK(E+ ⊕ E−).

Proposition 2.2.2. Suppose that (V, g) is an n-dimensional real Euclidean vector space. Then
Cl(V, g) is a s-algebra and

dimR Cl(V, g) = 2n.

Proof. Consider the isometry
ε : V → V, ε(v) = −v.

It induces a morphism of algebras

ε :
⊕
k≥0

V ⊗k →
⊕
k≥0

V ⊗k,

ε(v1 ⊗ · · · ⊗ vk) = ε(v1)⊗ · · · ⊗ ε(vk) = (−1)kv1 ⊗ · · · ⊗ vk.
Clearly

ε(u⊗ v + v ⊗ u) = u⊗ v + v ⊗ u.
Since ε is an isometry we deduce that ε induces a morphism of algebras

ε : Cl(V, g)→ Cl(V, g)

satisfying ε2 = 1. Define
Cl±(V, g) := ker(±1− ε).

The decomposition Cl(V, g) = Cl+(V, g)⊕Cl−(V, g) defines a structure of s-algebra on Cl(V, g).

Now choose an orthonormal basis {e1, . . . , en} of V . Then in Cl(V, g) we have the equalities,

e2
i = −1, eiej = −ejei, ∀i 6= j.
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For every ordered multi-index I = (i1 < · · · < ik) we set

eI := ei1 . . . eik , |I| = k.

We deduce that the collection {eI} spans Cl(V, g) so that

dimR Cl(V, g) ≤ 2n.

To prove the reverse inequality, we define for every v ∈ V the endomorphism c(v) of Λ•V by the
equality

c(v)ω =
(
e(v)− i(v†)

)
ω,

where e(v) denotes the exterior multiplication by v and iv† denotes the contraction with the metric
dual v† ∈ V ∗ of v. The Cartan formula implies

c(v)2 = −|v|2

so that we have a morphism of algebras

Cl(V, g)→ End(Λ•V ).

In particular we get a linear map

σ : Cl(V, g)→ Λ•V, Cl(V, g) 3 x 7→ c(x)1 ∈ Λ•V.

Observe that
σ(ei1 · · · eik) = c(ei1) · · · c(eik)1 = ei1 ∧ · · · ∧ eik .

Since the collection {ei1 ∧ · · · ∧ eik} forms a basis of Λ•V we deduce that σ is onto so that

dimR Cl(V, g) ≥ dimR Λ•V = 2n.

In particular σ is a vector space isomorphism. ut

Definition 2.2.3. The vector space isomorphism σ : Cl(V, g)→ Λ•V is called the symbol map. ut

Observe that the symbol map is an isomorphism of super-spaces. An orientation on V deter-
mines a canonical element Ω on detV , the unique positively oriented element of length 1. In terms
of an oriented orthonormal basis (e1, . . . , en) we have

Ω = e1 ∧ · · · ∧ en.

Using the symbol map we get an element

Γ := σ−1(Ω) = e1 · · · en
which satisfies the identities

eiΓ = (−1)n−1Γei, Γ2 = (−1)n(n+1)/2. (2.2.3)

We would like to investigate the structure of the Z/2-graded complex Cl(V )-modules, or Clifford
modules.

A Clifford s-module is a pair (E, c), where E is a s-space and c is an even morphism of Z/2-
graded algebras

ρ : Cl(V )→ Ênd(E).

The operation
Cl(V )× E → E, (x, e) 7→ c(x)e
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is called the Clifford multiplication by x. Observe that for any v ∈ V we have

c(v)E± = E∓.

A morphism of Clifford s-modules, or Clifford morphism, between the Clifford s-modules
E0, E1 is a linear map T : E0 → E1 which supercommutes with the Clifford action. In other
words, this means that

[T, c(x)]s = 0, ∀x ∈ Cl(V ).

We denote by ĤomCl(V )(E0, E1) the space of Clifford morphisms and by ÊndCl(V )(E) the s-
algebra of Clifford endomorphisms of the Clifford module E.

Since we will be interested only in complex representations of Cl(V, g) we will study only the
structure of the complexified Clifford algebra

Cl(V, g) := Cl(V, g)⊗R C.

Set Vc := V ⊗R C. The metric g on V extends by complex linearity to a C- bilinear map

gc : Vc × Vc → C

Proposition 2.2.4. Assume that n = dimR V = 2m. There exists Z/2-graded Cl(V )-module SV
such that the induced morphism of s-algebras

Cl(V )→ Ênd(SV ),

is an isomorphism. This module is unique up to a Clifford isomorphism. Moreover, if we write
SV = S+

V ⊕ S−V , then
dimC S+

V = dimC S−V = 2m−1.

Proof. Existence. Fix a complex structure on V , i.e., a skew-symmetric linear map J : V → V
such that J2 = −1. We can find an orthonormal basis e1, f1, . . . , em, fm of V such that

Jei = fi, Jfi = −ei, ∀i = 1, . . . ,m.

The operator J extends to the complexification Vc and since J2 = −1 we deduce that the eigen-
values of J on Vc are ±i. Denote by V 1,0 the i-eigenspace of J and by V 0,1 the −i-eigenspace so
that

Vc = V 1,0 ⊕ V 0,1.

Note that Vc is equipped with an involution

w = v ⊗ z 7→ w̄ = v ⊗ z̄
and V̄ 1,0 = V 0,1. Set

εj =
1√
2

(ej − ifj) ∈ V 1,0, ε̄j =
1√
2

(ej + ifj) ∈ V 0,1.

The collection (εj) is a C-basis of V 1,0. Note that

gc(εi, ε̄j) = gc(ε̄j , εi) = δij , gc(εi, εj) = gc(ε̄i, εj) = 0,

ej =
1√
2

(εj + ε̄j), fi =
i√
2

(εj − ε̄j). (2.2.4)

Define
SV := Λ•V 1,0. (2.2.5)
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We want to produce a representation of Cl(V ) on SV , that is, a C-linear map

c : Vc → EndC(SV )

such that
c(v)2 = −gc(v, v), ∀v ∈ Vc.

Since Vc = V 1,0 ⊕ V 0,1 it suffices to describe how the elements in V 1,0 and the elements of V 0,1

act on Sn.

For every w ∈ V 1,0 we set
c(w) :=

√
2e(w),

where e(w) denotes the exterior multiplication by w on Λ•V 1,0. For every w ∈ V 1,0 we have
w̄ = V 0,1 and define the contraction

i(w̄) = w̄ : Λ•V 1,0 → Λ•−1V 1,0

by
w̄ (w1 ∧ · · · ∧ wk) = gc(w̄, w1)w2 ∧ · · · ∧ wk − gc(w̄, w2)w1 ∧ w3 ∧ · · · ∧ wk

+ · · ·+ (−1)k−1gc(w̄, wk)w1 ∧ · · · ∧ wk−1.

Now set
c(w̄) := −

√
2w̄ .

For any w0, w1 ∈ V 1,0 we have the equalities2

c(w)2 = c(w̄)2 = 0, c(w0 + w̄1)2 = c(w0)c(w̄1) + c(w̄1)c(w0), (2.2.6a)

gc(w0 + w̄1, w0 + w̄1) = 2gc(w0, w̄1), (2.2.6b)
c(w0)c(w̄1) + c(w̄1)c(w0) = −2gc(w0, w̄1). (2.2.6c)

Hence the map c : Vc → EndC(Λ•V 1,0) extends to a morphism of algebras

c : Cl(V )→ EndC(Λ•V 1,0).

The space Λ•V 1,0 is Z/2-graded

Λ•V 1,0 = ΛevenV 1,0 ⊕ ΛoddV 1,0

and clearly c maps even/odd elements of Cl(V ) to even/odd elements of EndC(Λ•V 1,0). Note that
for any 1 ≤ i1 < · · · < ik ≤ m we have

c(εi1εi2 · · · εik)1 = 2k/2εi1 ∧ εi2 ∧ · · · ∧ εik ,
c(εi1εi2 · · · εik)ε1 ∧ · · · ∧ εm = 0, c(ε̄i1 ε̄i2 · · · ε̄ik)1 = 0,

c(ε̄i1 ε̄i2 · · · ε̄ik)ε1 ∧ · · · ∧ εm = (−1)k+
∑k
s=1(is−s)2

k
2 εj1 ∧ · · · ∧ εjm−k ,

where
j1 < · · · < jm−k, {1, . . . ,m} = {i1, . . . , im} ∪ {j1, . . . , jm−k}.

This prove that for any u ∈ ClC(V ) \ 0 we have

c(u)(1 + ε1 ∧ · · · ∧ εn) 6= 0.

Hence the map c : Cl(V )→ EndC(Λ•V 1,0) is injective. Now observe that

dimC EndC(Λ•V 1,0) =
(
dimC Λ•V 1,0)2 = (2dimC V

1,0
)2 = 22m = 2n = dimCCl(V ),

2 Only (2.2.6c) is nontrivial. Because the two sides of (2.2.6c) are C-bilinear in (w0, w̄1) it suffices to verify it only in the special
case w0 = εj , w1 = εk for some j, k.
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which shows that c is an isomorphism.

The uniqueness of the module SV follows from Schur’s Lemma, [16, Chap. XVII, Prop. 1.1].
ut

Definition 2.2.5. Assume dimV is even. The complex Clifford s-module SV constructed in Propo-
sition 2.2.4 is called the space of complex spinors. The corresponding representation

c : Cl(V )→ Ênd(SV )

is called the complex spinorial representation. ut

We have shown that, if we forget the grading, the Clifford algebra Cl2m is isomorphic to an
algebra of matrices, End(S2m) and the representations of such an algebra are well understood. Let
us describe a simple procedure of constructing Z/2-graded complex representations of Cl2m.

SupposeW = W+⊕W− is a complex s-space. Denote by SV ⊗̂W the s-vector space S2m⊗W
equipped with the Z/2-grading

(SV ⊗̂W )+ = S+
V ⊗W

+ ⊕ S−V ⊗W
−, (SV ⊗̂W )− = S+

V ⊗W
− ⊕ S−V ⊗W

+.

We define the complex spinorial representation twisted by W to be

cW : Cl(V )→ ÊndC(SV ⊗̂W ),

cW (x)(ψ ⊗ w) = (c(x)ψ)⊗ w, ∀ψ ∈ SV , w ∈W.
Observe that each w ∈W defines a morphism of Cl(V )-modules

TW (w) : SV → SV ⊗̂W, ψ 7→ ψ ⊗ w
and thus we get a linear map

TW : W → ĤomCl(V )(SV ,SV ⊗̂W ).

Similarly every linear map Φ : W →W defines a morphism of Cl(V )-modules

SΦ : SV ⊗̂W → SV ⊗̂W, ψ ⊗ w 7→ ψ ⊗ Φ(w).

We obtain in this fashion a linear map

S : ÊndC(W )→ ÊndCl(V )(SV ⊗̂W, SV ⊗̂W ),

cW ⊗S : Cl(V )⊗̂ÊndC(W )→ ÊndC(SV ⊗̂W ).

The representation theory of algebras (see [16, Chap. XVII] or [33, Chap. 14]) imply that these
maps are isomorphisms. We gather all the above observations in the following result.

Proposition 2.2.6. Suppose E is a Z/2-graded Cl(V )-module, dimR V = 2m. Then E is isomor-
phic as a Z/2-graded Cl(V )-modules with the complex spinorial module twisted by the s-space

W = ĤomCl(SV , E).

Moreover, we have an isomorphism of s-algebras

Cl(V )⊗̂ÊndC(W )→ ÊndC(E). (2.2.7)

Via this isomorphism, we can identify ÊndC(W ) with the subalgebra of ÊndC(E) consisting of
endomorphism T : E → E commuting with the Clifford action. In other words

ÊndC(W ) ∼= ÊndCl(V )(E), Cl(V )⊗̂ÊndCl(V )(E) ∼= ÊndC(E). (2.2.8)
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ut

The s-space HomCl(SV , E) is called the twisting space of the Clifford module E and will be
denoted by E/S. We deduce from the above result that given a Clifford module E we can identify
a Clifford endomorphism L : E → E with a linear map L/S on the twisting space E/S, i.e.

ÊndCl(V )(E) ∼= ÊndC(E/S), L 7→ L/S.

Definition 2.2.7. The relative supertrace of an endomorphism L ∈ ÊndCl(V )(E) of a Z/2-graded
complex Cl2m-module E is the scalar strE/S L defined as the supertrace of the linear operator L/S,

strE/S L := strL/S. ut

Suppose that E is a Z/2-graded Cl(V )-module so that we can represent it as a twist of SV with
an s-space W . We would like to relate the relative supertrace

strE/S : ÊndC(W )→ C.

to the absolute supertrace
strE : ÊndC(E)→ C.

Suppose F : E → E is a linear map. By choosing a basis of W we can represent it as a matrix
with coefficients in Cl(V ). Equivalently, we can regard F as an element of Cl(V )⊗̂Ênd(W ) =

Ênd(SV )⊗̂Ênd(W ) and we can write

F =
∑
`

u` ⊗ F`, u` ∈ Ênd(SV ), F` ∈ Ênd(W ).

We would like to compute str(F : E → E). By linearity we have

str(F ) =
∑
`

str(u` ⊗ F`).

Choose orthonormal bases w±i in W± and orthonormal bases ψ±j in S±V . Define a metric on Cl(V )

by declaring the basis (eI) orthonormal. Then〈
(u` ⊗ F`)(ψ±i ⊗ w

±
j ), ψ±i ⊗ w

±
j

〉
=
〈
u`ψ

±
i , ψ

±
i 〉〈F`w

±
j , w

±
j

〉
.

It follows from this equality that

str(u` ⊗ F` ) = str
(
u` : SV → SV

)
· str(F` : W →W ).

Thus we need to compute the supertrace of the action of an element in the Clifford algebra on the
complex spinorial space. This supertrace is uniquely determined by the induced linear map

Cl(V )/[Cl(V ),Cl(V )]s = Ênd(SV )/[Ênd(SV ), Ênd(SV )]s → C.

It turns out that the space Cl(V )/[Cl(V ),Cl(V )]s is quite small.

Choose an orthonormal basis (ei) of V . Fix 1 ≤ r ≤ n = dimV . Observe that for every
multi-index I = (1 ≤ i1 < · · · < ik−1 ≤ n), ij 6= r, we have

[er, ereI ]s = e2
reI − (−1)kereIer = 2e2

reI = −2eI ⇐⇒ eI =
[
er,−

1

2
ereI

]
s
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This shows that any monomial eI , |I| < dimV is a s-commutator. Hence the only monomial eI
that could have nontrivial s-trace must be Γ = e1 · · · e2m.

To compute the s-trace of Γ as a linear map on SV we choose a complex structure J on V and
an orthonormal basis e1, f1, . . . , em, fm such that

fi = Jei, ei = −Jfi.

Consider as before

εj =
1√
2

(ej − ifj) ∈ V 1,0, ε̄j =
1√
2

(ej + ifj) ∈ V 0,1.

Then,

ei =
1√
2

(εi + ε̄i), fi =
i√
2

(εi − ε̄i),

c(ej) = e(εj)− ε̄j , c(fj) = i
(
e(εj) + ε̄j

)
,

and

Γ =

m∏
j=1

c(ej)c(fj) = im
m∏
j=1

(
e(εj)− ε̄j

)(
e(εj) + i(ε̄j)

)
= im

m∏
s=1

(
e(εj)ε̄j −(ε̄j )e(εj)

)
.

For a multi-index J = {j1 < · · · < jk} we set

εJ = εj1 ∧ · · · ∧ εjk ∈ ΛkV 1,0

and we have

e(εj)(ε̄j )εJ =

{
εJ if j ∈ J
0 if j 6∈ J , (ε̄j )e(εj)εJ =

{
εJ if j 6∈ J
0 if j ∈ J.

Putting these two facts together we deduce(
e(εj)(ε̄j )− (ε̄j )e(εj)

)
εJ =

{
εJ if j ∈ J
−εJ if j 6∈ J.

Hence
ΓεJ = im(−1)m−|J |︸ ︷︷ ︸

:=〈εJ |Γ|εJ 〉

εJ ,

and thus

str Γ =
∑
J

(−1)|J |〈εJ |Γ|εJ〉 =
∑
J

(−1)|J |im(−1)m−|J | = (−i)m
∑
J

1 = (−2i)m.

Let us summarize what we have proved so far.

Assume V is oriented. The orientation and the metric g determine a canonical section of detV ,
the volume form Ωg. For every ω ∈ Λ•V ⊗C we denote by [ω]k ∈ ΛkV ⊗C its degree k component.
We then define 〈ω〉 ∈ C by the equality

[ω]n = 〈ω〉Ωg.

We have thus established the following result.
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Proposition 2.2.8. Assume that V is an oriented Euclidean space of dimension dimV = 2m. If
u ∈ Cl(V ), W is a s-space and F ∈ Ênd(W ), then

str
(
u⊗ F : SV ⊗̂W → SV ⊗̂W

)
= (−2i)m

〈
σ(u)

〉
strF.

In the above equality, both sides depend on a choice of an orientation on V . ut

If in the above equality we choose u = Γ, we observe that 〈σ(Γ)〉 = 1, and we deduce the
following useful consequence.

Corollary 2.2.9. Suppose (V, g) is oriented and dimR V = 2m. Then for any Clifford module E
and any endomorphism of Clifford modules L : E → E we have

strE/S L =
im

2m
strE

(
ΓL
)
,

where in the right-hand-side of the above equality we regard ΓL : E → E as a morphism of
C-vector spaces. ut

Remark 2.2.10. Let us say a few words about the odd dimensional case. If V is an odd dimensional
vector space and U := R⊕ V , then we have a natural isomorphism of algebras

Cl(V )→ Cleven(U), Cleven(V )⊕Clodd(V ) 3 x0 ⊕ x1 7→ x0 + e0x1,

where e0 denotes the canonical basic vector of the summand R of U . We can then prove that we
have an isomorphism of algebras

Cl(V ) ∼= End(S+
U )⊕ EndC(S−U ).

For more details we refer to [17]. ut

2.2.2. Spin and Spinc. Suppose that (V, g) is a finite dimensional Euclidean space. Recall that
we have a vector space isomorphism

σ : Cl(V )→ Λ•V

called the symbol map. Its inverse is called the quantization map and it is denote by q. Set

spin(V ) := q(Λ2V ) ⊂ Cl(V ).

If e1, . . . , en is an orthonormal basis of V , then {eiej ; 1 ≤ i < j ≤ n} is a basis of spin(V ).
Observe that

[eiej , ek] = eiejek − ekeiek = ei(−2δjk − ekej)− ekeiek
= −2δjkei − (−2δik − ekei)ej − ekeiek = −2δjkei + 2δikej .

Hence
[ω, v] ∈ V, ∀ω ∈ spin(V ), v ∈ V.

Using the identity
[eiej , ejek] = [eiek, ek]e` + ej [eiej , e`]

we deduce
[eiej , eke`] ∈ spin(V ), ∀i < j, k < `,

which shows that spin(V ) is a Lie algebra with respect to the commutator in Cl(V ).
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The Jacobi identity shows that we have a morphism of Lie algebras

τ : spin(V )→ End(V ), τ(η)v = [η, v]. (2.2.9)

Observe that
g(τ(eiej)ek, e`) = −g(ek, τ(eiej)e`)

so that τ(η) is skew symmetric ∀η ∈ spin(V ), i.e., τ(η) ∈ so(V ). Note that

τ(eiej) = 2Xij ,

where for i < j we denoted by Xij the operator V → V defined by

Xijei = ej , Xijej = −ei, Xijek = 0, ∀k 6= i, j.

This implies that τ is injective. On the other hand

dimR spin(V ) = dimR Λ2V = dimR so(V ),

so that τ is an isomorphism.

To every A ∈ so(V ) we associate ωA ∈ Λ2V

ωA =
∑
i<j

g(Aei, ej)ei ∧ ej .

Observe that
A =

∑
i<j

g(Aei, ej)Xij .

Indeed ∑
i<j

g(Aei, ej)Xijek =
∑
i<k

g(Aei, ek)Xikek +
∑
j>k

g(Aek, ej)Xkjek

= −
∑
i<k

g(Aei, ek)ei +
∑
j>k

g(Aek, ej) =
∑
i

g(ei, Aek)ei = Aek.

Hence

τ−1(A) =
∑
i<j

g(Aei, ej)τ
−1(Xij) =

1

2

∑
i<j

g(Aei, ej)eiej =
1

2
q(ωA). (2.2.10)

Definition 2.2.11. For any euclidean space (V, g) we denote by Spin(V, g) the group

Spin(V, g) :=
{
u ∈ Cleven(V ); u = v1 · · · v2k, vi ∈ V, |vi|g = 1

}
.

In particular, we set
Spin(n) := Spin(Rn). ut

Observe that for any u ∈ Spin(V, g) we have

uV u−1 ⊂ V,

so that we have a natural map

ρ : Spin(V, g)→ Aut(V ), ρ(u)v = uvu−1.

For any u, v ∈ V , |u|g = 1 we have

−uvu−1 = uvu = u
(
−2g(u, v)− uv

)
= v − 2g(u, v)u ∈ V.
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Hence the map V → V , v 7→ −uvu−1 is described by the orthogonal reflection Ru in the hyper-
plane through the origin orthogonal to u. In particular, it is an orthogonal transformation of V with
determinant −1. Thus if u = u1 · · ·u2k the ρu is the product of an even number of reflections

ρ(u) = Ru1 · · ·Ru2k

so that we have a well defined morphism

ρ : Spin(V, g)→ SO(V, g).

Lemma 2.2.12. The morphism ρ is surjective and

ker ρ ∼= {±1} ⊂ Spin(V ).

Proof. The surjectivity follows from the classical fact that any orthogonal transformation is a prod-
uct of reflections. If η ∈ ker ρ then

ηv = vη, ∀v ∈ V

from which we conclude that u lies in the center of Cl(V ).

Choose an orthonormal basis e1, . . . , en of V so we can write

η =
∑
I

ηIeI , uI ∈ R,

and the sum is carried over all even dimensional ordered multi-indices I . Since η commutes with
ek, the multi-indices I such that ηI 6= 0 cannot contain k. Since this happens for all k the above
sum should contain only the empty multiindex for which e∅ = 1. Hence η must be a scalar, η ∈ R.

To show that |η| = 1 we consider the representation

c : Cl(V )→ End(Λ•V ).

The metric on V induces a metric on Λ•V and thus for every u ∈ Cl(V ) the linear map

c(u) : Λ•V → Λ•V

has a well defined norm ‖c(u)‖. Moreover

‖c(u1u2)‖ ≤ ‖c(u1)‖ · ‖c(u2)‖.

Observe that if v ∈ V is a vector of length one, then ‖c(v)‖ = 1. We deduce that ‖c(u)‖ ≤ 1 for
all u ∈ Spin(V ). In particular η, η−1 ∈ Spin(V ) ∩ R and we deduce

|η| = ‖c(η)‖ ≤ 1, |η−1| = ‖c(η−1)‖ ≤ 1.

Hence |η| = 1. This completes the proof. ut

We have produced a 2 : 1 group morphism

ρ : Spin(V, g)→ SO(V, g).

We want to prove that Spin(V, g) with the topology induced as a subset of Cl(V, g) equipped with
the above norm is a topological group and the above map is a topological covering map. We begin
with a few simple observations.

Let v, w ∈ V , v ⊥ w, |v| = |w| = 1. Then

(vw)2 = −1,
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and thus
exp(tvw) = cos t+ (sin t)vw ∈ Cl(V, g).

Note that exp(tvw) ∈ Spin(V, g), ∀t ∈ R. Indeed, we have

cos t+ (sin t)uw =
(

(sin t/2)u− (cos t/2)w
)(

(sin t/2)u+ (cos t/2)w
)
, (2.2.11)

and ∣∣ (sin t/2)u− (cos t/2)w
∣∣ =

∣∣ (sin t/2)u+ (cos t/2)w
∣∣ = 1.

We denote by Xvw the skew-symmetric endomorphism of V defined by

Xvwu =


w, u = v,

−v, u− w,
0, u ⊥ v, w

Lemma 2.2.13. For any v, w ∈ V such that v ⊥ w, |v| = |w| = 1 we have

ρ
(

exp(tvw)
)
u = exp(tvw)u exp(−tvw) = exp(2tXvw)u

Proof. If u ⊥ v, w, then u commutes with exp(tvw) so that

ρ
(

exp(tvw)
)
u = exp(tvw)u exp(−tvw) = u = exp(2tXvw)u.

Next,
ρ
(

exp(tvw)
)
v =

(
cos t+ (sin t)vw

)
v
(

cos t− (sin t)vw
)

=
(

(cos t)v − (sin t)w
)(

cos t− (sin t)vw
)

= (cos 2t)v + (sin 2t)w = exp(2tXvw)v.

Similarly
ρ
(

exp(tvw)
)
w = −(sin 2t)v + (cos 2t)w = exp(2tXvw)w.

ut

Proposition 2.2.14. Let (V, g) be an Euclidean space of dimension n. Set

m :=
⌊n

2

⌋
.

Then for any u ∈ Spin(V, g) we can find an orthonormal system of vectors

v1, w1, . . . , vm, wm ∈ V

and real numbers t1, . . . , tm such that

u = exp(t1v1w1) · · · exp(tmvmwm) = exp(t1u1v1 + . . .+ tmvmwm).

Proof. Let T = ρ(u) ∈ SO(V, g). We can then find A ∈ so(V, g) and t ∈ R such that

T = exp(2tA).

The spectral theory of skew-symmetric matrices shows that we can find an orthonormal system
v1, w1, . . . , vm, wm and real numbers λ1, . . . , λm such that

A =
∑
j

λjXvjwj .
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Note that the matrices Xv1w1 , . . . , Xvmwm pairwise commute to that

exp(2tA) =

m∏
j=1

exp(2tλjXvjwj ).

We set

u′ :=
m∏
j=1

exp(tλjvjwj),

and we deduce from Lemma 2.2.13 that

ρ(u′) = exp(2tA) = ρ(u).

Hence u′ = ±u. If u′ = u the claim is proved with tj = tλj . Othervise we observe that

u = −u′ = exp
(

(tλ1 + π)v1w1

) m∏
j=2

exp(2tλjXvjwj ).

ut

We have the following corollary of the above proof

Corollary 2.2.15. For any A ∈ so(V, g) we have

ρ
(

exp τ−1(A)
)

= exp(A). ut

Corollary 2.2.16. Spin(V, g) is a compact subset of Cl(V, g).

Proof. Using Lemma 2.2.13 and the equality (2.2.11) we deduce that any u can be written non-
uniquely as a product

u = u1u2 · · ·u2m,

where all the factors uj live of the unit sphere of (V, g). If uν is a sequence of elements in Spin(V, g)

uν = uν1u
ν
2 · · ·uν2m,

then upon extracting a subsequence, we can assume that uνj → u∞j as ν →∞. Clearly

uν → u∞ = u∞1 u
∞
2 · · ·u∞2m ∈ Spin(V, g).

ut

Clearly the group Spin(V, g) with the topology induced by the norm topology on Cl(V, g)
is a topological group as a subgroup of the topological group Cl(V, g)∗ of invertible elements of
Cl(V, g).

Proposition 2.2.17. The morphism ρ : Spin(V, g) → SO(V, g) is a continuous group morphism
and the resulting map is a topological covering map.

Proof. We have to show that if (uν) is a sequence in Spin(V, g) that converges to u∞ ∈ Spin(V, g),
then ρuν → ρu∞ .

First let us write uν as a product

uν = uν1u
ν
2 · · ·uν2m, m =

⌊n
2

⌋
, n = dimV, |uνj | = 1.
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Let T ∈ SO(V, g) be a limit point of the sequence ρ(uν). We can find a subsequence (uµ) of (uν)
such that

lim
µ→∞

uµj = u∞j , ∀j = 1, . . . , 2m,

and

T = lim
µ→∞

ρ(uµ) = lim
µ→∞

2m∏
j=1

Ruµj =
2m∏
j=1

Ru∞j = ρ(u∞).

Hence, the only limit point of ρ(uν) is ρ(u∞).

Let us now prove that the map ρ : Spin(V, g)→ SO(V, g) is a covering map.

Set
O :=

{
u ∈ Spin(V, g); ‖1− c(u)‖ < 1

}
.

Observe that O ∩ −O = ∅. Indeed, if u ∈ O ∩ (−O), then u,−u ∈ O and

2 = ‖1− (−1)‖ ≤ ‖1− c(u)‖+ ‖c(u)− (−1)‖ = ‖1− c(u)‖+ ‖c(−u)− 1‖ < 2.

Set
Ô := ρ(O) = ρ(O ∪ −O).

By construction

SO(V, g) \ Ô = ρ
(
Spin(V, g) \

(
O ∪ −O

) )
,

and we deduce that SO(V, g) \ Ô is compact as image of a compact set. Hence Ô is an open
neighborhood of 1 ∈ SO(V, g).

The same argument shows that the restriction of ρ to O is an open map and thus it induces a
homeomorphism O→ Ô.

More generally, if u ∈ Spin(V, g), û := ρ(u), then

ρ−1
(
ûÔ
)

= uO ∪ −uO

and the resulting map ρ : uO→ ûÔ is a homeomorphism. ut

Corollary 2.2.18. The group Spin(V, g) is a natural Lie group structure such that

ρ : Spin(v, g)→ SO(V, g)

is a smooth group morphism. The tangent space T1Spin(V, g) is naturally identified with spin(V, g),
and under this identification, the differential ρ∗ of ρ at 1 ∈ Spin(V, g) coincides with the map τ of
(2.2.9).

Proof. Since the map ρ : Spin(V, g) → SO(V, g) is a 2 : 1 covering map, we can use it to lift the
smooth structure on SO(V, g) to a smooth structure on Spin(V, g). By construction, ρ is a smooth
map between these smooth structure. The fact that the group operations on Spin(V, g) are smooth,
follows from the fax that ρ is a local diffeomorphism. Finally, the equality ρ∗ = τ follows from
Corollary 2.2.15. ut

Proposition 2.2.19. The group Spin(V, g) is connected if dimV > 1 and simply connected if
dimV > 2.
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Proof. Suppose dimV ≥ 2. We know that every element u ∈ Spin(V, g) can be written as a
product

u = exp(t1u1w1) · · · exp(tkukwk), |ui| = |wi| = 1, ui ⊥ wi, ti ∈ R,
and thus x lies in the same path component of Spin(V, g) as 1.

Suppose dimV ≥ 3. Consider first the case dimV = 3. Fix an orthonormal basis e1, e2, e3

and set
f1 = e2e3, f2 = e3e1, f3 = e1e2.

Then
f2
i = −1, fifj = −fjfi, i 6= j,

f1f2 = f3, f2f3 = f1, f3f1 = f2.

We deduce that
Cleven3

∼= H = the division ring of quaternions.
We want to prove that Spin(3) can be identified with the group of quaternions of norm 1. Suppose
that

q = a+ x, x = bf1 + cf2 + df3 6= 0, a2 + b2 + c2 + d2 = 1.

Then we can write
q = cos θ + sin θy, y =

1

|x|
x.

and thus
q = exp(θy), θy ∈ spin(V ).

Hence every quaternion of norm 1 can be written as the exponential of an element in spin(V ). We
can now see that every z ∈ spin(V ) can be written as a product

z = uv, u, v ∈ V, u, v ∈ V \ 0, u ⊥ v.

More precisely, if z = af1 + bf2 + cf3, then we choose u, v such that u ⊥ v and

u× v = ae1 + be2 + ce3 ∈ V,

where × denotes the cross product. Hence every unit quaternion can be written as an exponential
exp(uv) where u, v are two nonzero orthogonal vectors in V . As we have seen before any such
element belongs to Spin(3). Hence Spin(3) contains the group of unit quaternions.

Conversely, every element in Spin(3) can be written as a product of exponentials exp(tuv)
as above, i.e., as a product of unit quaternions. Hence Spin(3) is contained in the group of unit
quaternions.

This proves our claim and shows that Spin(3) is simply connected. From the 2 : 1 nontrivial
cover Spin(3)→ SO(3) we deduce that SO(3) ∼= RP3 and π1(SO(3)) ∼= Z/2.

Using the homotopy long exact sequence of the fibration SO(n) ↪→ SO(n + 1) � Sn, n ≥ 3
we obtain the exact sequence

0 = π2(Sn)→ π1(SO(n))→ π1(SO(n+ 1))→ π1(Sn) = 0.

We deduce inductively that

π1(SO(n)) ∼= π1(SO(3)) ∼= Z/2, ∀n ≥ 3.

This implies that the covering Spin(n) → SO(n) is the universal covering of SO(n), and in
particular Spin(n) is simply connected. ut
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Define
Spinc(V ) :=

(
Spin(V )× S1

)
/(Z/2),

where Z/2 is identified with the subgroup {(1, 1), (−1,−1)} ⊂ Spin(V ) × S1. Observe that we
have natural map

Spin(V )→ Spinc(V )

and a short exact sequence

1→ Z/2→ Spinc(V )
ρc−→ SO(V )× S1 → 1,

where (
Spin(V )× S1

)
/(Z/2) 3 [g, z]

ρc7−→ (ρ(g), z2) ∈ SO(V )× S1.

Suppose V is even dimensional, and J is a complex structure on V , i.e., a skew-symmetric operator
such that J2 = −1V . We denote by U(V, J) the group of isometries of V which commute with J .
We have a tautological morphism

i : U(V, J) ↪→ SO(V ), ρc : Spinc(V )→ SO(V )× S1 � SO(V ).

Proposition 2.2.20. There exists a morphism

Φ = ΦJ : U(V, J)→ Spinc(V )

such that the diagram below is commutative.

Spinc(V )

U(V, J) SO(V )
uu
ρc

\
\
\
\\]Φ

y w
i

.

Sketch of proof. We have a natural group morphism

det : U(n)→ S1, g 7→ det g

which induces an isomorphism

det∗ : π1(U(1))→ π1(S1) ∼= Z.

Consider the group morphism

φ : U(V, J)→ SO(V )× S1, g 7→ (i(g),det(g)).

Observe that

π1(SO(V )× S1) ∼= π1(SO(V ))× π1(S1) ∼=
{

Z/2⊕ Z if dimV > 2
Z⊕ Z if dimV = 2

Denote by φ∗ the induced morphisms

φ∗ : π1(U(V, J)) = Z→ π1(SO(V )× S1).

We have the following fact whose proof is left as an exercise.

Lemma 2.2.21. The image of φ∗ coincides with the image of

ρc∗ : π1(Spinc(V ))→ π1(SO(V )× S1). ut
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The above lemma implies that φ admits a unique lift Φ : U(V, J) → Spinc(V ) such that
Φ(1) = [1,1]. This is the morphism with the required properties.

ut

2.2.3. Geometric Dirac operators. Suppose that (M, g) is an oriented, n-dimensional Riemann
manifold. We denote by Cl(M) the bundle over M whose fiber over x ∈M is the Clifford algebra
Cl(T ∗xM, g).

To construct it, we first produce the principal SO(n)-bundle PM of oriented, orthonormal
frames of T ∗M . Then observe that there is a canonical morphism

ρ : SO(n)→ Aut(Cln) = the group of automorphism of the Clifford algebra Cln.

Then
Cl(M) = PM ×ρ Cln .

We will refer to Cl(M) as the Clifford bundle of (M, g). Note that we have a Clifford multiplication

· : Cl(M)⊕Cl(M)→ Cl(M),

and a canonical inclusion
T ∗M ↪→ Cl(M).

The symbol map
Cl(V )→ Λ•V

induces an isomorphism of vector bundles

σ : Cl(M)→ Λ•T ∗M.

Definition 2.2.22. Let (M, g) be an oriented Riemann manifold.

(a) An s-bundle over M is a vector bundle E →M together with a direct sum decomposition

E = E+ ⊕ E−.

The grading of the s-bundle E is the endomorphism γ = 1E+ ⊕ (−1E−).

(b) A Clifford bundle (or Cl(M)-module) is a hermitian s-bundle together with a morphism

c : Cl(M)→ Ênd(E)

which on each fiber is a morphism of s-algebras and for every x ∈ M , α ∈ T ∗xM ⊂ Cl(M)x the
endomorphism

c(α) : Ex → Ex

is (odd) and skew-symmetric. We will refer to c(−) as the Clifford multiplication.

(c) A Dirac bundle over M is a pair (E,∇E), where E = E+⊕E− is a Clifford bundle and∇E is
a hermitian connection on E which preserves the Z/2 grading and it is compatible with the Clifford
multiplication, i.e., ∀X ∈ Vect(M), ∀α ∈ Ω1(M), ∀u ∈ C∞(E) we have

∇EX(c(α)u) = c(∇gXα)u+ c(α)∇EXu,

where∇g denotes the Levi-Civita connection on T ∗M . ut
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Suppose (E,∇E) is a Dirac bundle. Then F∇ ∈ Ω2(EndE). Using the isomorphism of
complex vector bundles

ÊndC(E) ∼= Cl(M)⊗̂EndCl(M)(E).

we view the curvature of∇E as a section of

F∇ ∈ Ω2
(
Cl(M)⊗̂EndCl(M)(E)

)
.

On the other hand, the curvature R of the Levi-Civita connection is a section

R ∈ Ω2
(
so(TM)

)
,

where so(TM) denotes the space of skew-symmetric endomorphisms of TM . Thus, for any
X,Y ∈ Vect(M) the endomorphismR(X,Y ) of TM is skew-symmetric. We denote byR(X,Y )†

the dual, skew-symmetric endomorphism of T ∗M .

We have a map

δ : so(TM)
†−→ so(T ∗M)

τ−1

−→ Cl(M),

where † : TM → T ∗M denotes the metric duality isomorphism. Via this isomorphism we can
identify the curvature R with a section

c(R) ∈ Ω2
(
Cl(M)

)
⊂ Ω2

(
Cl(M)⊗̂EndCl(M)(E)

)
.

If we choose a local orthonormal frame (ei) of TM and we denote by (ei) the dual coframe, then

R =
∑
i<j

R(ei, ej)e
i ∧ ej , R(ei, ej) ∈ Γ

(
so(TM)

)
,

and the equality (2.2.10) implies that

c(R)(ei, ej) =
1

2

∑
k<`

g
(
R(ei, ej)ek, el

)
c(ek)c(e`)

=
1

4

∑
k,`

g
(
R(ei, ej)ek, e`

)
c(ek)c(e`).

(2.2.12)

We set
FE/S := F − c(R) ∈ Ω2

(
Cl(M)⊗̂EndCl(M)(E)

)
.

We will refer to FE/S as the twisting curvature of the Dirac bundle (E,∇E).

Proposition 2.2.23.
FE/S ∈ Ω2

(
EndCl(M)(E)

)
.

Proof. We have to show that ∀X,Y ∈ Vect(M), ∀α ∈ Ω1(M) we have

FE/S(X,Y )c(α) = c(α)FE/S(X,Y ),

i.e., [
FE/S(X,Y ), c(α)

]
= 0

so that FE/S(X,Y ) is a morphism of Cl(M)-modules. We have

F∇(X,Y ) = [∇EX ,∇EY ]−∇E[X,Y ],

and [
∇EZ , c(α)

]
= c(∇gZα), ∀Z ∈ Vect(M).
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Hence [
∇E[X,Y ], c(α)

]
= c(∇g[X,Y ]α),[

[∇EX ,∇EY ], c(α)
]

=
[

[∇EX , c(α)],∇EY
]

+
[
∇EX , [∇EY , c(α)]

]
= [c(∇gXα),∇EY ] + [∇EX , c(∇gY α)] = c

(
[∇gX ,∇

g
Y ]α

)
.

We deduce [
F∇(X,Y ), c(α)

]
= c
(
R(X,Y )†α

)
.

On the other hand, we have the following equality in Cl(M).

R(X,Y )†α = τ([τ−1R(X,Y )†, α])

=⇒ (c(R(X,Y )†α) = [c(R), c(α)] ∈ End(E)

Hence we have [
F∇(X,Y ), c(α)

]
=
[
c(R), c(α)

]
⇐⇒ [FE/S, c(α)] = 0.

ut

Let us now explain the process of twisting of a Dirac bundle which allows us to produce new
Dirac bundles out of old ones.

Suppose (E,∇E) is a Dirac bundle andW = W+⊕W− is a hermitian s-bundle equipped with a
hermitian connection∇W compatible with the Z/2-grading. The Z/2-graded tensor productE⊗̂W
is bundle of Clifford modules in a tautological way. Moreover∇E and∇W induce a connection on
E⊗̂W defined by

∇E⊗̂W = ∇E ⊗ 1W + 1E ⊗∇W .
A simple computation shows that ∇E⊗̂W is compatible with the Clifford multiplication. Hence
(E⊗̂W,∇E⊗̂W ) is a Dirac bundle. We say that it was obtained from the Dirac bundle (E,∇E) by
twisting with (W,∇W ) we will denote it by (E,∇E)⊗̂(W,∇W ).

Observe that End(E ⊗W ) ∼= End(E) ⊗ End(W ) and with respect to this isomorphism we
have

FE⊗W = FE ⊗ 1W + 1E ⊗ FW .
In particular

F (E⊗̂W )/S = FE/S + FW . (2.2.13)

Definition 2.2.24. Suppose (E,∇E) is a Dirac bundle. The geometric Dirac operator associated
to (E,∇) is the first order p.d.o. DE : C∞(E)→ C∞(E) defined by the compostion

C∞(E)
∇E−→ C∞(T ∗M ⊗ E)

c(−)−→ C∞(E),

where c(−) denotes the Clifford multiplication of a section on E with a 1-form. ut

From the definition it follows that

σ(DE) = c(−).

Observe that the connection∇E preserves the grading, while the multiplication by a 1-form is odd,
and thus maps even/odd sections of E to odd/even sections. Hence

DEC
∞(E±) ⊂ C∞(E∓)
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In other words, DE is an odd operator with respect to the Z/2-grading

C∞(E) = C∞(E+)⊕ C∞(E−).

In particular, it has the block decomposition

DE =

[
0 DE−

DE+ 0

]
.

Traditionally DE+ is denoted by DE .

Proposition 2.2.25. DE is symmetric, i.e.,

D∗E = DE .

Proof. This is a local statement so we will work in local coordinates. Choose a local orthonormal
frame ei of TM and denote by ei its dual coframe. Then

DE =
∑
i

c(ei)∇Eei .

Hence

D∗E =
∑
i

(c(ei)∇Eei)
∗ =

∑
i

(∇Eei)
∗c(ei)∗ =

∑
i

(−∇Eei − divg(ei))(−c(ei))

=
∑
i

divg(ei)c(ei) +
∑
i

∇Eeic(ei) = DE +
∑
i

divg(ei)c(ei) +
∑
i

c(∇geie
i)︸ ︷︷ ︸

T

.

T = D∗E −DE is a zero order operator so it suffices to understand its action on a fiber of E over an
arbitrary point x0 of M . If we assume the local frame ei is synchronous at x0, i.e.,

∇geiej = 0 at x0,

then
∇geie

i = 0, divg ei = 0 =⇒ T = 0.

ut

Since the symbol of DE is given by the Clifford multiplication we deduce that D2
E is a generalized

Laplacian. We deduce that DE is indeed a Dirac type operator since D∗EDE = DED∗E = D2
E is a

generalized Laplacian. It can be described in the block form

DE =

[
0 D∗E

DE 0

]
.

Proposition 2.2.26 (Weitzenböck Formula). Suppose (E,∇) is a Dirac bundle over the oriented
Riemann manifold M , and FE/S ∈ EndCl(M)(E) is the twisting curvature. Then

D2
E = (∇E)∗∇E +

s(g)

4
+ c(FE/S),

where s(g) is the scalar curvature of the metric g, c(FE/S) is the endomorphism of E defined
locally by

c(FE/S) =
∑
i<j

FE/S(ei, ej)c(ei)c(ej),

where (ei) is a local orthonormal frame of TM and (ei) is the dual coframe.
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Proof. The result is local. Assume the local orthonormal frame is synchronous at a point x ∈ M .
We set∇i := ∇ei , we denote by ei the contraction by ei so we have

(∇E)∗∇E =
(∑

i

ei ⊗∇Ei
)∗∑

j

ej ⊗∇Ej =
(∑

i

(
−∇Ei − divh(ei)

)
ei

)∑
j

ej ⊗∇Ej

(ei ej = δji )

= −
∑
i

(∇Ei )2 −
∑
i

divg(ei)∇Ei = −
∑
i

(∇Ei )2 at x0.

On the other hand we have

D2
E =

∑
i,j

c(ei)∇Ei c(ej)∇Ej =
∑
i,j

c(ei)c(ej)∇Ei ∇Ej +
∑
i,j

c(∇Ei ej)∇Ej .

= −
∑
i

(∇Ei )2 +
∑
i 6=j

c(ei)c(ej)∇Ei ∇Ej +
∑
i,j

c(∇Ei ej)∇Ej

= −
∑
i

(∇Ei )2 +
∑
i<j

c(ei)c(ej)[∇Ei ,∇Ej ] +
∑
i,j

c(∇Ei ej)∇Ej

(at x0 we have divg ei = 0, [ei, ej ] = 0)

= (∇E)∗∇E +
∑
i<j

c(ei)c(ej)F (ei, ej) = (∇E)∗∇E + c(FE/S) +
∑
i<j

c(R)(ei, ej)c(ei)c(ej)︸ ︷︷ ︸
:=T

.

On the other hand we have (see (2.2.12))

T =
∑
i<j

c(R)(ei, ej)c(ei)c(ej) =
1

4

∑
i<j

(∑
k,`

g(R(ei, ej)ek, e`)︸ ︷︷ ︸
−Rijk`

c(ek)c(e`)
)
c(ei)c(ej)

(Rijk` = −Rjik` = Rk`ij)

= −1

8

∑
i,j,k,`

Rk`ijc(ek)c(e`)c(ei)c(ej) = −1

8

∑
i 6=j,k 6=`

Rijk`c(ei)c(ej)c(ek)c(e`)

Observe that c(ei)c(ej) anticommutes with c(ek)c(e`) if the two sets {i, j} and {j, k} have exactly
one element in common. Such pairs of anticommuting monomials do not contribute anything to the
above sum due to the symmetry Rijk` = Rk`ij of the Riemann tensor. We can thus split the above
sum into two parts

T = −1

4

∑
i 6=j

Rijij
(
c(ei)c(ej) )2 − 1

8

∑
i,j,k,` distinct

Rijk`c(ei)c(ej)c(ek)c(e`)

(Rijk` +Ri`jk +Rik`j = 0, c(ej)c(ek)c(e`) = c(e`)c(ej)c(ek) = c(ek)c(e`)c(ej))

=
1

4

∑
i,j

Rijij =
s(g)

4
.

ut
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Example 2.2.27. Let E = ΛT ∗M . E is a Cl(M)-module with Clifford multiplication by α ∈
Ω1(M) described by

c(α)ω = α ∧ ω − i(α†)ω, ∀ω ∈ Ω1(M),

where i(α†) denotes the contraction by the vector field g-dual to α. Clearly c(α) is a skew-
symmetric endomorphism of Λ•T ∗M . The Levi-Civita connection induces a connection ∇g on
Λ•T ∗M which is compatible with the above Clifford multiplication. This shows that (ΛT ∗M,∇g)
is a Dirac bundle. The Dirac operator determined by this Dirac bundle is none other than the Hodge-
Dolbeault operator. For a proof we refer to [21, Prop. 11.2.1]. ut
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2.3. Exercises for Chapter 2

Exercise 2.3.1. Prove Hadamard Lemma. ut

Exercise 2.3.2. Suppose M = Rn. Prove that any L ∈ PDO(m)(CM ) has the form

L =
∑
|~α|≤m

a~α(x)∂~α, a~α ∈ C∞(M).

Exercise 2.3.3. Prove Proposition 2.1.12. ut

Exercise 2.3.4. Prove Cartan’s formula (2.1.3).

ut

Exercise 2.3.5. Suppose (M, g) is a compact oriented Riemann manifold without boundary. Let
n := dimM .

(a) Prove that the DeRham complex

0→ Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)→ 0

is an elliptic complex.

(b) Let Hk(M, g) :=
{
ω ∈ Ωk(M); dω = d∗ω = 0

}
. Hodge theorem implies that

Hk(M, g) ∼= Hk
DR(M).

Prove that the Hodge ∗-operator ∗g : Ωk(M)→ Ωn−k(M) induces an isomorphism

∗g : Hk(M, g)→ Hn−k(M, g).

(c)(Hodge decomposition) Prove that we have an L2-orthogonal decomposition

Ωk(M) = Hk(M, g) + dΩk−1(M) + d∗Ωk+1(M).

(d) The Levi-Civita connection on TM induces a connection ∇̂ on Λ•T ∗M . Prove that the Lapla-
cian

∆ = (d+ d∗)2 : Ω•(M)→ Ω•(M)

and the covariant Laplacian
∇̂∗∇̂ : Ω•(M)→ Ω•(M)

differ by a zero order term, i.e., an endomorphism of Λ•T ∗M . ut

Exercise 2.3.6. Let H be a complex Hilbert space. A bounded operator L : H → H is called
Fredholm if both L and L∗ have closed ranges and dim kerL + dim kerL∗ < ∞. In this case the
Fredholm index of L is

indL = dim kerL− dim kerL∗.

(a) Prove that L is Fredholm if and only if L admits a parametrix, i.e., a bounded linear operator S
such that SL− 1 and LS − 1 are compact.

(b) [0, 1] 3 t 7→ Lt is a continuous family of Fredholm operators then indLt is independent of t.

(c) Show that if L : H → H is Fredholm and K : H → H is compact then L+K is Fredholm and

ind(L+K) = indL.
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(d) Suppose L0, L1 : H → H are Fredholm. Construct a continuous family of Fredholm operators
At : H ⊕H → H ⊕H such that A0 = L0 ⊕ L1, A1 = −1⊕ L1L0. Conclude that

indL0L1 = indL0 + indL1.

Hint: For this exercise you need to know Fredholm-Riesz Theorem, [6, Chap. VI]. If K : H → H
is a compact operator then 1 +K is Fredholm and ind(1 +K) = 0.

Exercise 2.3.7. Suppose that (M, g) is a compact oriented Riemann manifold of dimension m,
E,F → M are complex Hermitian vector bundles and L ∈ PDOk(E,F ) is an elliptic p.d.o.
of order k. Suppose that we have sequences un ∈ Lk,2(E) and fn ∈ L2(F ) with the following
properties.

• Lun = fn, ∀n.

• There exist u ∈ L2(E) and f ∈ L2(F ) such that

lim
n→∞

(
‖un − u‖L2(E) + ‖fn − f‖L2(F )

)
= 0.

Prove that u ∈ Lk,2(E), Lu = f and

lim
n→∞

‖un − u‖Lk,2(E) = 0. ut

Exercise 2.3.8. Prove Corollary 2.2.9. ut

Exercise 2.3.9. Prove Lemma 2.2.21. ut





Chapter 3

The Atiyah-Singer Index
Theorem: Statement and
Examples

3.1. The statement of the index theorem

Suppose (M, g), is a compact, oriented, Riemann manifold without boundary, dimM = 2m, m ∈
Z>0. We denote by ∇g the Levi-Civita connection on TM , and by R = Rg ∈ Ω2(Endg−(TM)) its
curvature, i.e., the Riemann tensor. We form the Â-genus form

Â(M, g) = det1/2

(
i

4πRg

sinh
(

i
4πRg

) ) ∈ Ω•(M).

This is a closed form whose cohomology class is independent of g and we denote by Â(M).

Suppose (E,∇E) is a Dirac bundle and D : C∞(E+) → C∞(E−) is the associated Dirac
operator. We denote by FE/S ∈ EndCl(M)(E) the twisting curvature of E. Recall that we have a
natural relative s-trace (see Definition 2.2.7)

strE/S : EndCl(M)(E)→ CM .

This induces a map

strE/S : Ω•(EndCl(M)(E))→ Ω•(M)⊗ C,

uniquely determined by

strE/S(ω ⊗ T ) = ω strE/S T, ∀ω ∈ Ω•(M), ∀T ∈ EndCl(M)(E).

We set

chE/S(E) := strE/S exp
( i

2π
FE/S

)
∈ Ω•(M).

We will see a bit later that this is a closed form whose cohomology class depends only on the
topology of E.

93
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If we twist E by a s-bundle (W,∇W ), then according to (2.2.13) we have

FE⊗̂W/S = FE/S ⊗ 1W + 1E ⊗ FW .

where the curvature FW of W has the direct sum decomposition

FW = FW
+ ⊕ FW− .

We deduce
ch(E⊗̂W )/S(E⊗̂W ) = chE/S(E/S)

(
ch(FW

+
)− ch(FW

−
)
)
. (3.1.1)

We can now formulate the main result of these lectures, the celebrated Atiyah-Singer index theorem.

Theorem 3.1.1 (Atiyah-Singer).

indDE = dim kerDE − dim kerD∗E =

∫
M

Â(M, g) chE/S(E/S).

We will spend the remainder of this chapter elucidating the significance of the integrand in the
Atiyah-Singer index theorem. Observe that the integrand on the right-hand side is a form of even
degree so that the index of a geometric Dirac operator on an odd dimensional manifold must be
zero. Therefore, in the sequel we will concentrate exclusively on even dimensional manifolds.

The theorem is true in a much more general context of elliptic operators but the formulation
requires a rather long detour in topological K-theory. For the curious reader we refer to the mag-
nificent papers [1, 2].

3.2. Fundamental examples

3.2.1. The Gauss-Bonnet theorem. Suppose (M, g) is a compact, oriented Riemann even dimen-
sional manifold without boundary. Set 2m := dimM , E := Λ•T ∗M ⊗ C and we denote by ∇E
the connection on E induced by the Levi-Civita connection. As explained in Example 2.2.27, the
bundle E is a Clifford bundle, and (E,∇g) is a Dirac bundle with associated Dirac operator

DE = d+ d∗ : Ω•(M)→ Ω•(M).

The bundle E has an obvious Z/2-grading

E± = Λeven/oddT ∗M

and DE is odd with respect to this grading, i.e.,

DEC
∞(E±) ⊂ C∞(E∓).

As usual, we denote by D the restriction of DE to C∞(E+). The Hodge theorem shows that the
index of

DE : C∞(E+)→ C∞(E−)

is precisely the Euler characteristic of M . The Atiyah-Singer index formula shows that

χ(M) =

∫
M

Â(M, g) chE/S(E/S).

Let us analyze the integrand in the right-hand-side of the above equality. We first need to understand
the twisting curvature FE/S

FE/S = FE − c(R) ∈ Ω2
(

EndCl(M)(E)
)
.
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Fix x ∈M and choose a local orthonormal frame ei of TM near x. Set Vx := T ∗xM . We denote by
ei the dual coframe. We assume additionally that (ei) is synchronous at x. Set

Rijk` := g
(
ei, Rg(ek, e`)ej

)
= −g

(
Rg(ek, e`)ei, ej).

This shows that
Rg(ek, e`)ej =

∑
i

Rijk`ei. (3.2.1)

For every i < j the curvature FE of ∇E induces a skew-symmetric endomorphism

FEx (ei, ej) ∈ End(Ex).

We want to describe this endomorphism in terms of the componentsRijk`. For every ordered multi-
index I = (i1 < · · · < iα) we set

eI := ei1 ∧ · · · ∧ eiα .
The collection

{
eI ; I

}
defines a local orthonormal frame of E near x and thus we only need to

understand
FEx (ek, e`)e

I(x).

Setting∇i = ∇ei we have

FE(ek, e`)e
I =

(
[∇Ek ,∇E` ]−∇E[ek,e`]

)
eI

Since (ei) is synchronous at x we deduce that, at x,

∇E[ek,e`]e
I = 0.

We deduce that at x we have

FE(ek, e`)e
I = (FE(ek, e`)e

i1) ∧ · · · ∧ eiα + · · ·+ ei1 ∧ · · · ∧ (FE(ek, e`)e
iα).

Let us observe that
FE(ek, e`)e

a =
∑
i

Riak`e
i. (3.2.2)

Indeed, we have
F e(ek, e`)e

a = 〈F e(ek, e`)ea, ej〉ej .
From the equality

0 = [∂ek , ∂e` ]〈e
a, ej〉,

we deduce that, at x,

0 = 〈[∇k,∇`]ea, ej〉+ 〈ea, [∇k,∇`]ej〉 = 〈F e(ek, e`)ea, ej〉+ 〈ea, R(ek, e`)ej〉.
Hence, at x we have

〈F e(ek, e`)ea, ej〉 = −〈ea, R(ek, e`)ej〉
(3.2.1)

= −
〈
ea,
∑
i

Rijk`ei

〉
=
∑
i

Rijk`δ
a
i = −Rajk` = Rjak`.

This proves (3.2.2).

We denote by εi ∈ End(Ex) the exterior multiplication by ei and by ιj ∈ End(Ex) the con-
traction by ej . We can then rewrite (3.2.2) as

FE(ek, e`)e
a =

(∑
i,j

Rijk`εiιj

)
ea.
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Moreover

εiιje
I = (εiιje

i1) ∧ ei2 ∧ · · · ∧ eiα + · · ·+ ei1 ∧ · · · eiα−1 ∧ (εiιje
iα),

and we deduce
FE(ek, e`)e

I =
(∑
i,j

Rijk`εiιj

)
eI . (3.2.3)

For every j = 1, 2, · · · , 2m we set

βj := εj + ιj , ci = εi − ιi = c(ei).

Observe that
{βi, βj} = −{ci, cj} = 2δij ,

{ci, βj} = (εi − ιi)(εj + ιj) + (εj + ιj)(εi − ιi) = 0.

This shows that βi ∈ End(E) s-commute with the Clifford action, ∀i, so that

βi ∈ ÊndClC(Vx)(Ex), ∀i.

Now observe that

2εi = ci + βi, −2ιj = cj − βj εiιj = −1

4
(ci + βi)(cj − βj)

Using this in (3.2.3) we deduce

FE(ek, e`)e
I = −1

4

∑
i,j

Rijk`(ci + βi)(cj − βj)eI . (3.2.4)

The sum in the right-hand-side can be further simplified. We have∑
i,j

Rijk`(ci + βi)(cj − βj) =
∑
i,j

Rijk`
(
cicj − βiβj + βicj − ciβj

)
.

Using the symmetry Rijk` = −Rjik` and the s-commutativity {ci, βj} = 0 we deduce

FE(ek, e`)e
I = −1

4

∑
i,j

Rijk`(cicj − βiβj)eI

=
1

4

(∑
i,j

g(Rg(ek, e`)ei, ej)c
icj
)

︸ ︷︷ ︸
c(R)(ek,e`)

eI − 1

4

(∑
i,j

g(Rg(ek, e`)ei, ej)βiβj

)
eI . (3.2.5)

This implies

FE/S(ek, e`) =
1

4

∑
i,j

Rijk`βiβj = −1

4

∑
i,j

g(Rg(ek, e`)e
i, ej)βiβj . (3.2.6)

We now turn to the investigation of the s-trace

strE/S : ÊndCl(Vx)(Ex)→ C.

For every skew-symmetric endomorphism R of Vx = T ∗xM we define βR ∈ ÊndClC(Vx)(Ex) by

βR = − i

8π

∑
i,j

g(Rei, ej)βiβj .
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Lemma 3.2.1. Let R : T ∗xM → T ∗xM be a skew-symmetric endomorphism. Then

strE/S expβR =
Pfaff(− 1

2πR)

det
1
2 Â( i

2πR)
,

where we recall that Â(x) denotes the even function

Â(x) =
x/2

sinh(x/2)
.

Proof. The morphism βR is independent of the orthonormal basis (ei) of Vx. Chose an oriented
orthonormal frame

{
ei, f i; 1 ≤ i ≤ m} with respect to which R is quasi-diagonal

Rei = λif
i, Rf i = −λif i. (3.2.7)

Set xj := −λj
2π . Using (1.2.14) and (1.2.15) we deduce

Pfaff(− 1
2πR)

det
1
2 Â( i

2πR)
=

m∏
j=1

xj

Â(xj)
. (3.2.8)

On the other hand, spectral decomposition (3.2.7) implies that

βR = − i

4π

m∑
i=1

λi β(ei)β(f i)︸ ︷︷ ︸
=:Bi

.

Observe that [Bi, Bj ] = 0 for all i 6= j so that

exp(βR) =
m∏
i=1

exp
( −iλi

4π
Bi

)
.

Now observe that

B2
i = β(ei)β(f i)β(ei)β(f i) = −β(ei)2β(f i)2 = −1

so that
exp(zBi) = cos z + (sin z)Bi,

and

exp(βR) =

m∏
j=1

(
cos

iλj
4π

+Bj sin
−iλj
4π

)
.

Using the identities
cos(iz) = cosh z, sinh z = i sin(−iz)

we deduce

exp(βR) =
m∏
j=1

(
cosh

(λj
4π

)
− iBj sinh

(λj
4π

))
.

Let

Γ :=
m∏
j=1

c(ej)c(f j)︸ ︷︷ ︸
=:Cj

.



98 Liviu I. Nicolaescu

Using Corollary 2.2.9 we deduce

strE/S expβR =
im

2m
strE(Γ exp(βR)).

Now observe that

Γ exp(βR) =
m∏
j=1

Cj

(
cosh

(λj
4π

)
− iBj sinh

(λj
4π

))
.

Set

Tj :=
i

2
Cj

(
cosh

(λj
4π

)
− iBj sinh

(λj
4π

))
=

i

2
cosh

( λj
4π

)
Cj +

1

2
sinh

( λj
4π

)
CjBj ,

Vj := spanC(ej , f j), Ej := Λ•Vj .

Observe that 1, ej , f j , ej ∧ f j is an orthonormal basis of Ej and we have

Bj1 = ej ∧ f j = Cj1, Bje
j ∧ f j = −1 = Cje

j ∧ f j (3.2.9a)

Bje
j = −f j = −Cjej , Bjf

j = −ej = −Cjf j (3.2.9b)

CjBj = −1Eevenj
+ 1Eoddj

. (3.2.9c)

Hence Ej is an invariant subspace of Cj , Bj and

strEj CjBj = −4, strEj Cj = 0, strEj Tj = −2 sinh
( λj

4π

)
= 2 sinh

(
−λj

4π

)
(xj := −λj

2π )

= xj
sinh(

xj
2 )

xj
2

=
xj

A(xj)
.

Additonally, observe that for j 6= k we have

Bje
k = ej ∧ f j ∧ fk, Bjf

k = ej ∧ f j ∧ fk. (3.2.10)

Using the isomorphism of s-vector spaces

E ∼=
⊗̂

j
Ej

we deduce

strE
im

2m
Γ expβR =

∏
j

strEj Tj =
∏
j

xj
sinh(

xj
2 )

xj
2

=
xj

A(xj)

The conclusion now follows from (3.2.8). ut

From (3.2.6), Lemma 3.2.1 and the analytic continuation principle (Proposition 1.2.11) we de-
duce

strE/S
(

exp
( i

2π
FE/S

))
=

Pfaff(− 1
2πRg)

det
1
2 Â( i

2πRg)
=

e(M, g)

Â(M, g)
,

where e (M, g) denotes the Euler form determined by the Levi-Civita connection on TM . Using
this in the index theorem we obtain the following result.
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Theorem 3.2.2 (Gauss-Bonnet-Chern). For every compact oriented, even dimensional Riemann
manifold (M, g) we have

χ(M) =

∫
M

e(M, g) =

∫
M

Pfaff
(
− 1

2π
Rg

)
.

3.2.2. The signature theorem. The bundle E := Λ•T ∗M ⊗ C is equipped with another Z/2-
grading induced by the Hodge ∗-operator

∗ : Λ•T ∗M → Λ2m−•T ∗M.

Recall that for any α ∈ Ωp(M) we have (see (1.3.1))

∗(∗α) = (−1)p(2m−p)α = (−1)pα.

Define
µ(m, p) = p(p− 1) +m

γp = iµ(m,p)∗ : ΛpT ∗M ⊗ C→ Λ2m−pT ∗M ⊗ C, γ := ⊕pγp ∈ End(E).

Observe that

µ(m, p) + µ(m, 2m− p) = p(p− 1) + (2m− p)(2m− p− 1) + 2m

= 4m2 + 2m+ p(p− 1)− 2m(2p+ 1) + p(p+ 1) = 2p2 mod 4.

Since i2p
2

= (−1)p we deduce γ2 = 1E and the ±1-eigenspaces of γ define a Z/2-grading on E.
Moreover a simple computation left as an exercise shows that1

γ = imc(dVg) = imc(Γ), (3.2.11)

where for a local, oriented, orthonormal frame e1, . . . , e2m of T ∗M we have

Γ = e1 · · · e2m ∈ Cl(M).

We deduce
c(α)γ + γc(α) = 0, ∀α ∈ Ω1(M).

This shows that we can interpret E equipped with this new Z/2-grading as a new bundle Clifford
bundle. We will denote it by E = E+⊕E−. Since the bundle and the Clifford action has not changed
it is clear that E is a Dirac bundle with associated geometric Dirac operator d+ d∗. This induces an
elliptic operator

D = (d+ d∗) : C∞(E+)→ C∞(E−).

We would like to compute its index. Observe that

kerD =
{
α ∈ Ω•(M)⊗ C; γα = α, dα = d∗α = 0

}
,

kerD∗ =
{
α ∈ Ω•(M)⊗ C; γα = −α, dα = d∗α = 0

}
.

To compute indCD = dimC kerD−dimC kerD∗ we will use the Poincaré-Hodge duality. Denote
by Hp(M, g) the space of complex valued g-harmonic (m+ p)-forms,

Hp(M, g) := ker(d+ d∗) ∩ Ωm+p(M)⊗ C ∼= Hm−p(M,C).

1This explains the weird choice of µ(m, p).
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Then γ defines an isomorphism γ : H−p(M, g) → Hp(M, g). We get a decomposition into γ-
invariant subspaces

ker(d+ d∗) =
m⊕
p=0

Kp, K0 = H0(M, g) ∼= Hm(M,C),

Kp = H−p(M, g)⊕Hp(M, g) ∼= Hm−p(M,C)⊕Hm+p(M,C).

We deduce

dimC kerD =
∑
p≥0

dim kerC(1Kp − γ), dimC kerD =
∑
p≥0

dimC ker(1Kp + γ).

For p > 0 we have another involution ε on Kp

εp = 1H−p ⊕−1Hp .

Note that γ |Kp anticommutes with εp. This implies that εp induces an isomorphism

εp : ker(1Kp − γ)→ ker(1Kp + γ)

so that
dimC kerD − dimC kerD∗ = dimC ker(1K0 − γ)− dimC ker(1K0 + γ).

Observe that K0 is the complexification of the real vector space of real valued g-harmonic m-forms
and as such it its equipped with a R-linear involution, the conjugation. We will denote this operator
by C. We will compute

dimR ker(1K0 − γ)− dimR ker(1K0 + γ) = 2 indCD.

At this point we have to consider two cases.

1. m is odd. Observe that for every complex valued m-form α we have

γCα = im
2 ∗ ᾱ = (−1)mim

2 ∗ α = −Cγα.
This shows that C defines an isomorphism of real vector spaces

C : ker(1K0 − γ)→ ker(1K0 + γ)

which shows that in this case
indCD = 0.

2. m is even. Then γ |K0= im
2∗ = ∗ and in particular γ commutes with the conjugation. Denote

by Hm(M, g) the space of real g-harmonic m-forms on M so that

K0 = Hm(M, g)⊗ C.

We deduce
dimC ker(1K0 ± γ) = dimR(1Hm(M,g) ± γ).

The vector space Hm(M, g) is equipped with a symmetric bilinear form

Hm(M, g)×Hm(M, g) 3 (u, v) 7→ Q(u, v) =

∫
M
u ∧ v.

Moreover
Q(u, γv) = (u, v)L2 =⇒ I(u, v) = (u, γv)L2 .

Hence, using the L2-metric on Hm, we can represent Q by the symmetric operator γ = ∗. The
signature of Q is thus the same as the difference between the dimension of the 1-eigenspace of γ
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and the dimension of the −1-eigenspace of γ. The Poincaré duality shows that Q is precisely the
intersection form (over R) of the manifold M and the signature of Q is a topological invariant,
namely the signature sign(M) of M . We conclude

indCD = sign(M)

To express the index as an integral quantity we need to find an explicit description of

strE/S
( i

2π
F E/S

)
.

Observe that F E/S = FE/S. The only difference between this situation and the Gauss-Bonnet
situation encountered earlier is in the choice of gradings.

Lemma 3.2.3. Using the same notations as in Lemma 3.2.1 we have

strE/S expβR = 2m
det

1
2L( i

4πRg)

det
1
2 Â( i

2πRg)
,

where we recall that L(x) = x
tanhx .

Proof. Using Corollary 2.2.9 we deduce

strE/S expβR =
im

2m
strE Γ expβR =

im

2m
trE γΓ expβR.

Using the equality (3.2.11) we deduce that imΓγ = 1E so that

strE/S expβR =
1

2m
trE expβR.

To compute this trace we choose as in the proof of Lemma 3.2.1 an oriented, orthonormal basis
{e1, f1, . . . , em, fm} of Vx such that

Rej = λjf
j , Rf j = −λf j .

We deduce again that

expβR =

m∏
j=1

(
cosh

( λj
4π

)
− iBj sinh

( λj
4π

))
Set again

Vj := spanC(ej , f j), Ej := Λ•Vj .

We deduce from (3.2.9a, 3.2.9b, 3.2.9c, 3.2.10)

trE expβR =

m∏
j=1

trEj
(

cosh
( λj

4π

)
− iBj sinh

( λj
4π

))
.

Since trEj Bj = 0 we deduce

strE/S expβR =
1

2m

m∏
j=1

cosh
(λj

4π

)
dimEj = 2mdet

1
2 cosh

( i

4π
R
)
.

At this point we observe the following elementary identity

L(x/2)

A(x)
= 2 coshx/2.
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Hence

strE/S expβR = 2m
det

1
2L( i

4πRg)

det
1
2 Â( i

2πRg)
.

ut

Observe that we have

2m
[
det

1
2L
( i

4π
Rg

)]
m

=

[
det

1
2L
( i

2π
Rg

)]
m

,

where for any power series f = f(X1, . . . , XN ) we denote by [f ]k its homogeneous part of degree
m. Putting together the facts obtained so far and invoking the unique continuation principle we
obtain the following important result.

Theorem 3.2.4 (Hirzebruch signature theorem). Suppose (M, g) is a compact, oriented Riemann
manifold without boundary such that dimM = 4k. Then

sign(M) = 22k

∫
M

[
det

1
2L
( i

4π
Rg

)]
2k

=

∫
M

L(M).

In particular when dimM = 4 we obtain

sign(M) =
1

3

∫
M
p1(M) = − 1

24π2

∫
M

tr(Rg ∧Rg),

where Rg ∈ Ω2(EndTM) denotes the Riemann curvature tensor, and p1(M) denotes the first
Pontryagin class of the tangent bundle of M .

Example 3.2.5. We would like to discuss an amusing consequence of the signature theorem. The
Poincaré duality shows that the Betti numbers of a compact, connected, oriented n-dimensional
manifold M satisfy the symmetry conditions

bk(M) = bn−k(M).

If we form the Poincaré polynomial of M

PM (t) = 1 + b1(M)t+ · · ·+ bn−1(M)tn−1 + tn

then we see that the coefficients of this polynomial are symmetrically distributed. It is more conve-
nient to consider the polynomial

QM (t) = t−n/2 + b1(M)t−n/2+1 + · · ·+ tn/2.

The Poincaré duality then shows that

QM (1/t) = QM (t).

For example
QS4 = t−2 + t2, QCP2 = t−2 + 1 + t2, QS2m = t−m + tm.

Observe that
QCP2 −QS4 = 1.

We can ask if for every m > 0 we can find an oriented manifold X of dimension 2m such that

QX −QS2m = 1. (3.2.12)
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Let us point out that if m = 2k + 1 so that n = 4k + 2, then the intersection form on the middle
cohomology groupH2k+1(X,R) is skew-symmetric, and non-degenerate according to the Poincaré
duality. In particular the middle Betti number b2k+1(X) must be even so that

1 6= b2k+1(X) + b2k(X)(t+ t−1) + · · ·+ b1(X)(t2k + t−2k) = QX −QS4k+2 .

Thus the ”equation” (3.2.12) does not have a solution when m is odd. We can refine our question
and ask if it has a solution for every even m. For the smallest possible choice of m the answer is
positive andX = CP2 is such a solution. We want to show that form = 6 we cannot find a solution
either, but for different other reasons.

Suppose X is a 12-dimensional manifold ”solving” the equation (3.2.12). This means

QX = t−6 + 1 + t6 ⇐⇒ bk(X) =

{
0 if k 6= 0, 6, 12
1 if k = 0, 6, 12.

In particular, Hk(X,R) for k 6= 0, 6, 12. From the signature theorem we deduce

sign(X) =

∫
X

L12(X)

where L12 denotes the degree 12 part of the L-genus. We have (see [13])

L12(X) =
2 · 31

33 · 5 · 7
(
p3(X)− 13p2(X)p1(X) + 2p3

1(X)
)
.

The Pontryagin classes p1(X) ∈ H4(X,R) and p2(X) ∈ H8(X,R) vanish so that

sign(X) =
2 · 31

33 · 5 · 7

∫
X
p3(X).

On the other hand2 ∫
X
p3(X) ∈ Z

and we deduce that the signature of X must be divisible by 62. On the other hand, the signature
of X is the signature of the intersection form on the one-dimensional space H6(X,R) so that this
signature can only be ±1. We reached a contradiction!

For more examples of this nature we refer to J. P. Serre, “Travaux de Hirzebruch sur la topologie
des variétés”, Séminaire Bourbaki 1953/54, n◦ 88. ut

3.2.3. The Hodge-Dolbeault operators and the Riemann-Roch-Hirzebruch formula. Suppose
M is a connected manifold. An almost complex structure on M is a an endomorphism J : TM →
TM such that

J2 = −1.
An almost complex manifold is a manifold equipped with an almost complex structure. The exis-
tence of an almost complex structure imposes restrictions on the manifold.

Proposition 3.2.6. Suppose (M,J) is an almost complex manifold. Then n = dimR is even
n = 2m and the tangent bundle TM admits a GL(m,C)-structure. More precisely, if we denote by
ρ the canonical inclusion

GLm(C) ↪→ GL2m(R),

2For a proof of this fact we refer to [20, 22].
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then there exists a principal GLm(C)-bundle P →M such that

TM ∼= P ×ρ R2m. ut

From Example 1.1.13(h) and the above proposition we deduce that an almost complex manifold
is orientable. There is a canonical way of choosing an orientation of TM . To describe it we need to
indicate a basis of detTxM at some point x ∈M . We do this by choosing a basis e1, f1, . . . , em, fm
of TxM adapted to J , i.e.,

Jek = fk, Jfk = −ek, ∀k = 1, . . . ,m. (3.2.13)

Then the canonical orientation is determined by e1∧f1∧· · ·∧em∧fm ∈ detTxM . One can check
easily that if ẽ1, f̃1, · · · ẽm, f̃m is another basis adapted to J then we can find a positive scalar c such
that

ẽ1 ∧ f̃1 ∧ · · · ∧ ẽm ∧ f̃m = c
(
e1 ∧ f1 ∧ · · · ∧ em ∧ fm

)
,

so that this orientation is independent of the choice of adapted basis. We will refer to this as the
complex orientation.

Example 3.2.7. Any complex manifold, i.e., a manifold which is described by charts with holo-
morphic transition maps, carries a natural almost complex structure. An almost complex structure
produced in this fashion is called integrable. ut

If (M,J) is an almost complex manifold, we define a structure on C∞(M,C)-module on
Vect(M) by setting

(u+ iv) ·X = uX + vJX, ∀u, v ∈ C∞(M,R), X ∈ Vect(M).

The complexified tangent bundle TM c = TM ⊗ C admits a decomposition

TM c = TM1,0 ⊕ TM0,1, TM1,0 = ker(i− J), TM0,1 = ker(−i− J).

In particular we have natural projections

P 1,0 : TM c → TM1,0, P 0,1 : TM c → TM0,1,

described explicitly as

X1,0 := P 1,0X =
1

2
(X − iJ), X0,1 := P 0,1X =

1

2
(X + iJX), ∀X ∈ C∞(TM c).

The restriction of P 1,0 to TM ⊂ TM c induces an isomorphism of complex vector bundles

P 1,0 : (TM, J)→ TM1,0.

By duality we get an operator J† : T ∗M → T ∗M satisfying (J†)2 = −1. The complexified
cotangent bundle T ∗M c := T ∗M ⊗ C admits a decomposition

T ∗M c = T ∗M1,0 ⊕ T ∗M0,1, T ∗M1,0 = ker(i− J†), T ∗M0,1 = ker(−i− J†).
In particular, for every k we have a decomposition

ΛkT ∗M c =
⊕
p+q=k

ΛpT ∗M1,0 ⊕ ΛqT ∗M0,1︸ ︷︷ ︸
:=Λp,qT ∗M

.

We set
Ωp,q(M) := C∞(Λp,qT ∗M).
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The elements of Ωp,q(M) are called (p, q)-forms on M . The bundle

detCTM
0,1 = Λ0,mTM ∼= Λm,0T ∗M, 2m = dimRM

is called the canonical line bundle of the almost complex manifold M and it is denoted by KM . It
is a complex line bundle and its sections are (m, 0)-forms on M .

For any α ∈ Ωp,q(M) ⊂ Ωk(M)⊗ C, k = p+ q, we have

dα ∈
⊕

p′+q′=k+1

Ωp′,q′(M).

In particular dα will have a component in Ωp+1,q(M) which we denote by ∂α and a component in
Ωp,q+1(M) which we denote by ∂̄.

For a proof of the following result we refer to [15, IX,§2].

Proposition 3.2.8 (Nirenberg-Newlander). Suppose (M,J) is an almost complex manifold. Then
the following conditions are equivalent.

(a) The almost complex structure is integrable.

(b) For every p, q and every α ∈ Ωp,q we have

dα = ∂α+ ∂̄α. ut

An almost Hermitian structure on M is a pair (g, J), where g is a Riemann metric and J is
an almost complex structure such that J∗ = −J , i.e., J is an orthogonal endomorphisms. To any
almost Hermitian (g, J) structure we can associate a 2-form

ω ∈ Ω2(M), ω(X,Y ) = g(JX, Y ), ∀X,Y ∈ Vect(M).

The metric g defines a Hermitian metric h : Vect(M)×Vect(M)→ C∞(M,C) on TM by setting

h(X,Y ) := g(X,Y )− iω(X,Y ) ∈ C∞(M,C), ∀X,Y ∈ Vect(M).

One can check that

h(aX, bY ) = ab̄ · h(X,Y ) ∀a, b ∈ C∞(M,C), X, Y ∈ Vect(M). (3.2.14)

We can run the above arguments in reverse and deduce the following fact.

Proposition 3.2.9. Suppose (M, g) is an almost complex manifold. Suppose ω ∈ Ω2(M) is a
2-form adapted to J i.e.

ω(X, JX) > 0, ω(X,JY ) = ω(Y, JX), ∀X,Y ∈ Vect(M) \ 0.

Then g(X,Y ) := ω(X, JY ) defines an almost Hermitian structure on (M,J) with associated 2-
form ω. ut

Using the isomorphism of complex vector bundles P 1,0 : (TM, J) → TM1,0 we obtain a
Hermitian metric on TM1,0 such that the above isomorphism is actually an isometry.
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Example 3.2.10 (The standard almost Hermitian structure.). Consider the Euclidean vector space
R2m = Rm ⊕ Rm equipped with the almost complex structure

J =

[
0 −1Rm

1Rm 0

]
.

Denote by e1, . . . , em the canonical basis of the first summand Rm in Rm ⊕ Rm and set fk = Jek.
The basis e1, f1, . . . , ek, fk is orthonormal and we denote by e1, f1, . . . , ek, fk the dual basis of
(R2m)∗. We regard ej , f j as functions of R2m. The Euclidean metric has the description

g =
∑
k

(ek ⊗ ek + fk ⊗ fk)

The associated 2-form satisfies

ω(ei, fj) = δij , ω(ei, ej) = ω(fi, fj) = 0

so that
ω = e1 ∧ f1 + · · ·+ ek ∧ fk.

We set
εk :=

1√
2

(ek + ifk), ε̄k =
1√
2

(ek − ifk).

Then the associated hermitian metric h has the form

h = 2
∑
k

εk ⊗ ε̄k =
∑
k

(ek ⊗ ek + fk ⊗ fk)− i
∑
k

ek ∧ fk.

We deduce
g = Reh, ω = − Imh = i

∑
k

εk ∧ ε̄k. ut

Definition 3.2.11. (a) An almost Hermitian structure (g, J) on M is called almost Kähler if the
associated 2-form is closed .

(b) An almost Kähler structure (g, J) is called Kähler if the almost complex structure is integrable.
ut

We have the following sequence of implications

Kähler =⇒ almost Kähler =⇒ almost Hermitian =⇒ almost complex.

Suppose M is a complex manifold with induced almost complex structure J : TM → TM . The
complexified tangent bundle TM c = TM ⊗ C is equipped with an involution

TM c → TM c, v 7−→ v̄

which is R-linear and maps TM1,0 to TM0,1. We have the following result whose proof is left as
an exercise.

Proposition 3.2.12. The complex manifold M admits a Kähler structure if and only if it admits a
positive, closed, (1, 1)-form, i.e., a closed form ω ∈ Ω1,1(M) such that

−iω(v, v̄) > 0, ∀v ∈ TxM1,0 \ 0, x ∈M.

In this case the Riemann metric on TM is defined by

g(X,Y ) = −2iω(X1,0, Y 0,1) = ω(X, iY ), ∀X,Y ∈ Vect(M)
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and the hermitian metric h on (TM, J) satisfies

Reh = g, Imh = −ω. ut

For a proof of the following result we refer to [15, IX§4].

Proposition 3.2.13. Suppose (M, g, J) is an almost Kähler manifold. Denote by∇g the Levi-Civita
connection on TM . Then (M, g, J) is Kähler if and only if∇gJ = 0, i.e.

∇gX(JY ) = J(∇gXY ), ∀X,Y ∈ Vect(M). ut

Example 3.2.14. (a) (The standard (Euclidean) Kähler metric) The vector space Cn equipped
with the natural complex structure and hermitian metric h is a Kähler manifold. If we denote by
zk = xk + iyk the natural complex coordinates, and we set

ek :=
∂

∂xk
, fk :=

∂

∂yk
,

then we have
ek = dxk, fk = dyk, εk =

1√
2
dzk, ε̄k =

1√
2
dz̄k

so that
h =

∑
k

dzk ⊗ dz̄k, ω =
i

2

∑
k

dzk ∧ dz̄k.

We set
∂zk = P 1,0∂xk =

1

2
(∂xk − i∂yk), P 1,0∂yk = i∂zk ,

∂z̄k = P 0,1∂xk =
1

2
(∂xk + i∂yk).

Then
∂ =

∑
k

dzk ∧ ∂zk , ∂̄ =
∑
k

z̄k ∧ ∂z̄k .

(b) Suppose Σ is a compact oriented Riemann surface equipped with a Riemann metric onM . Then
the Hodge ∗-operator induces an operator

∗ : T ∗Σ→ T ∗Σ, ∗2 = −1.

By duality this induces an almost complex structure on Σ. We obtain in this fashion an almost
Hermitian structure (g, ∗) on Σ. The associated 2-form is the volume form dVg which must be
closed since its differential is zero due to dimensional constraints. We deduce that this structure is
almost Kähler. Dimensional constraints imply

d = ∂ + ∂̄

so that by Proposition 3.2.8 this structure is also Kähler.

(c)(The Fubini-Study metric) Consider the projective space CPn. Recall that this is defined as a
quotient of Cn+1 \ {0} with respect to the natural action of C∗. Set Z = (z0, . . . , zn), and

|Z|2 =
n∑
k=0

|zk|2, ω :=
i

2π
∂∂̄ log |Z|2 = Ω1,1(Cn+1 \ 0).

For every holomorphic function f defined on an open set U ⊂ Cn+1 \ 0 we have

log |f |2|Z|2 = log |f |2 + log |Z|2 = log(ff̄) + log |Z|2.
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and a simple computation shows that

∂∂̄ log(ff̄) = 0.

In particular, this shows that for zk 6= 0 if we set

~ζk = (z0/zk, . . . , zk−1/zk, zk+1/zk, . . . , zn/zk)

we have

ω0 =
i

2π
∂∂̄ log(1 + |~ζk|2).

The vector ~ζk defines local coordinates on the region

Uk =
{

[z0, . . . , zn] ∈ CPn; zk 6= 0
}
.

The above equality shows that on the overlap Uj ∩ Uk we have

i

2π
∂∂̄ log(1 + |~ζk|2) =

i

2π
∂∂̄ log(1 + |~ζj |2)

so that the collection of forms i
2π∂∂̄ log(1 + |~ζk|2) defines a global (1, 1)-form on CPn. This is

called the Fubini-Study form. We will denote it by ΩFS

Observe that ΩFS is closed and it is invariant with respect to the action of U(n+ 1) on CPn. If
we write generically ~ζ = (ζ1, . . . , ζn) and

ΩFS =
i

2π
∂∂̄ log

(
1 +

∑
j

|ζj |2
)

we deduce that

ΩFS =
i

2π(1 + |~ζ|2)2

(
(1 + |~ζ|2)

∑
j

dζj ∧ dζ̄j −
(∑

j

ζ̄jdζj
)
∧
(∑

k

ζkdζ̄k
) )

(3.2.15)

Observe that at the point P0 ∈ CPn with coordinates ~ζ = (1, 0, . . . , 0) we have

ΩP0 := ΩFS |TP0
CPn=

i

4π

(
dζ1 ∧ dζ̄1 + 2

∑
k>1

dζk ∧ dζ̄k
)
.

In particular, arguing as in (a) we deduce that for every X,Y ∈ TP0CPn \ 0

ΩFS(X, iX) > 0, ΩFS(X, iY ) = ΩFS(Y, iX).

Using Proposition 3.2.9 we deduce that ΩFS defines an almost Kähler structure on CPn. Since
the underlying almost complex structure is integrable we deduce that this structure is Kähler. It is
known as the Fubini-Study structure.

(d) Any complex submanifold M of a Kähler manifold X has a natural Kähler structure induced
from the structure on X . In particular, any complex submanifold of CPn has a natural Kähler
structure induced by the Fubini-Study theorem. Chow’s Theorem (see [12, Chap.I,§3]) implies that
every complex submanifold of CPn is algebraic, i.e., it can be described as the vanishing locus
of a finite collection of homogeneous polynomials. Thus the projective algebraic manifolds admit
Kähler structures. ut
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Definition 3.2.15. A rank r holomorphic vector bundle π : W → M over a complex manifold M
a complex vector bundle described by a trivializing cover (Uα) together with local trivializations

Ψα : W |Uα→ CrUα
such that the transition maps

gβα : Uαβ → GLr(C) ⊂ Cr
2

are holomorphic. ut

The total space of a holomorphic vector bundle W → M is equipped with a holomorphic
structure. Two holomorphic bundles over the same complex manifold are isomorphic if there exists
a biholomorphic bundle isomorphism between them.

If U ⊂ M is an open set, then a section s : U → W of W over U is called holomorphic if it is
holomorphic as a map between the complex manifolds U and W . We denote by OW (U) the space
of holomorphic sections of W over U .

Example 3.2.16. (a) If M is a complex manifold then the trivial line bundle CM admits a trivial
holomorphic structure. A holomorphic line bundle isomorphic to the trivial line bundle is called
holomorphically trivial. We want warn the reader that there exist complex line bundles which can
be trivialized topologically but cannot be trivialized holomorphically .

(b) If M is a complex manifold then the bundles Λp,qT ∗M are equipped with natural holomorphic
structures.

(c) A holomorphic line bundle over a complex manifold is uniquely determined by an open cover
(Uα) and a holomorphic gluing cocycle gβα : Uαβ → C∗. We deduce that the tautological line
bundle over CPn is equipped with a natural holomorphic structure.

(d) All the tensorial operations on bundles transform holomorphic vector bundles to holomorphic
vector bundles. Similarly, the pullback of a holomorphic vector bundle via a holomorphic map is a
holomorphic vector bundle.

We denote by Pic (M) the collection of isomorphism classes of holomorphic line bundles over
the complex manifold M . The tensor product induces a group structure on Pic (M) with identity
element CM and inverse L−1 := L∗. This group is known as the Picard group of M . ut

Definition 3.2.17. Suppose M is a complex manifold and W → M is a complex vector bundle.
We set

Ωp,q(W ) := C∞(Λp,qT ∗M ⊗C W ). ut

Definition 3.2.18. Suppose that W → M is a complex vector bundle over the almost complex
manifold M . A CR-operator (Cauchy-Riemann) on E is a first order p.d.o.

L : C∞(W )→ C∞(T ∗M0,1M ⊗W ),

such that for any smooth function f : M → C and any smooth section u of W we have

L(fu) = (∂̄f)⊗ u+ f(Lu). ut

Proposition 3.2.19. Suppose W → M is a rank r holomorphic vector bundle over a complex
manifold M . Then W is equipped with a canonical CR (Cauchy-Riemann) operator ∂̄W uniquely
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determined by the following requirement: for any open set U ⊂ M and any holomorphic section
u ∈ OW (U) we have ∂̄Wu = 0.

Proof. Existence. Suppose that the bundle W has the gluing description

W = (U••, g••,GLr(C))

where the maps g•• : U•• → GLr(C) ⊂ Cr2
are holomorphic. Then a smooth section u of E is

defined by a collection of smooth maps uα : Uα → Cr satisfying the gluing conditions

uβ(x) = gβα(x) · uα(x), ∀α, β, x ∈ Uαβ.

Define
vα = ∂̄uα.

Observe that on the overlap Uαβ we have

vβ = ∂̄uβ = ∂̄(gβαuα) = (∂̄gβα)uα + gβα∂̄uα.

Since gβα is holomorphic we deduce ∂̄gβα = 0 and thus

vβ = gβα∂̄uα = gβαvα.

Hence the collection (vα) defines a global section v of T ∗M0,1 ⊗W and we set

∂̄Wu := v.

Observe that u is holomorphic if and only the function uα : Uα → Cr are holomorphic. Clearly,
in this case ∂̄Wu = 0 since ∂̄uα = 0. This definition implies immediately that u 7→ ∂̄Wu is a CR
operator.

Uniqueness. Conversely, suppose that ∂̄W and ∂̄′W are two CR-operators. Consider the holomor-
phic gluing cocycle gβα : Uαβ → GLr(C). This signifies that we have biholomorphically identi-
fied W |Uα with the trivial holomorphic vector bundle CrUα . Thus, WUα has a holomorphic frame
e1, . . . , er corresponding to the tautological holomorphic frame of CrUα . Any smooth section u of
W over Uα as the form

u =
n∑
j=1

ujej , uj :∈ C∞(Uα,C).

Since ∂̄Wej = ∂̄′Wej = 0, ∀j, we deduce

∂̄Wu =
∑
j

(∂̄uj)⊗ ej = ∂̄′Wu.

ut

On a complex manifold the bundles Λp,qT ∗M are holomorphic vector bundles. Iterating the
construction in Proposition 3.2.19 we obtain for every p ∈ Z≥0 a sequence of first order p.d.o.-s

0→ Ωp,0(W )
∂̄W−→ Ωp,1(W )→ · · · → Ωp,q(W )

∂̄W−→ Ωp,q+1(W )→ · · · . (3.2.16)

More precisely the operator ∂̄W : Ωp,q(E)→ Ωp,q+1(E) is defined as the composition

C∞(Λp,qT ∗M ⊗W )
∂̄W−→ C∞(T ∗M0,1 ⊗ Λp,qT ∗M ⊗W )

∧−→ C∞(Λp,q+1T ∗M ⊗W ).
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From the definition of ∂̄W it follows that ∂̄2
W = 0 so that (3.2.16) is a cochain complex. It is known

as the p-th Dolbeault complex of W . We will denote it by Ωp,•(W ), ∂̄W ) the cohomology groups
of this complex are denoted by

Hp,q

∂̄
(W ) =

ker
(
∂̄W : Ωp,q(W )→ Ωp,q+1(W )

)
Range

(
∂̄W : Ωp,q−1(W )→ Ωp,q(E)

) .
Observe that ∂̄W is a first order p.d.o, and for every x ∈M and every ξ ∈ T ∗M we have

σW (ξ) := σ(∂̄W )(ξ) = ξ0,1∧ : Λp,qT ∗xM ⊗Wx → Λp,q+1T ∗xM ⊗W,

where ξ0,1 denotes the T ∗xM
0,1 component of ξ with respect to the canonical decomposition

T ∗xM
c ∼= T ∗xM

1,0 ⊕ T ∗xM0,1.

Lemma 3.2.20. The p-th Dolbeault complex is an elliptic complex, i.e., for every x ∈M and every
ξ ∈ T ∗xM \ 0 the symbol complex

0→ Λp,0T ∗xM ⊗W
σW (ξ)−→ Λp,1T ∗xM ⊗W → · · · → Λp,qT ∗xM ⊗W

σW (ξ)−→ Λp,qT ∗xM ⊗W → · · ·

is acyclic. ut

The proof is left as an exercise. Using the above lemma and the general Hodge Theorem 2.1.38
we deduce the following result.

Theorem 3.2.21 (Hodge). Suppose that M is a compact complex manifold and W → M is a
holomorphic vector bundle. Then the cohomology groups of the p-th Dolbeault complex are finite
dimensional. Moreover, for any hermitian metric h on TM and any hermitian metric hW on W we
have

Hp,q

∂̄
(W ) ∼=

{
α ∈ Ωp,q(W ); ∂̄Wα = ∂̄∗Wα = 0

}
,

where ∂̄∗W denotes the formal adjoint of ∂̄W with respect to h and hE . ut

We set

hp,q(W ) := dimCH
p,q

∂̄
(W )

We will refer to these numbers as the holomorphic Betti numbers of W . These numbers are invari-
ants of the holomorphic structure on W . If we vary the holomorphic structure while keeping the
topological structure on E fixed these numbers could change. When W = CM we set

hp,q(M) := hp,q(CM )

and we will refer to these as the holomorphic Betti numbers of M . We define the holomorphic
Poincaré polynomials

H
p
W (t) =

∑
q

hp,qtq, HW (s, t) =
∑
p

H
p
W (t)sp =

∑
p,q

hp,q(W )sptq.

When W = CM we write HM instead of HCM .
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Remark 3.2.22. To put things in some perspective we need to to invoke some sheaf-theoretic con-
cepts. For more details we refer to [12, 32]. Let W → M be a holomorphic vector bundle. For
any q ∈ Z≥0 and any open subset U ⊂ M we denote by E 0,q

W (U) the space of smooth sections of
Λ0,qT ∗M ⊗W over U . The correspondence U → E 0,q

W (U) is a pre sheaf of complex vector spaces
over M , and so is the correspondence U 7→ OW (U). Observe that

OW (U) = ker
(
∂̄W : E 0,0

W (U)→ E 0,1
W (U)

)
.

We obtain a sequence of presheaves and morphisms of presheaves

0→ OW (−) ↪→ E 0,0
W (−)

∂̄W−→ E 0,1
W (−)

∂̄W−→ · · · .

A version of Poincaré lemma shows that this defines an exact sequence of sheaves. The above
sequence is called the Dolbeault resolution of the (pre)sheaf OW , and the cohomology H0,•(W ) of
the 0-th Dolbeault complex can be identified with the cohomology of the sheaf OW . ut

To relate the Dolbeault complex with geometric Dirac operators we need to discuss another
important concept.

Definition 3.2.23. Suppose W → M is a complex vector bundle over the complex manifold M .
Then for every connection∇ on W we define ∂̄∇ as the composition

∂̄∇ : C∞(W )
∇−→ C∞(T ∗M c ⊗W )−→C∞(T ∗M0,1 ⊗W ).

We will refer to ∂̄∇ as the CR operator defined by the connection∇. ut

Proposition 3.2.24 (Chern). Suppose W → M is a holomorphic vector bundle over the complex
manifold M . Then for every hermitian metric h on W there exists a unique hermitian connection
∇h on W satisfying

∂̄∇h = ∂̄W .

The connection∇h is known as the Chern connection determined by h.

Proof. For every vector field X ∈ C∞(TM c) we denote by X its conjugate, by X1,0 and X0,1 its
(1, 0) and respectively (0, 1)-components. Suppose X ∈ C∞(TM c), u, v ∈ C∞(W ). Then for
every hermitian connection∇ on W we have

LXh(u, v) = h(∇Xu, v) + h(u,∇Xv)

since h(−,−) is conjugate linear in the second variable. In particular

LX1,0h(u, v) = h(∇X1,0u, v) + h(u,∇X0,1v).

We deduce that
∂h(u, v) = h((∇− ∂̄∇)u, v) + h(u, ∂̄∇v).

Hence
h(∇u, v) = ∂h(u, v) + h(∂̄∇u, v)− h(u, ∂̄∇v).

This shows that∇ is completely determined by the associated CR operator, and thus establishes the
uniqueness claim. To prove the existence we use the last equality as a guide and define

h(u,∇hv) := ∂h(u, v) + h(∂̄Wu, v)− h(u, ∂̄W v). (3.2.17)

One can show that this defines indeed a hermitian connection on W . ut
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Example 3.2.25. (a) Suppose M is a complex manifold and h is a Hermitian metric on TM . The
metric h induces hermitian metrics on all the holomorphic bundles Λp,qT ∗M . If the Levi-Civita is
compatible with the complex structure on TM , i.e., if M is Kähler then the Levi-Civita connection
induces hermitian connections on all these holomorphic bundles. Moreover, these induced connec-
tions are exactly the Chern connections determined by the corresponding metrics and holomorphic
structures.

(b) Suppose W →M is a holomorphic vector bundle and (ea) is a local holomorphic frame of W .
We set

hab := h(ea, eb).

If (zj) is local holomorphic coordinate system, using (3.2.17) we deduce

h
(
∇hzjea, eb

)
=
∂hab
∂zj

.

If we write
∇hzjea =

∑
c

Γcjaec

then we deduce ∑
c

Γcjahcb =
∂hab
∂zj

so in matrix notation we can write

h · Γj =
∂h

∂zj
⇐⇒ Γj = h−1 ∂h

∂zj
. (3.2.18)

The connection 1-form with respect to this frame is then

Γ =
∑
j

Γjdz
j = h−1∂h.

The curvature is then given by

F = dΓ + Γ ∧ Γ = d(h−1∂h) + h−1∂h ∧ h−1∂h.

Using the identity

d(h−1∂h) = ∂(h−1∂h) + ∂̄(h−1∂h) = −h−1∂h ∧ h−1∂h+ ∂̄Γ = −Γ ∧ Γ + ∂̄Γ

we deduce
F = ∂̄Γ = −h−1∂̄h ∧ h−1∂h+ h−1∂̄∂h ∈ Ω1,1(End(W )). (3.2.19)

ut

SupposeM is a compact Kähler manifold with underlying Riemann metric g . We denote by∇g
the hermitian connections induced by the Levi-Civita connection on Λ•,•T ∗M . Let W → M be a
holomorphic vector bundle equipped with a hermitian metric. We denote by∇W the corresponding
Chern connection.

As explained in §2.2.1, the hermitian vector bundle Λ0,•T ∗M is a bundle of Clifford modules
in a natural way, where the Clifford multiplication is given by

c(α) =
√

2
(
α0,1 ∧ −α1,0

)
, ∀α ∈ Ω1(M)⊗ C,

where
α1,0 β = g†c(α

1,0, β), ∀β ∈ Ω1(M)⊗ C,



114 Liviu I. Nicolaescu

and g†c denotes the extension by complex bilinearity of the Riemann metric g† on T ∗M to a sym-
metric bilinear form on T ∗M ⊗ C.

Let us point out, that for every x ∈ M the Cl(T ∗xM)-module Λ0,•T ∗xM is isomorphic to the
dual of the complex spinor module ST ∗xM . In particular, this shows that the Clifford multiplication
by a real 1-form is skew-hermitian. Tautologically, this Clifford multiplication is compatible with
the Levi-Civita connection. We conclude that (Λ0,•, c,∇g) is a Dirac bundle.

Proposition 3.2.26. The geometric Dirac operator D determined by the Dirac bundle (Λ0,•, c,∇g)
is equal to √

2(∂̄ + ∂̄∗) : Ω0,•(M)→ Ω0,•(M).

Proof. Fix a point p0 ∈ M . Since M is Kähler we can choose normal coordinates xk, yk near p0

such that

xk(p0) = yk(p0) = 0, J∂xk = ∂yk , ∀k.

Set

ek = ∂xk , fk = ∂yk , ek = dxk, fk = dyk, zk = xk + iyk.

εk =
1√
2
dzk, ε̄k =

1√
2
dz̄k.

εk =
1√
2

(
ek − ifk) =

√
2∂zk , ε̄k =

√
2∂z̄k

Then

D =
√

2
∑
k

(
ε̄k ∧∇gε̄k − ε

k ∇gεk
)
.

∂̄ =
∑
k

dz̄k ∧ ∂z̄k =
∑
k

ε̄k ∧ ∂ε̄k .

We denote by o(1) any bundle morphisms T such that T (p0) = 0. Since (xk, yk) are normal
coordinates at p0 we deduce the following identities

divg(ek) = divg(fk) = o(1), ∇gεk = ∂εk + o(1), ∇gε̄k = ∂ε̄k + o(1)

so that

(∇gε̄k)∗ = ∂∗ε̄k + o(1) = −∂εk + o(1) = −∇gεk + o(1) =⇒ ∂∗ε̄k = −∇gεk + o(1).

Using the equalities

∇eifj = ∇fjei = 0 at p0, ∀i, j,

we deduce

(ε̄k ∧ ∂ε̄k)∗ = (∂ε̄k)∗((ε̄k∧)∗ =
(
−∇gεk + o(1)

)(
εk

)
= −εk ∇gεk + o(1).

This implies that

D =
√

2(∂̄ + ∂̄∗) + o(1).

The proposition now follows from the fact that the point p0 was chosen arbitrarily. ut
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We can twist this Dirac bundle with any other complex Hermitian vector bundle W equipped
with hermitian connection A and we deduce that the corresponding geometric Dirac operator is

DW =
√

2(∂̄A + ∂̄∗A) : Ω0,•(W )→ Ω0,•(W ).

In particular, if we tensor with Λp,0T ∗M ⊗W , where Λp,0T ∗M is equipped with the Levi-Civita
connection and W is equipped with the Chern connection we deduce that the geometric Dirac
operator associated to the Dirac bundle Λp,•T ∗M ⊗W is

DW,p =
√

2(∂̄W + ∂̄∗W ).

In particular, we deduce that

ind DW,p =
∑
q≥0

(−1)qhp,q(E) =: χp(W ).

When W is the trivial line bundle we set

χp(W ) =: χp(M)
∑
q≥0

(−1)qhp,q(M).

Theorem 3.2.27 (Riemann-Roch-Hirzebruch). Suppose (M, g) is a Kähler manifold, dimRM =
2m, and W →M is a holomorphic vector bundle equipped with a hermitian metric. Then

χ0(W ) =

∫
M

td(M) · ch(W ),

where td(M) denotes the Todd genus of TM1,0 and ch(W ) denotes the Chern character of E.

Proof. It suffices to consider the case when W is the holomorphically trivial line bundle. The
general case follows from this one by invoking (3.1.1). We have to show that

χ0(M) =
∑
q≥0

(−1)qh0,q(M) =

∫
M

td(M).

Consider the Dirac bundle (E,∇) = (Λ0,•T ∗M,∇g). We denote by R the Riemann curvature
tensor and by F E the curvature of∇.

Fix a point p0 ∈M , normal coordinates (xk, yk) at p0 and define as before

ek = ∂xk , , fk = ∂yk , ek = dxk, fk = dyk, zk = xk + iyk, 1 ≤ k ≤ m.
We set ei+m := fi. The twisting curvature of∇ is

F E/S = F E(X,Y )− c(R) ∈ Ω2(End(E)),

where according to (2.2.12) we have

c(R)(X,Y ) =
1

4

∑
1≤k,`≤2m

g
(
R(X,Y )ek, e`

)
c(ek)c(e`), ∀X,Y ∈ Vect(M). (3.2.20)

We need to better understand the nature of these quantities. We begin with the curvature F E. Set as
before

εk =
1√
2

(ek − ifk), ε̄k =
1√
2

(ek + ifk), εk =
1√
2
dzk, ε̄k =

1√
2
dz̄k. (3.2.21)

For every ordered multi-index I = (i1, . . . , ik) we set

ε̄I = ε̄i1 ∧ · · · ∧ ε̄ik .
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For every X,Y ∈ Vect(M) and u : M → C we set

F E(uX, Y ) = F E(X,uY ) = uF E(X,Y ) ∈ End(E).

Then

F E =
∑
k<`

F E(εk, ε`)ε
k ∧ ε` +

∑
k<`

F E(ε̄k, ε̄`)ε̄
k ∧ ε̄` +

∑
k,`

F E(εk, ε̄`)ε
k ∧ ε̄`.

The identity (3.2.19) implies that F E ∈ Ω1,1(EndE) so that the first two terms above vanish. Hence

F E =
∑
k,`

F E(εk, ε̄`)ε
k ∧ ε̄`.

The curvatureF E is induced from the Riemann curvature tensor and if for simplicity we setF E(−) =
F E(εk, ε̄`) then

F e(−)ε̄i = R(−)ε̄i =
∑
j

gc(R(−)ε̄i, εj)ε̄j =
(∑
s,j

gc(R(−)εs, ε̄j) · e(ε̄j) · i(εs)
)
ε̄i

In general we have

F e(−)ε̄I =
(∑
s,j

gc(R(−)εs, ε̄j) · e(ε̄j) · i(εs)
)
ε̄I .

For simplicity set

Rk ¯̀ := g(R(−)εk, ε̄`), Ck` := c(εk)c(ε`), Ck
¯̀

:= c(εk)c(ε̄`), etc.

Since c(ε̄k) =
√

2e(ε̄k), c(ε`) = −
√

2i(ε`)

F E = −1

2

∑
k,`

Rk ¯̀C
¯̀k =

1

2

∑
k

Rkk̄ +
1

2

∑
k 6=`

Rk ¯̀Ck
¯̀
.

To describe the term c(R) let us observe that the expression in the right-hand-side of (3.2.20)
is independent of the dual pair of bases {(ei), (ei)} of TM ⊗ C and T ∗M ⊗ C. We would like to
express everything in terms of the bases

{(εj , ε̄k), (εj , ε̄k)}.
A few cancellations take place. Recall that for every X ∈ Vect(X) we have

X1,0 =
1

2
(1− iJ)X, X0,1 =

1

2
(1 + iJ)X

so that
X = X1,0 +X0,1, JX1,0 = iX1,0, JX0,1 = −iX0,1,

gc(X
1,0, Y 1,0) = gc(X

0,1, Y 0,1) = 0, gc(X
1,0, Y 0,1) + gc(X

0,1, Y 1,0) = 2g(X,Y ).

Since the Levi-Civita connection is compatible with J we have

R(−)J = JR(−), (R(−)X)1,0 = R(−)X1,0, (R(−)X)0,1 = R(−)X0,1.

Writing for simplicity R instead of R(X,Y ) and using the equalities

Rk ¯̀ = −R¯̀k, ∀k, `, Ck
¯̀

= −C ¯̀k, ∀k 6= `

we deduce
c(R)(X,Y ) =

1

4

∑
1≤k,`≤m

(Rk̄`C
k̄` +Rk ¯̀Ck

¯̀
) =

1

2

∑
k 6=`

Rk ¯̀Ck
¯̀
.
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Hence

F E/S =
1

2

∑
k

Rkk̄.

The quantity
∑

k Rkk̄ is precisely the curvature of detT ∗M0,1 ∼= detTM1,0 ∼= K−1
M . Using the

decomposition
TM ⊗ C ∼= TM1,0 ⊕ TM0,1

and the compatibility of the Levi-Civita connection with the complex structure we deduce a decom-
position of the Riemann tensor

R = R1,0 ⊕R0,1,

and we have

F E/S =
1

2
trR1,0.

Recall
Â (x) =

x

ex/2 − e−x/2
, td (x) =

x

1− e−x
= ex/2Â (x).

We deduce ∏
k

td (xk) = exp
(1

2

∑
k

xk

)∏
k

Â (x)

so that

td(M) = td
( i

2π
R1,0

)
= exp

(1

2
tr

i

2π
R1,0

)
Â (M) = Â (M) · ch(E/S). (3.2.22)

The general case when we twist the Hodge-Dolbeault operator with a holomorphic complex bundle
follows from (3.1.1). This concludes the proof of the Riemann-Roch-Hirzebruch theorem. ut

Example 3.2.28. Suppose that Σ is a Riemann surface of genus g(Σ) equipped with a Riemann met-
ric h. As explained in Example 3.2.14(b) this induces a Kähler structure on Σ. Given a holomorphic
line bundle L→ Σ equipped with a Hermitian metric we obtain a Hodge-Dolbeault operator

∂̄L : Ω0,0(Σ)→ Ω0,1(Σ).

Then

ind ∂̄L =

∫
Σ

td(Σ) · ch(L).

We have

td(Σ) = 1 +
1

2
c1(Σ) + · · · , ch(L) = 1 + c1(L) + · · ·

so that the degree 2 part of td(Σ) · ch(L) is 1
2c1(Σ) + c1(L). Hence

ind ∂̄L =
1

2

∫
Σ
c1(Σ) +

∫
Σ
c1(L).

Observe that c1(Σ) = e(Σ) so the Gauss-Bonnet theorem implies

1

2

∫
Σ
c1(Σ) = 1− g(Σ).

The integer
∫

Σ c1(L) is called the degree of L and it is denoted by degL. We obtain the classical
Riemann-Roch formula

h0,0(L)− h0,1(L) = 1− g(Σ) + degL. ut
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Example 3.2.29. Suppose (M,h) is a Kähler surface (complex dimension 2) and L → M is a
holomorphic line bundle. Then

χhol(L) = h0,0(L)− h0,1(L) + h0,2(L) =

∫
M

td(M) · ch(L).

Writing for simplicity ck := ck(M) we have

td(M) = 1 +
c1

2
+

1

12
(c2

1 + c2) + · · · , ch(L) = 1 + c1(L) +
1

2
c1(L)2 + · · · ,

so that the degree 4 part of td(M) · ch(L) is
1

12
(c2

1 + c2) +
1

2
c1c1(L) +

1

2
c1(L)2.

Let us now describe a convention frequently used in algebraic geometry, namely that in computa-
tions involving characteristic classes we will replace c1(E) with E for any complex line bundle E.
Now observe that

c1(M) = c1(det(TM)1,0), det(TM)1,0 ∼= (det(T ∗M)1,0)∗ ∼= K∗M .

Thus, c1(M) = −c1(KM ) and instead of c1(M) we will write −KM . Also, we will write the
integration

∫
M as a Kronecker pairing 〈−, [M ]〉. We deduce

χhol(L) =
1

12

〈
K2
M + c2, [M ]

〉
− 1

2

〈
KM · L, [M ]

〉
+

1

2

〈
L2, [M ]

〉
.

Now observe that c2(M) = e(M) so the Gauss-Bonnet theorem implies

〈c2(M), [M ]〉 = χtop(M).

We deduce
χhol(L) =

1

12
χtop(M) +

1

12
〈K2

M , [M ]〉+
1

2
〈L(L−KM ), [M ]〉. (3.2.23)

This can be further simplified using Hirzebruch signature theorem. Observe that

p1(M) = −c2(TM ⊗ C).

On the other hand,
1 + c1(TM ⊗ C) + c2(TM ⊗ C) = c(TM ⊗ C)

= c(TM1,0)c(TM0,1) = c(TM1,0) · c
(

(TM1,0)∗
)

=
(

1 + c1(M) + c2(M)
)(

1− c1(M) + c2(M)
)

= 1−K2
M + 2c2(M).

Hence
p1(M) = K2

M − 2c2(M),

so that
〈K2

M , [M ]〉 = 2〈c2(M), [M ]〉+ 〈p1(M), [M ]〉.
The Hirzebruch signature theorem implies

〈p1(M), [M ]〉 = 3 sign(M),

while by Gauss-Bonnet we have

〈c2(M), [M ]〉 = χtop(M).

Hence
〈K2

M , [M ]〉 = 2χtop(M) + 3 sign(M).



Notes on the Atiyah-Singer index Theorem 119

Using this information in (3.2.23) we deduce

χhol(L) =
1

4

(
χtop(M) + sign(M)

)
+

1

2
〈L(L−KM ), [M ]〉. (3.2.24)

If in the above equality we choose L to be the trivial line bundle we obtain the Noether theorem

h0,0(M)− h0,1(M) + h0,2(M) =
1

4

(
χtop(M) + sign(M)

)
. (3.2.25)

ut

3.2.4. The spin Dirac operators. We would like to present what is arguably the most important
example of geometric Dirac operator. This operator generates in a certain sense all the other ex-
amples of geometric Dirac operators. This will require a topological detour in the world of spin
structures. We will use the basic facts about the spin group proved in §2.2.2.

Suppose (M, g) is a compact connected, oriented Riemann manifold of (real) dimension n. The
tangent bundle TM can be described by a SO(n) gluing cocycle(

Uα, gαβ : Uαβ → SO(n)
)
.

We regard this cocycle as defining the principal bundle of oriented orthonormal frames of TM .
Consider the double cover

ρ : Spin(n)→ SO(n), ker ρ = {±1}.

The manifold M is called spinnable if the principal bundle of oriented orthonormal frames of TM
can be given a Spin(n)-structure, i.e. there exists a gluing cocycle(

Uα, g̃αβ : Uαβ → Spin(n)
)

such that the diagram below is commutative

Spin(n)

Uαβ SO(n)
u

ρ

�
�
�
���

g̃αβ

wgαβ

.

A lift as above is called a spin structure. Spin structures may not exist due to the possible presence
of global topological obstructions. To understand their nature we try a naive approach.

Assume that the open cover U = (Uα) is good, i.e. all the overlaps Uαβ···γ are contractible.
Such covers can be constructed easily by choosing Uα to be geodesically convex. Since Uαβ is
contractible, each of the maps gαβ admits lifts to Spin(n). Pick one such lift g̃αβ for everyUαβ 6= ∅.
Assume g̃βα = g̃−1

αβ . We have to check whether such a random choice does indeed produce a
Spin(n)-cycle, i.e.

εαβγ := g̃αβ g̃βγ g̃γα = 1.

All we can say at this moment is
εαβγ ∈ ker ρ = {±1}.

Let us observe that εαβγ itself satisfies a cocycle condition

εβγδ · εβδα · εβαγ · εγαδ.
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= g̃βγ g̃γδ g̃δβ · g̃βδ︸ ︷︷ ︸
=1

g̃δα g̃αβ · g̃βα︸ ︷︷ ︸
=1

g̃αγ g̃γβ · g̃γαg̃αδ g̃δγ

= g̃βγ g̃γδ · g̃δα · g̃αγ︸ ︷︷ ︸
=εγδα

g̃γβ · g̃γαg̃αδ g̃δγ

(use the fact that εγδα ∈ ker ρ is in the center of Spin(n))

= εγδα · g̃βγ g̃γβ︸ ︷︷ ︸
=1

· g̃γαg̃αδ g̃δγ = g̃γαg̃αδ g̃δγ · εγδα

= g̃γα · g̃αδ · g̃δγ · g̃γδ︸ ︷︷ ︸
=1

· g̃δα · g̃αγ = 1.

If we identify {±1} with the group (Z/2,+) we see that a choice of lifts g̃αβ : Uαβ → Spin(n)
produces a collection εαβγ ∈ Z/2, one element for each triplet (α, β, γ) such that Uαβγ 6= ∅
satisfying the cocycle condition

εβγδ + εαγδ + εαβδ + εαβγ = 0, ∀Uαβγδ 6= ∅. (3.2.26)

Let us rephrase this in a more intuitive way using basic facts of Čech cohomology. For more
information on this important concept we refer to [5, 13, 29].

First, let associate to the cover U a simplicial complex N(U) called the nerve of the cover. For
every q ≥ 0 the q-simplices of N(U) correspond to the collections

{Uα0 , · · · , Uαq} ⊂ U such that
q⋂

k=0

Uαk 6= ∅.

We denote by Nq(U) the collection of q-simplices of the nerve. We denote by Cq(U) the free Z-
module generated by the collection {σ ∈ Nq(U)}. We set

Cq(U,Z/2) := Hom(Cq(U),Z/2).

The collection εαβγ can be viewed a function

ε : N2(U)→ Z/2, σ = [α, β, γ] 7→ ε(σ) := εαβγ

We extend it by linearity to a morphism

ε ∈ Hom(C2(U),Z/2) = C2(U,Z/2).

We have a boundary operator

∂ : Cq(U)→ Cq−1(U), ∂[α0, α1, · · · , αq] =

q∑
k=0

(−1)k[α0, · · · , α̂k, · · · , αq],

where a hat indicates a missing entry. This operator satisfies

∂2 = 0.

Using this operator we define a coboundary operator

δ : Cq(U,Z/2)→ Cq+1(U,Z/2),

(δη)(σ) := η(∂σ), ∀η ∈ Cq(U,Z/2), σ ∈ Cq+1(U,Z/2).

This operator satisfies
δ2 = 0.
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The cocycle condition (3.2.26) can be rewritten as

δε = 0.

We denote by Hq(U,Z/2) the cohomology groups of the cochain complex
(
C•(U,Z/2), δ

)
. They

are known as the Čech cohomology groups of the cover U. Given two lifts

g̃αβ, ĝαβ : Uαβ → Spin(n)

of gαβ : Uαβ → SO(n) we set

καβ := g̃αβ · ĝ−1
αβ ∈ ker(Spin(n)→ SO(n)) ∼= Z/2.

We regard καβ as an element κ ∈ C1(U,Z/2). If we denote by ε̃ the cocycle corresponding to g̃••
and by ε̂ the cocycle corresponding to ĝ•• we deduce

ε̃αβγ − ε̂αβγ = κβγ − καγ + καβ, ∀[α, β, γ] ∈ N2(U).

We can rewrite the last equality as
ε̃− ε̂ = δκ.

Thus the cocycles ε̃ and ε̂ are Čech cohomologous and thus determine a cohomology class

w2(U) ∈ H2(U,Z/2).

This is called the second Stiefel-Whitney class of the cover U.

A theorem of Leray ([5, Thm.15.8]) shows that for every good cover U of M there exists a
natural isomorphism

IU : Hq(U,Z/2)→ Hq(M,Z/2),

where the group in the right-hand-side denotes the singular cohomology with Z/2-coefficients.
Additionally, one can show that the image of w2(U) in H2(M,Z/2) via IU is independent of the
good cover. We thus obtain a cohomology class w2(M) ∈ H2(M,Z/2) called the second Stiefel-
Whitney class of M .

If the manifold M is spinnable, and g̃•• : U•• → Spin(n) is a gluing cocycle covering g•• then
the associated cocycle εαβγ is trivial and therefore w2(M) = 0. Conversely, if w2(M) = 0 then
one can show (see [17, II§2]) M is spinnable. Two spin structures described by lifts g̃αβ and h̃αβ
are called isomorphic if there exists a collection of continuous maps

εα : Uα → ker
(
Spin(n)→ SO(n)

)
such that for every x ∈ Uαβ we have a commutative diagram

Spin(n) Spin(n)

Spin(n) Spin(n)
u

g̃αβ(x)

w
εβ(x)

u
h̃αβ(x)

w
εα(x)

⇐⇒ εα(x)g̃αβ(x) = h̃αβ(x)εβ(x).

We denote by Spin(M) the set of isomorphisms classes of spin structures on M . A spin manifold
is a manifold M together with a choice of λ ∈ Spin(M).

Observe that given a spin-structure λ defined by the lift g̃•• and a cohomology class c ∈
H1(M,Z/2) described by the Čech cocycle ε•• we can produce a new spin structure c · λ defined
by the lift

ĝ•• := ε•• · g̃••.
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The isomorphism class of ĝ•• depends only on the isomorphism class of g̃•• and the cohomology
class of ε••. In other words, we have produced a map

H1(M,Z/2)× Spin(M)→ Spin(M), (c, λ) 7→ c · λ

which satisfies the obvious relation

(c1 + c2) · λ = c1 · (c2 · λ).

In other words, we have produced a left action of H1(M,Z/2) on Spin(n), and one can check (see
[17, II§2]) that this action is free and transitive. We say that Spin(M) is a H1(M,Z/2)-torsor. In
particular there exists a non-canonical bijection

H1(M,Z/2)→ Spin(M).

Let us summarize the results established so far.

Proposition 3.2.30. Suppose M is a compact, oriented, connected smooth manifold. Then M
is spinnable iff w2(M) = 0. If this is the case then there exists a free and transitive action of
H1(M,Z/2) on Spin(M).

Example 3.2.31. So far we have produced arguments that spin structures might not exist. Let us
describe a few instances when spin structures do exists. SupposeM is a smooth, compact, oriented,
connected manifold. The universal coefficients theorem implies

Hq(M,Z/2) ∼= Hom(Hq(M,Z),Z/2)⊕ Ext(Hq−1(B,Z),Z/2)

∼= Hq(M,Z)⊗ Z/2⊕ Tor(Hq+1(M,Z),Z/2).

We deduce that if b2(M) = b1(M) = 0 and H2(M,Z) and H1(M,Z) have no 2-torsion than
H2(M,Z/2) = 0 and thus M is spinnable. In particular it admits a unique spin structure. For
example, the lens spaces L(p, q) with p odd satisfy these conditions.

If the tangent bundle of M is trivializable, then any trivialization of M defines a spin structure
on M . It is known that the tangent bundle of a compact, connected oriented 3-manifold is trivial-
izable and thus such manifolds are spinnable. Similarly, a compact Lie group admits a canonical
spin-structure induced by the natural trivialization.

There are subtler conditions which imply w2(M) = 0. We list without proof a few of them.

SupposeM is a compact, simply connected 4-manifold without boundary. ThenM is spinnable
iff the intersection form QM of M is even, i.e.,

QM (c, c) = 0 mod 2, ∀c ∈ H2(M,Z)/Torsion.

Equivalently, if we represent the intersection form of M as a unimodular symmetric matrix IM ,
then the intersection form is even iff all the diagonal elements of IM are even. For example the
intersection form of M = S2 × S2 with respect to the canonical basis

c1 = [S2 × {∗}], c2 = [{∗} × S2]

is given by the matrix [
0 1
1 0

]
.

Thus the intersection form is even. The manifold S2×S2 is spinnable and in fact it admits a unique
spin structure.



Notes on the Atiyah-Singer index Theorem 123

The complex projective plane CP2 is simply connected, b2(M) = 1 and the intersection form
is given by the 1× 1 matrix [1]. This shows that CP2 is not spinnable.

Recall that we have a canonical morphism

i2 : H•(M,Z)→ H•(M,Z/2)

which sits in a long exact sequence

· · · → Hq−1(M,Z/2)
β−→ Hq(M,Z)

2×−→ Hq(M,Z)
i2−→ Hq(M,Z/2)→ · · · ,

where β is the Bockstein morphism. One can prove (see [17, Example D.6]) that if M is an almost
complex manifold then

c1(M) = w2(M) mod 2⇐⇒ i2(c1) = w2. (3.2.27)

In particular if H1(M,Z) has no 2-torsion then H1(M,Z/2) = 0, β = 0 and thus i2(c1) = 0 iff
there exists x ∈ H2(M,Z) such that

2x = c1(M).

Using this fact one can prove (see [13, §22]) that any smooth complex hypersurface in CPn+1

defined by a degree d homogeneous complex polynomial is spinnable iff d+n is even. In particular
a quartic in CP3 (degree 4 hypersurfaces) are spinnable. These quartics are also known as K3
hypersurfaces. The degree 5 hypersurfaces in CP4 (also known as Calabi-Yau hypersurfaces) are
also spinnable. ut

Suppose (M, g) is a smooth, compact,connected, oriented Riemann manifold without bound-
ary, and λ is a spin structure on M . Assume dimRM = 2m. Denote by π : P → M the
principal SO(2m)-bundle of oriented orthonormal frames of TM . The spin structure λ produces
a Spin(2m)-principal bundle π̃ : P̃λ → M and the natural morphism ρ : Spin(2m) → SO(2m)

induces a smooth map ρ : P̃λ → P such that the diagram below is commutative

P̃λ P

M

w
ρ

[
[
[]

π̃ u
π

and for every x ∈M the restriction ρ : π̃−1(x)→ π−1(x) is 2 : 1.

Fix a metric identification R2m ∼= Cm and set S2m = Λ•Cm. We obtain an isomorphism of
s-algebras

Φ : Cl(R2m)⊗ C→ End
(
S2m

)
,

such that for any v ∈ R2m the endomorphism Φ(v) of S2m is skew-adjoint. We denote by ϕ :
Spin(2m) ⊂ Cl2m → Aut(S2m) the induced complex spinor representation.

Lemma 3.2.32. For any g ∈ Spin(2m) the operator ϕ(g) : S2m → S2m is unitary.

Proof. For any v ∈ R2m, |v| = 1, the endomorphism Φ(v) of S2m is skew-hermitian. If v,w ∈
R2m are orthogonal unit vectors then Φ(vw) is also skew-hermitian. Indeed

Φ(vw)∗ =
(

Φ(v)Φ(w)
)∗

= Φ(w)∗Φ(v)∗ = Φ(w)Φ(v) = −Φ(v)Φ(w),

where at the las step we used the fact that v + w = 0 since v ⊥ w. It follows that Φ
(
etvw)

is a unitary operator. The claim in the lemma follows from Proposition 2.2.14 which states that
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any element g ∈ Spin(2m) is a product of elements of the form etvw with v,w orthogonal unit
vectors. ut

We can form the associated vector bundle

Sλ := P̃λ ×ϕ S2m.

We say that Sλ is the complex spinor bundle associated to the spin structure λ. Note that it is
equipped with a natural Z/2-grading

Sλ = S+
λ ⊕ S−λ .

The metric on S2m induces a hermitian metric on Sλ.

Proposition 3.2.33. Any Spin(2m)-invariant hermitian metric on S2m induces on Sλ a natural
structure of Dirac bundle whose twisting curvature is trivial.

Proof. We need to produce a hermitian connection on Sλ and a Clifford multiplication on Sλ which
is compatible with both the metric and the connection.

Fix a good cover U = (U•) of M and a gluing cocycle

g•• : U•• → SO(2m)

describing (TM, g). The spin structure λ picks a lift

g̃•• : U•• → Spin(2m)

of g••. The Levi-Civita connection on TM is described by a collection of 1-forms

A• ∈ Ω1(U•)⊗ so(2m)

satisfying the transition rules

Aβ = gβαAαg
−1
βα − dgβα · g

−1
βα = Ad(gβα)Aα − dgβα · g−1

βα .

The representation ρ : Spin(2m)→ SO(2m) induces an isomorphism of Lie algebras

ρ∗ : spin(2m)→ so(2m)

described explicitly in (2.2.9). Set

Ãα := ρ−1
∗ (Aα) ∈ Ω1(Uα)⊗ spin(2m).

Then the collection (Ã•) satisfies the transition rules

Ãβ = Ad(g̃βα)Ãα − dg̃βα · g̃−1
βα . (3.2.28)

The derivative of ϕ at 1 ∈ Spin(2m) induces a morphism of Lie algebras

ϕ∗ : spin(2m)→ u(S2m) = skew-hermitian endomorphisms of S2m

and we set
B• := ϕ∗(Ã•).

The transition rules (3.2.28) imply that the collection B• defines a connection ∇̃g on Sλ compatible
with the hermitian metric and the Z/2-grading.

To produce a Clifford multiplication we first describe TM as a subbundle

c : TM ↪→ End(Sλ)
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such that for every

c(X)2 = −|X|2g · 1Sλ , c(X)∗ = −c(X), ∀X ∈ Vect(M). (3.2.29)

Observe that the spinor representation ϕ induces a representation on End(S2m)

ϕ[ : Spin(2m)→ Aut(End(S2m)),

ϕ[(g)T = ϕ(g)Tϕ(g)−1, ∀g ∈ Spin(2m), T ∈ End(S2m).

Observe that
ϕ[(±1) = 1

so this representation factors through a representation of SO(2m), i.e. there exists

[ϕ[] : SO(2m)→ Aut
(

End(S2m)
)

such that the diagram below is commutative

Spin(2m) Aut(End(S2m))

SO(2m)
u

ρ

w
ϕ[

B
B
B
B
BBC

[ϕ[]
.

We have and inclusion
c : R2m ↪→ Cl2m

ϕ−→ End(S2m).

and we know that any vector space isomorphism Cl2m → Cl2m induced by an orthogonal changes
of basis in R2m leaves the subspace R2m ↪→ Cl2m invariant. Identifying Cl2m⊗C with End(S2m)
via ϕ and denoting by AutV (U) the group of vector space isomorphisms

T : U → U such that T (V ) ⊂ V

we deduce the above diagram can be refined to a commutative diagram

Spin(2m) AutR2m

(
End(S2m)

)

SO(2m) Aut(R2m)
u

ρ

w
ϕ[

B
B
B
B
B
BBC

[ϕ[]

w
i

u

j .

Now observe that
End(Sλ) ∼= P̃λ ×ϕ[ End(S2m)

and since R2m is a ϕ[-invariant subspace of End(S2m) we deduce from the above diagram that we
can view

TM ∼= P̃λ ×i◦ρ R2m

as a subbundle of End(S2m). We denote by c : TM ↪→ End(S2m) the inclusion. Since all
the above constructions are invariant under the various symmetry groups we deduce that c satisfies
tautologically the conditions (3.2.29). In particular, the Clifford multiplication c : TM → End(Sλ)

must also be ∇̃g-covariant constant because the above discussion shows the inclusion

c : TM ↪→ End(S2m)
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is a Spin(2m)-invariant element of the Spin(2m)-module Hom
(
R2m,End(S2m)

)
. Thus, the

resulting bundle map c : TM → End(Sλ) is a covariant constant section of the bundle

Hom
(
TM,End(Sλ)

)
.

Now define a Clifford multiplication c : T ∗M → End(Sλ) using the metric duality isomorphism

T ∗M
†
−→ TM . Finally, let us prove that the twisting curvature of ∇̃g is trivial.

Fix an oriented local orthonormal frame (ei) of TM and denote by (ei) the dual coframe. Let
R be the curvature of the Levi-Civita connection on TM . For every X,Y ∈ Vect(M) we identify
R(X,Y ) ∈ so(TM) with the section of Λ2TM

ωR =
∑
i<j

g
(
R(X,Y )ei, ej

)
ei ∧ ej .

Then, using (2.2.10) we deduce

ρ−1
∗ R(X,Y ) =

1

2

∑
i<j

g
(
R(X,Y )ei, ej

)
eiej =

1

4

∑
i,j

g
(
R(X,Y )ei, ej

)
eiej .

The curvature R̃ of ∇̃g is described by

R̃(X,Y ) = ϕ∗
(
ρ−1
∗ R(X,Y )

)
=

1

4

∑
i,j

g
(
R(X,Y )ei, ej

)
c(ei)c(ej)

=
1

4

∑
i,j

g
(
R(X,Y )ei, ej

)
c(ei)c(ej) = c(R).

(3.2.30)

This shows that F Sλ/S = 0. ut

We denote by
Dλ : C∞(S+

λ )→ C∞(S−λ )

the geometric Dirac operator determined by the above Dirac bundle. We will refer to it as the spin
Dirac operator associated to a Riemannian spin manifold (M, g, λ). Using the above proposition
we deduce from the index theorem the following result.

Theorem 3.2.34 (Atiyah-Singer).

indCDλ =

∫
M

Â(M). ut

Suppose M is a spinnable 4-manifold. Then for every spin structure λ ∈ Spin(M) we have

indCDλ = − 1

24

∫
M
p1(M).

Using the Hirzebruch signature theorem we deduce

indCDλ = −1

8
sign(M).

Corollary 3.2.35. The signature of any smooth spinnable 4-dimensional manifold is divisible by
8. ut



Notes on the Atiyah-Singer index Theorem 127

One can prove this divisibility result by relying on more elementary elementary results. More
precisely, a smooth 4-manifold is spinnable if and only if its intersection form is even, and one can
show that the signature of any even, unimodular symmetric bilinear form over Z is divisible by 8;
see e.g. [29].

Theorem 3.2.34 will allow us to prove a stronger result concerning the symmetric, even uni-
modular bilinear forms which are intersection forms of some smooth spinnable 4-manifolds. We
will need the following fact.

Proposition 3.2.36. If M is a smooth, connected, spinnable 4-manifold and λ ∈ Spin(M), then

indCDλ ∈ 2Z.

Proof. The proof relies on a concrete description on Spin(4) and S4. Consider again the division
ring of quaternions

H = R + Ri + Rj + Rk.

It is equipped with an involution

H 3 q = a+ bi + cj + dk 7→ q̄ = a− bi− cj − dk

such that
q · q̄ = |q|2 = a2 + b2 + c2 + d2.

Recall that we have identified Spin(3) with the group of unit quaternions. We want to prove that

Spin(4) ∼= Spin(3)× Spin(3) ∼= SU(2)× SU(2).

Let
G =

{
~q = (q1, q2) ∈ H×H; |q1| = |q2| = 1

} ∼= Spin(3)× Spin(3).

We have a natural representation

ρ : G→ AutR(H), ρ(q1, q2)h = q1hq̄2, ∀(q1, q2) ∈ G, h ∈ H.

Observe that
|q1hq̄2| = |h|

so that ρ(q1, q2) is an isometry of H. Since G is connected we deduce that we have a morphisms

τ : G→ SO(H) ∼= SO(4).

One can check that ker ρ = {±1} and we deduce that ρ is a nontrivial double cover of SO(4) and
thus

G ∼= Spin(4).

We regard H2 as a right H-module and thus we can identify EndH(H2) with the space of 2 × 2-
quaternion matrices. The map

Φ : R4 = H→ EndH(H2), H 3 q 7→ Φ(q) =

[
0 −q
q̄ 0

]
∈ EndH(H2),

satisfies the identity
Φ(q)2 = −|q|21,
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and thus induces a morphism of s-algebras Φ : Cl4 → EndH(H2). One can check (see [17, I§4])
that the above morphism is an isomorphism. Then Spin(4) can be identified with the diagonal
subgroup (see Exercise 3.3.12)

Spin(4) ∼=
{

Diag(q1, q2) ∈ EndH(H2); |q1| = |q2| = 1
}
.

The induced complex spinor representation is then the tautological one (see Exercise 3.3.12)

ϕ : Spin(4) ↪→ EndH(H2)→ AutR(H2).

More precisely

ϕ(q1, q2)

[
h1

h2

]
=

[
q1h1

q2h2

]
.

Moreover
S+

4 = H⊕ 0, S−4 = 0⊕H.
For every x ∈ H we denote by Lx : EndR(H2) (resp. Rx ∈ EndR(H2)) the left (resp. right)
multiplication by x. Observe that R2

i = −1 so that Ri induces a complex structure on H and

ϕ(q1, q2) ◦Ri = Ri ◦ ϕ(q1, q2), ∀(q1, q2) ∈ G.

In other words the linear maps ϕ(q1, q2) are complex linear with respect to the complex structure
induced by Ri. Similarly we have

ϕ(q1, q2) ◦Rj = Rj ◦ ϕ(q1, q2), ∀(q1, q2) ∈ G.

This shows that S±4 has a canonical structure of right H-module, the complex structure is induced
from the inclusion C ↪→ H and that the R-linear endomorphisms ϕ(q1, q2) are morphisms of right
H-modules. Equivalently, this means that S±4 has a Spin(4)-invariant structure of right H-module.

If (M, g, λ) is a spin 4-manifold, then S±λ have natural structures of right H-modules. These
are covariant constant with respect to ∇̃g and moreover, from the description

Cl4 ∼= EndH(H2)

we deduce
[c(α), Ri] = [c(α), Rj ] = [c(α), Rk] = 0, ∀α ∈ Ω1(M).

This implies that kerDλ and kerD∗λ are right H-modules and in particular

indCD = 2 indHD ∈ 2Z.

ut

Corollary 3.2.37 (Rokhlin). If M is a compact, oriented, simply connected smooth 4-manifold
without boundary and even intersection form then

sign(M) ∈ 16Z. ut

Remark 3.2.38. Three decades after Rokhlin proved this result, M. Freedman has shown that there
exists a compact, oriented, simply connected topological 4-manifold M without boundary whose
intersection form is even and

sign(M) = 8.

Rohlin’s result shows that such a manifold cannot admit any smooth structure!!! ut



Notes on the Atiyah-Singer index Theorem 129

Remark 3.2.39 (The Rockhlin invariant). A compact 3-manifold M is called a homology 3-sphere
if

Hk(M,Z) ∼= Hk(S
3,Z), ∀k ≥ 0.

The Rockhlin invariant of a homology 3-sphere is a Z/2-valued homemorphism invariant ofM . We
briefly outline its definition referring for details to [28].

Any oriented homology 3-sphere is the (oriented) boundary of a 4-manifold M̂ whose intersec-
tion form

QM̂ : H2(M̂,Z)/Tors×H2(M̂,Z)/Tors→ Z,
is even, i.e.,

QM̂ (c, c) ∈ 2Z), ∀c ∈ H2(M̂,Z)/Tors.

The signature form QM̂ being both unimodular and even it follows from [29] that its signature is
divisible by 8. We set

µ(M) =
1

8
signQM̂ mod 2. (3.2.31)

If M is the oriented boundary of another oriented 4-manifold M̂ ′ with even intersection form, then
we can form the closed manifold

X = M̂ ∪M −M̂ ′.
Then the intersection form of X is the direct sum of the intersection forms of M̂ and M̂ ′ and thus it
is even. Rokhlin’s theorem then implies that

signQM̂ − signQM̂ ′ = QX ≡ 0 mod 16.

Hence
1

8
signQM̂ ≡

1

8
signQM̂ ′ mod 2

This shows that the quantity µ(M) defined in (3.2.31) is an invariant of M .

The Rockhlin invariant has many interesting properties, but we will its only two.

Observe that if M0,M1 are two oriented integral homology spheres then so is their connected
sum M0#M1. Moreover

µ(M0#M1) = µ(M0) + µ(M1).

Two oriented homology 3-spheres M0,M1 are said to be homology cobordant and we write this
M0 ∼h M1, if there exists an oriented 4-manifold with boundary M̂ with the following properties.

• ∂M̂M1 ∪ −M0.

• The inclusions M0 ↪→ M̂ and M1 ↪→M induce isomorphisms in homology.

The homology cobordism relation if an equivalence relation on the set of oriented homology
3-spheres and

M0 ∼h M1 ⇒ µ(M0) = µ(M1).

The homology cobordism relation is compatible with the operation of connected sum, i.e.,

M0 ∼h M1, N0 ∼h N1 ⇒M0#N0 ∼h M1#N1.

The set of homology cobordism classes of oriented homology 3-spheres becomes an Abelian group
with respect to the operation of connected sum. The identity element is played by the 3-sphere S3.
This group is denoted by Θ3

Z. We see that µ is a group morphism

µ : Θ3
Z → Z/2.
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A theorem of Galewski-Stern [9] and Matumoto[19] shows that the following statements are equiv-
alent.

(a) Any compact topological manifold of dimension M is triagulable.

(b) There exists an element of order two in Θ3
Z which does not lie in the kernel of the Rokhlin

morphism.

Recently, C. Manolescu [18] has shown that all the elements of order 2 of Θ3
Z lie in the kernel of µ,

so that, there exist high dimensional topological manifolds that cannot be triangulated. ut

3.2.5. The spinc Dirac operators. Suppose (M, g) is a compact connected, oriented Riemann
manifold of (real) dimension n. The tangent bundle TM can be described by a SO(n) gluing
cocycle (

Uα, gαβ : Uαβ → SO(n)
)
.

We regard this cocycle as defining the principal bundle of oriented orthonormal frames of TM .

Identify Z/2 with the multiplicative group {±1}. Recall that Spinc(n) is the Lie group

Spinc(n) ∼=
(
Spin(n)× S1

)
/Z/2

where Z/2 acts diagonally on Spin(n)× S1

t · (g, s) = (tg, ts), ∀g ∈ Spin(n), s ∈ S1, t ∈ Z/2.

Consider the group morphism
ρc : Spinc(n)→ SO(n).

A spinc structure on M is a gluing cocycle

g̃•• : U•• → Spinc(n)

such that
ρc(g̃αβ) = gαβ, ∀α, β,

i.e., the diagram below is commutative

Spinc(n)

Uαβ SO(n).
u

ρc

�
�
�
���g̃αβ

wgαβ

Spin structures may not exist due to possible presence of global topological obstructions. To under-
stand their nature we follow the same approach used in the description of spin structures. Assume
that U is a good open cover, i.e., all the overlaps are contractible Over each Uαβ we choose arbitrar-
ily

g̃αβ = [ĝαβ, zαβ = exp(πiθαβ)] ∈ Spinc(n),

ĝαβ : Uαβ : Uαβ → Spin(n), θαβ ∈ C∞(Uαβ,R), ρ(ĝαβ) = gαβ.

Assume
g̃αβ = g̃−1

βα , g̃αα ≡ 1, θαβ = −θβα.
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Denote byK the kernel of ρ : Spin(n)→ SO(n) and byKc the kernel of ρc : Spinc(n)→ SO(n)

Kc = (Z/2× S1)/Z/2 ∼= S1.

Observe that Kc lies in the center of Spinc(n). We hope that

g̃γα = g̃γβ g̃βα ⇐⇒ 1 ≡ g̃αγ g̃γβ g̃βα.

If choose the lifts g̃αβ carelessly all we could say is

ρc(g̃αγ g̃γβ g̃βα) ≡ 1.

We set
εγβα = ĝαγ ĝγβ ĝβα, cγβα = zαγzγβzβα ∈ S1.

Since ρc(g̃αγ g̃γβ g̃βα) ≡ 1 we deduce

εγβα ∈ K ⊂ S1.

For g̃•• to be a gluing cocycle we need

cγβα = εγβα ∈ Z/2 = exp(πiZ) ⊂ S1.

In particular we deduce
c2
γβα ≡ 1⇐⇒ z2

γα = z2
γβ
z2
βα,

i.e., (z2
••) is a S1-gluing cocycle for some complex line bundle L→M . We set

Θγβα = 2
(
θγβ + θβα + θαγ

)
.

The equality c2
γβα ≡ 1 implies

Θγβα ∈ Z.
Note also that the image of 1

2Θγβα in 1
2Z/Z ∼= Z/2 coincides with εγβα.

As in the previous subsection we denote by Nq(U) the collection of q-simplices of the nerve
of the open cover U. We denote by Cq(U) the free Z- module generated by the collection {σ ∈
Nq(U)}. For every Abelian group G we set

Cq(U, G) := Hom(Cq(U), G).

Then
εγβα ∈ C2(U,Z/2), Θγβα ∈ C2(U,Z).

We deduce as before that the above Čech cochains are in fact Čech cocycles. The cohomology class
of the cocycle (εγβα) is the second Stieffel-Whitney class w2(M) ∈ H2(M,Z/2) of the manifold
M , while the cohomology class of the cocycle (Θγβα) is the first Chern class c1(L) ∈ H2(M,Z)
of the complex line bundle L→M defined by the gluing cocycle z2

•• (see [12, Chap.1] for a proof
of this general fact). Thus, the existence of a spinc structure implies the existence of an integral
cohomology class c ∈ H2(M,Z) such that

c mod 2 = w2(M) ∈ H2(M,Z/2).

Arguing in reverse one can prove the following result (see Exercise 3.3.13).

Proposition 3.2.40. The manifold (M, g) admits spinc structures if and only if w2(M) is the mod
2 reduction of an integral cohomology class. ut
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Two spinc structures described by lifts g̃αβ and h̃αβ are called isomorphic if there exists a
collection of continuous maps

kα : Uα → Kc = ker(Spinc(n)→ SO(n))

such that for every x ∈ Uαβ we have a commutative diagram

Spinc(n) Spinc(n)

Spinc(n) Spinc(n)
u

g̃αβ

w
kβ

u
h̃αβ

w
kα

⇐⇒ kαg̃αβ = h̃αβkβ.

We denote by Spinc(M) the set of isomorphisms classes of spinc structures on M . A spinc

manifold is a manifold M together with a choice of σ ∈ Spin(M).

Denote by Pict(M) the topological Picard group, i.e., the space of isomorphisms classes of
complex line bundles over M . To a spinc structure σ over M given by the gluing cocycle g̃αβ =
[ĝαβ, zαβ = exp(πiθαβ)] we associate a complex line bundle detσ given by the gluing cocycle
(z2
αβ). One can show that this induces a map

det : Spinc → Pict(M), σ 7→ detσ.

The image of this map consists of line bundles L→M such that

c1(L) mod 2 = w2(M).

Note that Pict(M) is a group with respect to ⊗. Moreover, the first Chern class induces an isomor-
phism

c1 : (Pict(M),⊗)→ H2(M,Z).

Proposition 3.2.41. There exists a natural free and transitive action of Pict(M) on Spinc(M)

Pict(M)× Spinc(M)→ Spinc(M), (L, σ) 7→ L · σ

satisfying
det(L · σ) = L2 ⊗ detσ.

Sketch of proof. Consider a spinc structure σ given by the gluing cocycle g̃αβ = [ĝαβ, zαβ =
exp(πiθαβ)] and a line bundle L given by the gluing cocycle ζαβ . We define L · σ to be the spinc

structure given by the gluing cocycle [ĝαβ, zαβζαβ].

We let the reader check that this action is well defined and free, i.e.

[g̃αβ = [ĝαβ, zαβ] ∼= [[ĝαβ, zαβζαβ]⇐⇒ (ζαβ) ∼= (1).

The line bundle associated to L · σ is given by the gluing cocycle (ζ2
αβz

2
αβ) so that

det(L⊗ σ) ∼= L2 ⊗ detσ.

To prove that the action is transitive consider two spinc structures σ0, σ1 given by gluing cocycles

σ0 → g̃αβ = [ĝαβ, zαβ], σ1 → h̃αβ = [ĥαβ, vαβ].

we can arrange so that
ĝγβ ĝβαĝαγ = ĥγβĥβαĥαγ .
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Then σ1 = L · σ0 where L is the line bundle given by the gluing cocycle

ζαβ = vαβ/zαβ. ut

The results in the above proposition is often formulated by saying that Spinc(M) is a Pict(M)-
torsor or H2(M,Z)-torsor.

Example 3.2.42. (a) A spinnable manifoldM admits spinc structures. In fact, to any spin structure
ε ∈ Spin(M) there corresponds a canonical spinc structure σ(ε) such that detσ(ε) is trivial. We
thus have a natural map

Spin(M)→ Spinc(M), ε 7→ σ(ε)

We denote by β the Bockstein morphism

β : H1(M,Z/2)→ H2(M,Z).

We know that Spin(M) is a H1(M,Z/2)-torsor. For every λ ∈ H1(M,Z/2) we have

σ(λε) = β(λ) · σ(ε), ∀ε ∈ Spin(M).

Observe that if Spinc(M) 6= ∅ then Spin(M) 6= ∅ if and only if for any (or for some) spinc

structure σ on M there exists L ∈ Pict(M) such that L2 ∼= detσ. We will denote by
√

detσ the
collection of such line bundles. Hence

Spin(M) 6= ∅ ⇐⇒ ∀(∃)σ ∈ Spinc(M) :
√

detσ 6= ∅.
Given a spinc structure σ on M we can identify the image of Spin(M) in Spinc(M) with the
collection of spinc structures{

L−1 · σ ∈ Spinc(M); L2 = detσ
}
.

Since the compact oriented manifolds of dimension ≤ 3 are spinnable we deduce that any such
manifold admits spinc structure.

(b) A result of Hirzebruch-Hopf shows that any compact, oriented smooth 4-manifolds admits spinc

structures.

(c) Using the identity (3.2.27) in the previous subsection we deduce that any almost complex man-
ifold admits spinc structures. In fact we can be much more precise. Suppose (M,J) is an almost
complex manifold and g is a Riemann metric compatible with J . Then dimRM = 2m and the
tangent bundle is described by a gluing cocycle

gαβ : Uαβ → U(m)
i
↪→ SO(2m).

Using Proposition 2.2.20 in §2.2.2 we deduce that there exists a smooth group morphism

Φm : U(m)→ Spinc(2m)

such that the diagram below is commutative.

Spinc(2m)

U(m) SO(2m)
u
ρc

\
\
\
\]Φm

y w
i

.

Then
g̃αβ = Φm(gαβ)
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defines a spinc structure onM called the spinc structure associated to an almost complex structure.
We will denote it by σC. Observe that we have a commutative diagram

Spinc(2m)

U(m) S1
uu�

�
�
���

Φm

w
det

,

where we recall that the vertical arrow is given by [g̃, z] 7→ z2. This shows that the line bundle
associated to σC is given by the gluing cocycle det gαβ . It is therefore isomorphic to

detC(TM, J) ∼= K−1
M .

Hence
detσC ∼= K−1

M .

We deduce that an almost complex manifold is spinnable iff
√
KM 6= ∅ and we can bijectively

identify the spin structures with the square roots of the canonical line bundle. ut

Suppose (M, g) is a compact oriented Riemann manifold of even dimension dimRM = 2m.
Assume the tangent bundle is defined by a gluing cocycle

g•• : U•• → SO(2m)

Fix a spinc-structure σ ∈ Spinc(M) described by a gluing cocycle

g̃•• = [ĝ••, z••] : U•• → Spinc(2m).

We denote by Pσ the principal Spinc(2m) bundle determined by this cocycle so that

TM ∼= Pσ ×ρc R2m.

The group Spinc(2m) can be naturally viewed as a subgroup in Cl2m⊗C ⊂ EndC(S2m) and as
such we have representations

ϕc± : Spinc(2m)→ AutC(S±2m), ϕc ∼= ϕc+ ⊕ ϕc−.

Define
Sσ := Pσ ×ϕc S2m.

As in the previous section we see that Sσ has a natural structure of Cl(T ∗M)-module. Moreover, if
we fix a Spinc(2m)-invariant metric on S2m then the induced Clifford multiplication

c : T ∗M → EndC(Sσ)

is odd and skew-symmetric with respect to the induced metric on Sσ.

Suppose that the Levi-Civita connection on TM is described by a collection

Aα ∈ Ω1(Uα)⊗ so(2m), Aβ = gβαAαg
−1
βα − dgβα · g

−1
βα .

We denote by ρ∗ : spin(2m) → so(2m) the differential of ρ : Spin(2m) → SO(2m) described
explicitly in (2.2.9) and set

Âα := ρ−1
∗ (Aα) ∈ Ω1(Uα)⊗ spin(2m).
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Then the collection (Â•) satisfies the transition rules

Âβ = ĝβαÂαĝ
−1
βα − dĝβα · ĝ

−1
βα . (3.2.32)

Observe that although ĝ•• is only defined up to a ±1 ∈ ker ρ, this ambiguity is lost in the above
equality. Consider a connection B on the line bundle defined by the cocycle (z2

••). It can be
described by a collection

Bα ∈ Ω1(Uα)⊗ u(1) : Bβ = Bα − 2
dzβα
zβα

⇐⇒ 1

2
Bβ =

1

2
Bα −

dzβα
zβα

.

We deduce that the collection

Ãα =
(
Âα,

1

2
Bα

)
∈ Ω1(Uα)⊗ spinc(2m)

satisfies the gluing conditions

Ãβ = g̃βαÃαg̃
−1
βα − dg̃βα · g̃

−1
βα

and thus defines a connection on Pσ. In particular it induces a connection on Sσ which we denote
by∇σ,B . As in the previous subsection one can verify that (Sσ,∇σ,B) is a Dirac bundle. Moreover,
arguing as in the proof of (3.2.30) we deduce that the twisting curvature is

F Sσ/S =
1

2
FB.

where FB ∈ Ω2(M)⊗ u(1) denotes the curvature of the connection B on detσ. We denote by

Dσ,B : C∞(S+
σ )→ C∞(S−σ )

the associated geometric Dirac operator.

Theorem 3.2.43 (Atiyah-Singer).

indCDσ,B =

∫
M

Â(M) ∧ exp(
i

4π
FB) =

〈
Â(M) exp(

1

2
c1(detσ)), [M ]

〉
,

where we denoted by 〈−,−〉 : H•(M,R)×H•(M,R)→ R the Kronecker pairing. ut

Example 3.2.44. Suppose thatM is a complex manifold, g is a metric compatible with the canonical
almost complex structure on TM , and σ is the spinc-structure associated to the complex structure
and constructed as in Example 3.2.42. In this case, using the equality (2.2.5) we deduce

Sσ = Λ•CTM
1,0 ∼= Λ0,•T ∗M.

The induced geometric Dirac operators Dσ,B have the same principal symbols as the Hodge-
Dolbeault operator √

2(∂̄ + ∂̄∗) : Ω0,even(M)→ Ω0,odd(M)

and thus they have the same index. Since

detσ ∼= K−1
M
∼= detTM1,0

we deduce
c1(detσ) = c1(M) = c1(TM).

Theorem 3.2.43 implies the Riemann-Roch-Hirzebruch formula for non-Kähler manifolds

h0,0(M)− h0,1(M) + · · · = indDσ,B =

∫
M

Â(M) exp
(1

2
c1(M)

)
(3.2.22)

=

∫
M

td(M). ut



136 Liviu I. Nicolaescu

3.3. Exercises for Chapter 3

Exercise 3.3.1. Prove (3.1.1). ut

Exercise 3.3.2. Prove (3.2.11). ut

Exercise 3.3.3. Prove Proposition 3.2.6. ut

Exercise 3.3.4. Prove the identity (3.2.14). ut

Exercise 3.3.5. Prove the identity (3.2.15). ut

Exercise 3.3.6. Prove Proposition 3.2.12. ut

Exercise 3.3.7. Prove Lemma 3.2.20.

ut

Exercise 3.3.8. Suppose that Σ is a compact, oriented Riemann surface, L → Σ is a complex line
bundle equipped with a hermitian metric h and a connection ∇ compatible with h. Denote by F∇
the curvature of∇ so that F∇ ∈ Ω2(Σ)⊗ C. Prove that

i

2π

∫
Σ
F∇ ∈ Z.

This integer is independent of the connection, it is called the degree of L, and it is denoted by degL.
ut

Exercise 3.3.9. Suppose that Σ is a compact Riemann surface (compact oriented surface equipped
with a complex structure.) Assume that p1, . . . , pk is a collection of distinct points on Σ and

D =
k∑
j=1

njδpj , nj ∈ Z,

is a divisor supported at these points. Pick disjoint coordinates neighborhoods Uj of pj and a
holomorphic coordinate zj on Uj such that zj(pj) = 0. Define

fj : U∗j := Uj \ {pj} → C, fj(zj) = z
nj
j .

Set
U0 = Σ \ {p1, . . . , pk}, A = {0, 1, . . . , k},

and denote by f0 the function f0 : U0 → C, f0 ≡ 1. For any α, β ∈ A such that Uα ∩ Uβ 6= ∅
define the holomorphic function

gβα : Uα ∩ Uβ → C∗ = GL1(C), gβα =
fβ
fα
.

The collection (gβα) is a gluing cocycle for a holomorphic bundle L(D)→ Σ. Prove that

degL(D) = degD :=

k∑
j=1

nj ,
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where degL(D) is the integer defined in Exercise 3.3.8. ut

Exercise 3.3.10. Suppose that Σ is a compact Riemann surface, L → Σ is a holomorphic line
bundle equipped with a Hermitian metric h. Fix a nontrivial holomorphic section u : Σ→ L.

(a) Suppose that p ∈ Σ is a zero of u, u(p) = 0. We can find a coordinate neighborhood U of p
equipped with a coordinate z such that

(1) z(p) = 0

(2) There exists a holomorphic isomorphism Ψ : LU → CU , where LU denotes the restriction
of L to U and CU denotes the trivial line bundle C× U → U . We can then identify Ψ ◦ u
with a holomorphic function f : U → C.

Show that the quantity
1

2πi
lim
ε↘0

∫
|z|=ε

df

f

is an integer independent of all the choice of local coordinate z satisfying (i) and the local holomor-
phic trivialization Ψ. We denote by deg(u, p) this integer.

(b) Show that
degL =

∑
u(p)=0

deg(u, p). (3.3.1)

(c) Show that the conclusion of Exercise 3.3.9 follows from (3.3.1).

(d) Show that if a holomorphic line bundle L→ Σ satisfies degL ≤ 0, then it admits no nontrivial
holomorphic sections. ut

Exercise 3.3.11. Suppose that (M, g) is an oriented Riemann manifold of dimension n = 2m and
E → M is a Clifford bundle. Prove E admits a connection compatible with both the metric on E
and the Clifford multiplication.

Hint: Assume first that M is spinnable. Reduce the general case to this case using partitions of
unity. ut

Exercise 3.3.12. (a) Show that we have an isomorphism of Z/2-graded algebras

Cl4 ∼= EndH(H2).

(b) Equip H2 with the complex structure defined by Ri so as a complex vector space we have
H2 ∼= C4. Prove that

Cl4⊗C ∼= EndC(H2).

(c) Show that Spin(4) ⊂ Cl4 can be identified via the isomorphism Cl4 ∼= EndH(H2) with the
diagonal subgroup {

Diag(q1, q2); |q1| = |q2| = 1
}
.

ut

Exercise 3.3.13. Prove Proposition 3.2.40 ut





Chapter 4

The heat kernel proof of
the index theorem

4.1. A rough outline of the strategy

To understand the main idea behind the heat equation approach to the index theorem we describe it
in a simple finite dimensional situation.

4.1.1. The heat equation approach: a baby model. Suppose that U± are two finite dimensional
complex Hermitian vector spaces and

D : U+ → U−

is a complex linear operator. Then the equalities

R(D) = (kerD∗)⊥, R(D∗) = (kerD)⊥

imply that D induces an isomorphism D : R(D∗)→ R(D) and thus

indD = dim kerD − dim kerD∗ = dimU+ − dimU−.

Let us present a rather complicate alternate proof of this equality which has the advantage that it
extends to infinite dimensions.

Set U := U+ ⊕U− and denote by D the operator

D =

[
0 D∗

D 0

]
: U → U . (4.1.1)

This is a symmetric a operator and observe that

D2 =

[
D∗D 0

0 DD∗

]
.

The operator D2 is nonnegative so that

spec(D2) ⊂ [0,∞).

139
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Moreover for any µ ≥ 0 we have

ker(µ−D2) = ker(
√
µ−D)⊕ ker(

√
µ+ D).

On the other hand, D2 commutes with the grading

γ =

[
1U+ 0

0 −1U−

]
: U → U

so that for any eigenvalue λ of D2 the corresponding eigenspace Eλ = ker(λ − D2) admits an
orthogonal direct sum decompostion

Eλ = E+
λ ⊕ E

−
λ , E±λ := Eλ ∩U±.

Here is the key observation behind the heat equation approach to the index formula.

Lemma 4.1.1. For any nonzero eigenvalue λ of D we have

dimE+
λ = dimE−λ .

More precisely, the restriction of D to E+
λ defines a linear isomorphism

D : E+
λ → E−λ .

Proof. Observe that D commutes with D2 so that Eλ is D-invariant,

DEλ ⊂ Eλ.
Since λ 6= 0 we deduce that the restriction of D to Eλ is injective so that the map D : Eλ → Eλ
is a linear isomorphism. From the description (4.1.1) of D we deduce that the above isomorphism
induces two isomorphisms

D : E+
λ → E−λ , D∗ : E−λ → E+

λ .

ut

From the equalities
U± =

⊕
λ∈spec(D2)

E±λ

we deduce that for any t ≥ 0 we have

str e−tD
2

=
∑

λ∈spec(D2)

e−tλ
(
dimE+

λ − dimE−λ ).

For t > 0 Lemma 4.1.1 implies that

str e−tD
2

= dimE+
0 − dimE−0 = dim kerD∗D − dim kerDD∗

= dim kerD − dim kerD∗ = indD.

Thus
indD = lim

t↘0
str e−tD

2
= str1U = dimU+ − dimU−.

In the infinite dimensional case, when D is a geometric Dirac operator on a Riemann manifold
(M, g), we can express str e−tD

2
, t > 0, as an integral over M ,

str e−tD
2

=

∫
M
ρtdVg, ρt ∈ C∞(M),
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and moreover, we can describe quite explicitly the limit ρ0 = limt↘0 ρt thus arriving at an equality
of the type

indD = lim
t↘0

str e−tD
2

=

∫
M
ρ0dVg.

4.1.2. What really goes into the proof. Suppose that D : C∞(E+) → C∞(E−) is a Dirac type
operator acting between two Hermitian vector bundles on the compact, oriented Riemann manifold
(M, g), dimM = n. As usual we denote by D the operator

D =

[
0 D∗

D 0

]
: C∞(E)→ C∞(E), E = E+ ⊕ E−.

We already observe the first obstacle, namely the spectral properties of D . Fortunately, we have the
following result.

Fact 1. The spectrum of D2 is a discrete subset of [0,∞), and there exists a Hilbert orthonormal
basis of L2(E) consisting of eigen-sections of D2. Moreover, for any λ ∈ spec(D) the eigenspace
Eλ = ker(λ−D) is finite dimensional, it is contained in C∞(E) and decomposes as an orthogonal
direct sum

Hλ = H+
λ ⊕H−λ , H±λ := Hλ ∩ C∞(E±). ut

We have
spec D2 =

{
λ ∈ [0,∞; ±

√
λ ∈ spec D

}
.

and one can show easily that for any λ ∈ spec(D2) we have

H±λ = ker(λ−∆±),

while for λ ∈ spec(D2), λ 6= 0 the operator D induces an isomorphism

D : H+
λ →H−λ .

Denote by Pλ the orthogonal projection onto Hλ. For L > 0 set

UL =
⊕
λ≤L

Hλ

and denote by PL the orthogonal projection onto UL,

PL =
∑
λ≤L

Pλ.

Denote by π0, π1 : M ×M →M , the natural projections given by

π0(p0,p1) = p0, π1(p0,p1) = p1.

For complex vector bundles E0, E1 →M we define a vector bundle E0�E1 →M ×M by setting

E0 � E1 := π∗0E0 ⊗ π∗1E1.

For any section Ψ ∈ C∞(E) we denote by Ψ∗ ∈ C∞(E∗) the section corresponding to Ψ via
the conjugate linear isomorphism E → E∗. Two sections Ψ0,Ψ1 ∈ C∞(E) define a section
Ψ0 �Ψ∗1 ∈ C∞(E � E∗) given by

Ψ0 �Ψ∗1(p0,p1) = Ψ0(p0)⊗Ψ∗1(p1) ∈
(
E � E∗

)
(p0,p1)

= Ep0
⊗ E∗p1

∼= Hom(Ep1
, Ep0

).

For each λ ∈ spec(D2) fix an orthonormal basis
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4.2. The heat kernel

4.2.1. Spectral theory of symmetric elliptic operators. To fix things, suppose that (M, g) is a
compact oriented Riemann manifold of dimension n, E →M is a complex vector bundle equipped
with a Hermitian metric h a connection ∇ compatible with the metric h. In the sequel, all the
Sobolev norms will be defined in terms of these data.

Finally, let as assume that D : C∞(E) → C∞(E) is a symmetric elliptic operator of order `.
For every r ∈ R the operator Dr := D − r is also a symmetric elliptic operator of order `. It is also
symmetric if r ∈ R. Hence

ker
(

Dr : L`,2(E)→ L2(E)
)
⊂ C∞(E),

and for this reason we will use the simpler notation

ker Dr := ker
(

Dr : L`,2(E)→ L2(E)
)
.

Theorem 2.1.29 implies that dim ker Dr <∞, ∀r ∈ C.

Definition 4.2.1. An eigenvalue of D is a complex number λ such that

ker
(

D − λ
)
6= 0.

The spectrum of D , denoted by spec(D), is the collection of eigenvalues of D . ut

The above discussion implies immediately the following result.

Proposition 4.2.2. The spectrum of D is contained in the real axis. Moreover, for any λ ∈ spec(D)
we have

ker(D − λ) ⊂ C∞(E), dim ker(D − λ) <∞. ut

Observe that
λ 6= λ′ ⇒ ker(D − λ) ⊥ ker(D − λ′),

and
spec(D) = r + spec(Dr). (4.2.1)

We have the following fundamental result.

Theorem 4.2.3 (Spectral Theorem). (a) The spectrum of D is a discrete nonempty subset of R.

(b) For any λ ∈ spec(D) we denote by Pλ the orthogonal projection onto ker(D − λ). Then for
any u ∈ L2(E) we have

u =
∑

λ∈spec(D)

Pλu, ‖u‖2L2 =
∑

λ∈spec(D)

‖Pλu‖2L2 .

(c)
u ∈ L`,2(E)⇐⇒

∑
λ∈spec(D)

λ2‖Pλu‖2L2 ,

and if u ∈ L`,2(E), then
Du =

∑
λ∈spec(D)

λPλu.
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Proof. We will cary the proof in several stages.

Lemma 4.2.4. R \ spec(D) 6= ∅, i.e., there exists r ∈ R such that ker Dr = 0.

Proof. We argue by contradiction. Suppose that ker Dr 6= 0 for any r ∈ R. Since Dr is elliptic
we deduce that ker Dr ⊂ C∞(E). Hence we can find a sequence (uν)ν>0 of smooth sections of E
such that

‖un‖L2 = 1, Duν =
1

ν
uν , ∀ν > 0.

Since uν ⊥ ker D , ∀ν > 0, we deduce that there exists a constant C > 0 such that

‖uν‖L`,2 ≤ C‖Duν‖L2 =
C

ν
.

Hence uν → 0 in L`,2(E) as ν →∞. This contradicts the requirement

‖uν‖L2 = 1, ∀ν > 0.

ut

Fix r ∈ R such that ker(Dr) = 0. In view of (4.2.1) we lose no generality if we assume r = 0,
i.e., D = Dr. We deduce from Theorem 2.1.29 that the induced continuous operator

D : L`,2(E)→ L2(E)

is invertible with bounded inverse

D−1L2(E)→ L`,2(E).

Denote by A the composition of D−1 with the canonical inclusion i : L`,2(E) ↪→ L2(E),

A : L2(E)
D−1

−→ L1,2E
i
↪→ L2(E).

The bounded operator A is the composition of a bounded operator with a compact operator, and
thus it is compact.

Lemma 4.2.5. The operator A is selfadjoint, i.e., for any u, v ∈ L2(E) we have

(Au, v)L2 = (u,Av)L2 .

Proof. Let u, v ∈ L2(E). We can find û, v̂ ∈ L`,2(E) such that

D û = u, D v̂ = v.

Then Au = û , Av = v̂, and we deduce

(Au, v)L2 = (û,D v̂)L2 = (D û, v̂)L2 = (u,Av)L2 .

ut

Thus A is a compact, selfadjoint operator

A : L2(E)→ L2(E), kerA = 0.

Denote by spece(A) the collection of eigenvalues of A, spece(A) ⊂ R\0. For every µ ∈ spece(A)
we denote by Qµ the orthogonal projection onto ker(A− µ).
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Invoking the spectral theorem for compact selfadjoint operators [6, Thm. 6.11] deduce that
spece(A) is a bounded countable subset of the real axis which has a single accumulation point, 0.
Moreover, for any u ∈ L2(E) we have

u =
∑

µ∈spece(A)

Qµu, ‖u‖2L2 =
∑

µ∈spece(A)

‖Qµu‖2L2 , (4.2.2a)

Au =
∑

µ∈spece(A)

µQµu. (4.2.2b)

For each µ ∈ spece(Ar) and Ψ ∈ ker(A− µ) we have

AΨ = µΨ

so that Ψ ∈ R(A) ⊂ L`,2(E). We deduce

Ψ = DAΨ = µDΨ = µDΨ⇐⇒ DΨ = λ(µ)Ψ, λ(µ) =
1

µ
.

Conversely, if λ ∈ spec(D), Ψ ∈ ker(D − λ), then

DΨ = λ−Ψ, AΨ =
1

λ︸︷︷︸
=:µ(λ)

Ψ.

This proves that

µ ∈ spece(A)⇐⇒ λ(µ) ∈ spec(D), ker(A− µ) = ker
(

D − λ(µ)
)
.

This implies (a) and (b) of the Spectral Theorem.

To prove (c) observe first that, by construction, L`,2(E) = R(A). Thus we can find

v =
∑

µ∈spece(A)

vµ ∈ L2(E), vµ ∈ ker(A− µ)

such that
u = Av =

∑
µ

µvµ.

Note that
uλ := Pλu = µvµ, µ = µ(λ).

Now observe that ∑
µ

‖vµ‖2L2 <∞⇒
∑

λ∈spec(D)

1

µ(λ)2
‖uλ‖2L2 <∞

so that ∑
λ∈spec(D)

λ2‖uλ‖2L2 <∞. (4.2.3)

Conversely, if (4.2.3) holds, than

u = A

 ∑
µ∈spece(A)

1

µ(λ)
uλ


︸ ︷︷ ︸

∈L2(E)

∈ R(A) = L`,2(E).
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Finally, if
u =

∑
λ∈spec(D)

uλ ∈ L`,2(E), uλ = Pλu,

then ∑
µ∈spece(A)

Qµu = u = ADu
(4.2.2b)

=
∑

µ∈spece(A)

µQµDu,

and we deduce Qµu = µQµDu, i.e.,

QµDu =
1

µ
Qµu and PλDu = λuλ.

Hence
Du =

∑
λ∈spec(D)

PλDu =
∑

λ∈spec(D)

λuλ.

ut

Corollary 4.2.6. Let u ∈ L2(E),

u =
∑

λ∈spec(D)

uλ, uλ = Pλu.

Then
u ∈ C∞(E)⇐⇒

∑
λ∈spec(D)

λ2k‖uλ‖2L2 <∞, ∀k ∈ Zk>0.

Proof. We have

u ∈ C∞(E)⇐⇒ Dku ∈ L2(E), ∀k ∈ Z>0 ⇐⇒
∑

λ∈spec(D)

λ2k‖uλ‖2L2 <∞, ∀k ∈ Z>0.

ut

Suppose now that the bundle E is Z/2-graded, E = E+ ⊕ E−, and D is a supper symmetric
Dirac operator, i.e., it has the form

D =

[
0 D∗

D 0

]
where D : C∞(E+)→ C∞(E−) is a first order elliptic operator. Observe that

D2 =

[
D∗D 0

0 DD∗

]
.

Set
∆+ = D∗D, ∆− = DD∗.

For any λ ∈ R and any µ ≥ 0 we set

Vλ = ker(λ−D),

V ±µ := ker(µ−∆±) ⊂ C∞(E±), N±µ = dim ker(µ−∆±),

V µ = V +
µ ⊕H−µ ⊂ C∞(E).

Observe that V 0 = ker D2 = ker D , and V µ = ker(µ−D2). In general for any µ > 0 we have a
natural inclusion

V√µ ⊕ V−√µ ⊂ V µ.
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Proposition 4.2.7. For any µ > 0 we have

V√µ ⊕ V−√µ = V µ.

Moreover
N+
µ = N−µ , ∀µ ∈ spec(D2) \ {0}. (4.2.4)

Proof. Observe that DV µ ⊂ V µ. Thus D induces a selfadjoint operator on the finite dimensional
space Hµ. Since D2 = µ on V µ we conclude that

Hµ ⊂ ker(
√
µ−D)⊕ ker(

√
µ+ D).

To prove the equality N+
µ = N−µ observe that DV +

µ ⊂ V −µ and the resulting map D : V +
µ → V −µ

is an isomorphism. ut

4.2.2. The heat kernel. We begin by defining the notion of integral kernel or Schwartz kernel.
This will be a section of a certain bundle over M ×M .

Observe that we have a natural ”roof” of smooth mappings

M ×M

M M

[
[[̂

`
'
'')r

where
`(p, q) = p, r(p, q) = q, ∀p, q ∈M ×M.

We define a bundle E � E∗ over M ×M by setting

E � E∗ = (`∗E)⊗ (r∗E∗).

Observe that the fiber of E � E∗ over (p, q) is(
E � E∗

)
(p,q)

= Ep ⊗ E∗q ∼= Hom(Eq, Ep).

Definition 4.2.8. An E-integral kernel over M is a smooth section of the vector bundle E � E∗.ut

Example 4.2.9. (a) Observe that given two smooth sections u ∈ C∞(E), v ∈ C∞(E∗) we obtain
a section u� v ∈ C∞(E � E∗) whose value at (p, q) is

(u� v)(p, q) = u(p)⊗ v(q) ∈
(
E � E∗

)
(p,q)

.

(b) Note that we have a conjugate linear map

C∞(E) 3 Ψ→ Ψ∗ ∈ C∞(E∗)

defined by equality 〈
Ψ∗(p),Φ(p)

〉
= hp

(
Φ(p),Ψ(p)

)
, ∀Φ ∈ C∞(E),

where h is the Hermitian metric on E and 〈−,−〉 : E∗p × Ep → C is the natural pairing between a
vector space and its dual.

Thus, any pair of smooth sections Φ,Ψ ∈ C∞(E) defines a kernel Φ�Ψ∗ ∈ C∞(E � E∗).ut
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Observe that if K ∈ C∞(E � E∗) is an integral kernel and u ∈ C∞(E), then for any (p, q) ∈
M ×M we obtain a linear operator K(p, q) : Eq → Ep, and a vector

K(p, q)u(q) ∈ Ep.

In particular, we obtain a smooth map

M 3 q 7→ K(p, q)u(q) ∈ Ep

which we can integrate to obtain another vector in Ep,∫
M
K(p, q)u(q)dVg(q) ∈ Ep.

The correspondence

M 3 p 7→
∫
M
K(p, q)u(q)dVg(q) ∈ Ep

is then a smooth section of E. We have thus produced a linear map

IK : C∞(E)→ C∞(E), IKu(p) =

∫
M
K(p, q)u(q)dVg(q).

The operator IK is called the smoothing operator determined by the integral kernel K.

Observe that IK extends as a linear operator

IK : L2(E)→ C∞(E).

because the integral ∫
M
K(p, q)u(q)dVg(q)

can be differentiated in the p-variable as many times as we wish for any u ∈ L2(E).

Example 4.2.10. Let λ ∈ spec(D). Set

mλ := dim Vλ = dim ker(D − λ)

and denote by Pλ the orthogonal projection onto Vλ. Fix an orthonormal basis Ψ1, . . . ,Ψmλ of
ker(D − λ) and define

Eλ :=

mλ∑
j=1

Ψj �Ψ∗j ∈ C∞(E � E∗). (4.2.5)

Observe that for any u ∈ C∞(E) we have

IEλu =
∑
j

Ψj(p)

∫
M
h
(
u(q),Ψj(q)

)
dVg(q),

∑
j

(
u,Ψj

)
L2Ψj = Pλu. ut

To proceed further we define a family of norms on C∞(E). More precisely, for u ∈ C∞(E)
and k > 0 we set

‖u‖2k = ‖u‖2L2 + ‖Dku‖2L2 .

For uniformity we set
‖u‖0 := ‖u‖L2 .

The elliptic estimates for D imply that for any k ≥ 0, there exists Ck ≥ 1 such that
1

Ck
‖u‖Lk,2 ≤ ‖u‖k ≤ Ck‖u‖Lk,2 .
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The above equality shows that the closure of C∞(E) in the norm ‖ − ‖k is the Sobolev space
Lk,2(E).

From the Sobolev inequalities we deduce that if m > k + n
2 , then there exists C = C(m, k)

such that ∥∥u∥∥
Ck
≤ C

∥∥u∥∥
m
, ∀u ∈ C∞(E). (4.2.6)

For any compact interval I ⊂ [0,∞] we set

EI :=
∑
|λ|∈I

Eλ ∈ C∞(E � E∗)

The smoothing operator associated to this integral kernel is the orthogonal projection PI onto the
space

HI :=
⊕
|λ|∈I

Vλ =
∑
λ∈I

V λ2 .

When I = {c} we set
Hc = H{c} = V−c ⊕ Vc = V c2 .

Observe that
PI =

⊕
|λ|∈I

Pλ, d(I) := dim HI =
∑
|λ|∈I

mλ.

Moreover, if
Ψj , j = 1, . . . , d(I)

is an orthonormal basis of HI , then

EI =

d(I)∑
j=1

Ψj �Ψ∗j . (4.2.7)

Proposition 4.2.11. (a) Set r := rank (E). There exists a constant C0 > 0 such that

d(I) ≤ C2
0r volg(M)(1 + b2`0), `0 = bn/2c+ 1, ∀I = [a, b] ⊂ [0,∞). (4.2.8)

(b) For any k ≥ 0 there exists a constant Zk > 0 such that for any compact interval I = [a, b] ⊂
[0,∞) we have

‖EI‖Ck ≤ Zk
(
1 + bpk

)
, pk = 2

(
bn/2c+ 1 + k

)
. (4.2.9)

Proof. We adopt the strategy in the proof of [14, Thm. 17.5.3]. For u ∈ L2(E) we set uI := PIu.
For any positive integer ` and u ∈ C∞ we have

‖uI‖2` = ‖ uI‖2 + ‖DmuI‖2 ≤ (1 + b2`)‖u‖2. (4.2.10)

For any any nonnegative integer k we set

`k :=
⌊n

2

⌋
+ k + 1,

so that L`k,2(E) ↪→ Ck(E). In particular, we deduce that there exists a constant Z0 > 0 such that

‖uI‖C0 ≤ Z0

(
1 + b2`0

) 1
2 ‖u‖L2 , ∀u ∈ L2(E). (4.2.11)
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Fix p0 ∈M , and e ∈ Ep0
a unit length vector. We set

Vp0,ε(q) =

d(I)∑
j=1

h
(
e,Ψj(p0)

)
Ψj(q) ∈ C∞(E).

From the equality
uI(p0) =

∑
j

(u,Ψj)L2Ψj(p0), u ∈ L2∞(E)

we deduce
h
(
uI(p0), e ) =

(
u, Vp0,e

)
L2 .

Hence for any u ∈ L2(E) we have(
u, Vp0,e

)
L2 = h

(
uI(p0), e ) ≤ ‖uI‖C0 ≤ Z0

(
1 + b`0

) 1
2 ‖u‖L2 .

This implies that

‖Vp0,e‖ ≤ Z0

(
1 + b2`0

) 1
2 .

Observe that since sections (Ψj) form an orthonormal basis of HI we have

‖Vp0,e‖
2 =

d(I)∑
j=1

∣∣h( e,Ψj(p0)
) ∣∣2 ∫

M
|Ψj(q)|2dVg(q) =

d(I)∑
j=1

∣∣h( e,Ψj(p0)
) ∣∣2.

Let e1, . . . , er be an orthonormal frame of Ep0
, r = rank (E). We deduce

r∑
k=1

‖Vp0,ek‖
2 =

r∑
k=1

d(I)∑
j=1

∣∣h( ek,Ψj(p0)
) ∣∣2

=

d(I)∑
j=1

r∑
k=1

∣∣h( ek,Ψj(p0)
)∣∣2 =

d(I)∑
j=1

∣∣Ψj(p0)
∣∣2

Hence
d(I)∑
j=1

∣∣Ψj(p0)
∣∣2 ≤ Z2

0r
(

1 + b2`0
)
.

Integrating the above inequality we deduce (4.2.8).

Next observe that, for any Ψ ∈HI we have

‖Ψ‖`k ≤
√

1 + b2`k‖Ψ‖.

Hence, there exists C = Ck > 0, independent of I , such that

‖Ψ‖Ck ≤ Ck
√

1 + b2`k‖Ψ‖, ∀Ψ ∈HI .

From the equality (4.2.7) we deduce that

‖EI‖Ck ≤
d(I)∑
j=1

‖Ψj‖2Ck ≤ Ckd(I)(1 + b2`k) ≤ Z2
0rCk volg(M)

(
1 + b2`0

)
(1 + b2`k)

≤ Zk
(

1 + b2(`0+`k)
)
.
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We have reached the desired conclusion since

pk = 2(`0 + `k).

ut

For any continuous and bounded function f : R→ R we have a bounded linear operator

f(D) : L2(E)→ L2(E), f(D)u =
∑

λ∈spec(D)

f(λ)Pλu.

The series ∑
λ∈spec(D)

f(λ)Pλu

converges in L2(E) because∑
λ

|f(λ)|2‖Pλu‖2 ≤
(

sup
t∈R
|f(t)|2

)
‖u‖2.

Proposition 4.2.12. Suppose that f : R→ R is a continuous function with fast decay at∞, i.e.,

lim
|λ|→∞

|λ|kf(λ) = 0, ∀k > 0.

Then f(D) is the smoothing operator determined by the integral kernel

Kf =
∑

λ∈spec(D)

f(λ)Eλ.

Proof. For any ν ∈ Z≥0 we set

Kf,ν =
∑

|λ|∈[ν,ν+1]

f(λ)Eλ,

where for simplicity we set Eλ = 0 if λ 6∈ spec(D). This is an integral kernel. Let us show that∑
ν≥0

Kf,ν

converges in Ck(E × E∗) for any positive integer k. Set

dν := dim H[ν,ν+1], fν := sup
|t|∈[ν,ν+1]

|f(t)|

Observe that
‖Kf,ν‖Ck ≤

(
sup

|t|∈[ν,ν+1]
|f(t)|

) ∑
|λ|∈[ν,ν+1|

‖Eλ‖Ck

(4.2.9)

≤ Zkfνdν
(

1 + ν
)pk (4.2.8)

≤ Z ′kfν
(

1 + ν
)2`0+pk .

Since f is fast decaying we deduce that
∞∑
ν=0

fν
(

1 + ν
)2`0+pk <∞.

ut
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The function ft(λ) = e−tλ
2

is fast decaying for any t > 0. Thus, for t > 0 the operator

ft(D) = e−tD
2

is smoothing. We denote by Kt the integral kernel of this operator.

Definition 4.2.13. The collection of integral kernels (Kt)t>0 is called the heat kernel associated to
the Dirac operator D . ut

Denote by π the natural projection R>0×M ×M →M ×M . The collection (Kt)t>0 defines
a section K of the pullback

Ê � E∗ := π∗
(
E � E∗

)
.

Proposition 4.2.14. (a) The heat kernel defines a smooth section of the bundle

Ê � E∗ → R>0 ×M ×M.

(b) For any q ∈M , fixed, we have

∂tKt(p, q) + D2
pKt(p, q) = 0, (4.2.12)

where Dp indicates that the operator D acts only on the variable p.

(c) If u ∈ C∞(E) and
ut := e−tD

2
u = IKtu,

then
lim
t↘0
‖ut − u‖C0 = 0.

Proof. For any positive integer N we set

Kt,N (p, q) =
∑
|λ|≤N

e−tλ
2
Eλ(p, q).

This is a smooth function for any N and the proof of Proposition 4.2.12 shows that for any k > 0
Kt,N converges to Kt as N → ∞ in the Ck-topology, uniformly for t on the compacts of R>0.
Moreover (

∂t + D2
p

)
Kt,N = 0,

because
D2

pEλ = λ2Eλ.

The integral kernels D2
pKt,N converge in any Ck-topology to the smooth integral kernel associated

to the fast decaying function λ 7→ λ2e−tλ
2
. It does so uniformly for t on compacts of R>0. This

proves that Kt is C1 and
∂tKt = −D2Kt.

Iterating this procedure we deduce that Kt is smooth in all variables and

∂kt Kt = (−1)kD2k
p Kt.

To prove (c), let u ∈ C∞(E). Then

u =
∑

λ∈spec(D)

uλ, uλ = Pλu.
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For any positive integer m we have

‖u‖2m = ‖Dmu‖2 =
∑
λ

|λ|2m‖uλ‖2 <∞.

Observe that
ut =

∑
λ∈spec(D)

e−tλ
2
uλ

and
‖ut − u‖2m =

∑
λ∈spec(D)

(
e−tλ

2 − 1)2|λ|2m‖uλ‖2.

Aplying the dominated convergence theorem to the functions

ϕt : spec(D)→ R, ϕt(λ) =
(
e−tλ

2 − 1)2|λ|2m‖uλ‖2,

where spec(D) is equipped with the canonical discrete measure, we deduce

lim
t↘0
‖ut − u‖2m = 0, ∀m.

We obtain the desired conclusion by invoking the Morrey-Sobolev embedding theorem. ut

Theorem 4.2.15. The heat kernel is the unique smooth section (Kt)t>0 of

Ê � E∗ → R>0 ×M ×M

satisfying the following properties.

(a) The integral kernel Kt(p, q) satisfies the heat equation (4.3.4) for any q fixed.

(b) If u ∈ C∞(E) we have

lim
t↘0
‖IKtu− u‖C0 = 0.

Proof. The proof is based on the following uniqueness result.

Lemma 4.2.16. Denote by Ê the pullback of the bundle E → M over the cylinder [0,∞) ×M .
For any u0 ∈ C∞(E) the initial value problem

(∂t + D2)u(t,p) = 0, u(0,p) = u0(p), ∀p ∈M (4.2.13)

admits a unique solution u which is a continuous section of Ê on [0,∞) × M and smooth on
(0,∞)×M .

Proof. Denote by ut the restriction of u to {t} ×M . It suffices to show that if u0 = 0 then ut = 0,
∀t > 0. We have

d

dt
‖ut‖2 = (u′t, ut)L2 + (ut, u

′
t)L2 = −(D2ut, ut)L2 − (ut,D

2)L2 = −2‖Dut‖2 ≤ 0.

Hence
0 ≤ ‖ut‖ ≤ ‖u0‖ = 0, ∀t > 0.

ut
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The above Lemma and the results proven so far show that the unique solution of the inial value
problem (4.2.13) is

ut = e−tD
2
u0.

Suppose now that we have a family of integral kernels (Kt)t>0 satisfying the conditions (a), (b) in
the theorem. For any u ∈ C∞(E) and t > 0 set

ut = IKtu.

For ε > 0, the sections vt = ut+ε satisfy the initial value problem

(∂t + D2)vt = 0, vt=0 = uε.

Hence vt = e−t
2D2

uε, i.e.,
IKt+εu0 = e−tD

2
uε.

If we let ε↘ 0 we deduce

IKtu0 = e−tD
2
u0 = IKtu0, ∀u0 ∈ C∞(E).

This implies Kt = Kt, ∀t > 0. ut

4.2.3. The McKean-Singer formula. Recall that

D2 = ∆+ ⊕∆−, ∆+ = D∗D, ∆− = DD∗.

For any µ ∈ V µ = ker(µ−D2) we choose an orthonormal basis

Ψ±1,µ, . . . ,Ψ
±
N±µ
∈ C∞(E±) ⊂ C∞(E)

of V ±µ = ker(µ−∆±). The collection{
Ψ±j,µ; µ ∈ spec(D2), 1 ≤ j ≤ N±µ

}
is an orthonormal basis of L2(E). We have

e−tD
2

=
∑

µ∈spec(D2

e−tµ
(
PV +

µ
+ PV −µ

)
where U denotes the orthogonal projection onto a closed subspace U ⊂ L2(E).

The Schwartz kernel of PV ±µ
is

K±µ (p, q) =

N±µ∑
j=1

Ψ±j,µ(p)�Ψ±j,µ(q)∗.

From the equality
V +
µ ⊕ V −µ = V−√µ ⊕ V√µ

we deduce
K+
µ (p, q) +K−µ (p, q) = E−√µ(p, q) + E√µ(p, q)

and
Kt(p, q) =

∑
µ∈spec(D2)

e−tµ
(
K+
µ (p, q) +K−µ (p, q)

)︸ ︷︷ ︸
=:Kµ(p,q)

∈ Hom
(
Eq, Ep

)
.

Observe that Kµ(p,p) ∈ End(Ep) and

strKµ(p,p) = trK+
µ (p,p)− trK−µ (p,p)
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=

N+
µ∑

j=1

|Ψ+
j,µ(p)|2 −

N−µ∑
j=1

|Ψ−j,µ(p)|2.

Hence

str Kt(p,p) =
∑

µ∈spec(D2)

e−tµ

N+
µ∑

j=1

|Ψ+
j,µ(p)|2 −

N−µ∑
j=1

|Ψ−j,µ(p)|2
 ,

so that∫
M

str Kt(p,p)dVg(p) =
∑

µ∈spec(D2)

e−tµ

N+
µ∑

j=1

∫
M
|Ψ+

j,µ(p)|2dVg(p)−
N−µ∑
j=1

∫
M
|Ψ−j,µ(p)|2dVg(p)


=

∑
µ∈spec(D2)

e−tµ(N+
µ −N−µ )

(4.2.4)
= N+

0 −N
−
0 .

We have thus proved the following important result.

Theorem 4.2.17 (McKean-Singer). If D : C∞(E+)→ C∞(E−) is a Dirac type operator,

D =

[
0 D∗

D 0

]
and Kt is the integral kernel of e−tD

2
, t > 0, then

indD = N+
0 −N

−
0 =

∫
M

str Kt(p,p)dVg(p), ∀t > 0. ut

4.3. The proof of the Index Theorem

We will use the McKean-Singer formula to give a proof of the index theorem. We will achieve this
in two conceptually different steps. First we will produce a more approximation for the heat kernel.
We then show that if D is a geometric Dirac operator then the super trace of the approximation can
be understood quite explicitly.

4.3.1. Approximating the heat kernel. The approximation of the heat kernel we are able to pro-
duce takes the form of an asymptotic expansion.

Definition 4.3.1. Let f be a function defined on the positive semiaxis (0,∞) and valued in a Banach
space X . A formal series

∞∑
k=0

ak(t), ak : (0,∞)→ X,

is called an asymptotic expansion for f near t = 0 and we indicate this by

f(t) ∼
∞∑
k=0

ak(t),

if for each positive integer N there exists `N > 0 such that, for any ` ≥ `N there exists a constant
C = C(`,N) and τ(`,N) > 0 such that∥∥∥∥∥f(t)−

∑̀
k=0

ak(t)

∥∥∥∥∥ ≤ C(`,N)tN , ∀0 ≤ t ≤ τ(`,N). ut
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We have the following important result.

Theorem 4.3.2. Suppose that (M, g) is a compact oriented Riemann manifold, E = E+ ⊕ E− →
M is a Hermitian Z/2-graded vector bundle and D : C∞(E) → C∞(E) is a supersymmetric
formally selfadjoint Dirac operator. Denote by Kt the heat kernel of D and by

dist : M ×M → [0,∞)

the geodesic distance function on M determined by the Riemann metric g. For any t > 0 define

ht : M ×M → R, ht(p, q) =
1

(4πt)
n
2

exp

(
−dist(p, q)2

4t

)
.

Then the following hold.

(a) There exists an asymptotic expansion for Kt of the form

Kt(p, q) ∼ ht(p, q)
(

Θ0(p, q) + tΘ1(p, q) + t2Θ2(p, q) + · · ·
)
,

where Θj ∈ C∞(E � E∗), ∀j = 0, 1, 2, . . . .

(b) The expansion in valid in the Banach space Cr(E � E∗) for any integer r ≥ 0. It may
differentiated formally with respect to t,p, q to obtain asymptotic expansions for the cor-
responding derivatives of the heat kernel Kt.

(c) The jets of the sections Θj along the diagonal are described by universal algebraic expres-
sions involving the metrics, the connection coefficients and their derivatives. Moreover
Θ0(p,p) = 1Ep .

To prove the theorem we need a simple criterion for recognizing an asymptotic expansion of the
het kernel when we see one. This is based on the concept of approximate heat kernel.

Definition 4.3.3. Let m be a positive integer. An approximate heat kernel of order m for D is a
time dependent section K ′t(p, q) of E � E∗, t > 0 which is C1 in t and C2 in p, q and satisfying
the following conditions.

(a) For any u ∈ C∞(E) we have

lim
t↘0
‖IK′t

u− u‖C0 = 0.

(b) (
∂t + D2

p

)
K ′t(p, q) = tmrt(p, q), ∀t > 0, p, q ∈M,

where rt is a Cm-section of E � E∗ which depends continuously on t for t ≥ 0. ut

Proposition 4.3.4. Suppose that we have a sequence of sections Θj ∈ C∞(E�E∗), j = 0, 1, 2, . . . ,
such that for any positive integer m there exists Jm > 0 with the property that for any J ≥ Jm the
integral kernel

KJ
t (p, q) = ht(p, q)

J∑
j=0

tjΘj(p, q).

is an approximate heat kernel of order m. Then the formal series

ht(p, q)
∞∑
j=0

tjΘj(p, q)

is an asymptotic expansion for the heat kernel in the sense of (a),(b) of Theorem 4.3.2. ut



156 Liviu I. Nicolaescu

To keep the flow of arguments uninterrupted we defer the proof of this proposition.

Proof of Theorem 4.3.2. We follow the approach in [27, Chap.7]. As we know D2 has the block
form

D2 =

[
∆+ 0
0 ∆−

]
where ∆± : C∞(E±) → C∞(E±) is a formally selfadjoint generalized Laplacian. Hence there
exists metric connections ∇± on E± and Hermitian bundle endomorphisms R± : E± → E± such
that

∆± = (∇±)∗∇± + R±.

Set ∇ = ∇+ ⊕ ∇−, R = R+ ⊕ R− so that ∇ is a metric connection on E compatible with the
Z/2-grading and R is an even, Hermitian endomorphism of E. By construction

D2 = ∇∗∇+ R.

Let ∆g : C∞(M)→ C∞(M) denote the scalar Laplacian defined by the metric g. For any smooth
function f : M → R we denote by grad f ∈ Vect(M) the gradient of f with respect to the metric
g, i.e., the metric dual of df .

The symbol of D defines a Clifford multiplication on E

c : T ∗M → End(E), c(df) = [D , f ], ∀f ∈ C∞(M).

A simple computation shows that

[D2, f ]u = −2∇grad fu+ (∆gf)u, ∀u ∈ C∞(E), f ∈ C∞(M). (4.3.1)

Using Proposition 4.3.4 we seek sections Θj ∈ C∞(E � E∗), j = 0, 1, 2, . . . , such that for any
m > 0 the integral kernel

KJ
t (p, q) = ht(p, q)

J∑
j=0

tjΘj(p, q)

is an approximate heat kernel of orderm for all J sufficiently large. Note that it suffices to construct
Θj for p close to q because for (p, q) outside a neighborhood of the diagonal the function ht(p, q)
goes to zero faster than any power of t as t→ 0.

Let us fix the point q and normal coordinates x1, . . . , xn with q as origin. We set

r2 =
n∑
i=1

(xi)2

so that r(x) = dist(x, 0). Observe that r∂r is the radial vector field and

grad r2 = 2r∂r, ∆gr
2 = 2n− r∂r log |g|, |g| := det(gij).

With q fixed ht(p, q) becomes a function of t and r

ht =
1

(4πt)
n
2

e−
r2

4t .

Some elementary computations show that

gradht = −ht
2t
r∂r, (4.3.2a)

(∂t + ∆g)ht =
ht
4t
r∂r log |g|. (4.3.2b)
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Using (4.3.1), (4.3.2a) and (4.3.2b) we deduce that for any t-dependent smooth section v of E (or
E ⊗ Eq) we have

1

ht

(
∂t + D2

)
(htv) = (∂t + D2)v +

r

4t
(∂r log |g|)v +

1

t
∇r∂rv. (4.3.3)

If we let H denote the conjugate heat operator

H :=
1

ht

(
∂t + D2

)
ht (4.3.4)

then we can rewrite the last equality as

H = (∂t + D2) +
1

t
∇r∂r +

r

4t
(∂r log |g|). (4.3.5)

In particular, if v = tju, u independent of t, then

H(tjv) = tj−1
(
∇r∂ru+ j +

r

4
∂r log |g|

)
u+ tjD2u. (4.3.6)

Now write
u ∼ u0 + tu1 + t2u2 + · · · ,

where uj are independent of t and attempt to solve the equation

(∂t + D2)(htu) = 0⇐⇒ Hu = 0,

by equating to zero the coefficients of powers of t that arise from the equality (4.3.6). We obtain the
following system of equations for j = 0, 1, 2, . . .

∇r∂ruj +

(
j +

r∂r|g|
4|g|

)
uj = −D2uj−1. (4.3.7)

The equations (4.3.7) are just ordinary differential equations along the geodesic emanating from q

and once can solve them recursively. To do this we introduce an integrating factor |g|
1
4 and rewrite

the equations as

∇∂r
(
rj |g|

1
4uj

)
=

{
0, j = 0,

−rj−1|g|
1
4 D2uj−1, j ≥ 1.

(4.3.8)

For j = 0 this shows that uj is uniquely determined by its initial value uj(0) which we fix as
u0(0) = 1Eq . For j ≥ 1 the equation determines uj in terms of of uj−1 up to the addition of a term
of the form Cjr

−j |g|−
1
4 . The requirement of smoothness at q forces Cj = 0 so we conclude that all

the uj are uniquely determined by the single initial condition u0(0) = 1Eq .

Define Θj(p, q) to be the section of E � E∗ over a neighborhood U of the diagonal which is
represented in normal coordinates near q by the sections uj constructed above. Fix another smaller
open neighborhood of the diagonal V ⊂ U and a smooth function ϕ : M ×M → [0,∞) such that

ϕ(p, q) =

{
1, (p, q) ∈ V ,

0, (p, q∈(M ×M) \U .

Set

KJ
t (p, q) := ϕ(p, q)ht(p, q)

J∑
j=0

tjΘj(p, q).
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Since Θ0(p,p) = 1Ep we deduce that

lim
t↘0
‖IKJ

t
u− u‖C0 = 0, ∀u ∈ C∞(E).

Moreover, the construction of the u′j-s shows that

(∂t + D2
p)KJ

t (p, q) = tJht(p, q)eJt (p, q), t > 0,

where et ∈ C∞(EE∗) depends continuously on t down to t = 0. For J > m + n
2 the function

tJht(p, q) tends to zero in the Cm-topology as t→ 0. Thus, for any J > m+ n
2 the integral kernel

KJ
t is an approximate heat kernel of order m. Invoking Proposition 4.3.4 we deduce that the formal

series

ϕ(p, q)ht(p, q)

∞∑
j=0

tjΘj(p, q),

is an asymptotic expansion of the hear kernel, i.e., satisfies the conditions (a), (b) of Theorem 4.3.2.
The claim (c) of the theorem follows inductively from the differential equations (4.3.8). ut

Theorem 4.3.2 has the following immediate consequence.

Corollary 4.3.5. (a) If n = dimM is odd then indD = 0.

(b) If d ImM = n = 2m is even then

indD =
1

(4π)
n
2

∫
M

str Θn
2
(q, q)dVg(q). ut

Thus the name of the game is determining the index density, i.e., the function

M 3 q 7→ str Θn
2
(q, q) ∈ R.

This is the goal of the next two subsections.

4.3.2. The Getzler approximation process. To determine the index density we will make an ad-
ditional assumption. More precisely we require that D be a geometric Dirac operator. In other
words, we require that E is equipped with an odd, skew-hermitian multiplication

c : T ∗M → End(E)

and a herminitan connection ∇ compatible with both the Z/2-grading of E and the Clifford mul-
tiplication. This means that for any u ∈ C∞(E), any α ∈ C∞(T ∗M) and any vector field
X ∈ Vect(M) we have

∇X
(
c(α)u

)
= c(∇gXα)u+ c(α)∇Xu,

where∇g denotes the Levi-Civita connection. The operator D has the form

D = c ◦ ∇ : C∞(E)
∇−→ C∞(T ∗M ⊗ E)

c−→ C∞(E),

and satisfies the Weitzenböck formula

D2 = ∇∗∇+
s(g)

4
+ c(FE/S),

where s(g) is the scalar curvature of g,

FE/S := F − c(R) ∈ Ω2
(
Cl(M)⊗̂EndCl(M)(E)

)
,
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c(R)(ei, ej) =
1

4

∑
k,`

g
(
R(ei, ej)ek, e`

)
c(ek)c(e`) ∈∈ Ω2(End(E)),

c(FE/S) =
∑
i<j

F e/S(ei, ej)c(ei)c(ej),

and (e1, . . . , en) is an oriented orthonormal basis of a tangent space TpM .

Fix a point q0 ∈ M , an oriented orthonormal basis e1, . . . , en of Tq0
M . This basis determines

normal coordinates (x1, . . . , xn) defined on an open geodesic ballBR(q0). Using these coordinates
we identiftBR(q0) with the open ballBR(0) ⊂ Tq0

M and Tq0
M with the Euclidean space Rn. Set

E0 := Eq0
.

Using the ∇-parallel transport along geodesics starting at q0 we can produce a trivialization of E
over BR(q0). The functions

BR(q0) 3 p 7→ Θj(p, q0) ∈ Hom(Eq0
, Ep),

can be viewed as functions

Tq0
M ⊃ BR(0) 3 x 7→ Θj(x) ∈ End(E0). (4.3.9)

As such, they have Taylor expansions

Θj(x) =
∑
α

xαΘj,α, Θj,α ∈ End(E0).

where for any multitindex α ∈ Zn≥0 we set

xα := (x1)α1 · · · (xn)αn , |α| = |α1|+ · · ·+ |αn|.

The fiber E0 is a Z/2-graded Cl(T ∗q0
M)-module and thus it has the form

E0
∼= Sn⊗̂W

where Sn = S+
n ⊕ S−n is the space of complex spinors associated to the Clifford algebra Cl(T ∗q0

M).
Denote by e1, . . . , en the dual basis of T ∗q0

M . This oriented, orthonormal basis e1, . . . , en identifies
Cl(T ∗q0

M) with Cln.

For every order multi-index I = (1 ≤ i1 < · · · < k ≤ N) we set |I| := k and

e∧I := ei1 ∧ · · · ∧ eik , cI := c(ei1) · · · c(eik).

From Proposition 2.2.6 we deduce that any operator T ∈ End(E0) decomposes as a sum

T =
∑
I

cI ⊗ TI , TI = End(W ) ∼= EndCln(E0).

We say that T has order ≤ k, ordT ≤ k, if TI = 0, for |I| > k. If ordT ≤ k we set

[T ]k =
∑

|I|=ordT

e∧I ⊗ TI ∈ ΛT ∗q0
M⊗̂End(W ) = ΛRn⊗̂End(W ) =: Sn(W ).

We say that ordT = k if ordT ≤ k and [T ]k 6= 0. We set

[T ] := [T ]ordT ∈ Sn(W ),

and we will refer to [T ] as the Getzler symbol of T .
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Note that if T1, T2 ∈ End(E0), ordT1 ≤ k1, ordT2 ≤ k2, then ord(T1T2) ≤ k1 + k2 and

[T1T2]k1+k2 = [T1]k1 [T2]k2 .

Note that ordT ≤ n, ∀T ∈ End(E0). From Proposition 2.2.8 we deduce that

ordT < n⇒ strT = 0.

Moreover, when ordT = n = 2m, then

strT = (−2i)m strT1,2,...,n =: str[T ]n.

We can rewrite the last facts in a compact form

strT = str[T ]n, ∀T ∈ End(E0). (4.3.10)

Define the order of a monomial xα to be −|α|,
ordxα := −|α|

Denote by C[[x]] the ring of formal power series in the variable (x1, . . . , xn) with complex coeffi-
cients, and by R(E0) the noncommutative ring of smooth maps BR(0)→ End(E0). If T is a map
in R(E0) is a smooth map with Taylor expansion at 0 given by

T (x) ∼
∑
α

xαTα ∈ C[[x]]⊗ End(E0).

then we say that ordT (x) ≤ k if

ordTα − |α| = ordTα + ordxα ≤ k, ∀α.
If ordT ≤ k we set

[T (x)]k :=
∑

ordTα−|α|≤k

xα[Tα] ∈ C[[x]]⊗Sn(W ).

The ring C[[x]]⊗Sn(W ) can be identified with the ring Sn(W )[[x]] of formal power series in the
variable x = (x1, . . . , xn) with coefficients in the (noncomutative) ring Sn(W ). We will use the
notation

Sn(W,x) := C[[x]]⊗Sn(W ).

Hence
[T (x)]k ∈ Sn(W,x).

We say that ordT (x) = k if ordT (x) ≤ k and [T (x)]k 6= 0. We set

[T (x)] = [T (x)]ordT ,

and we will refer to [T (x)] as the Getzler symbol. Note that for any smooth map T ∈ R(E0) we
have ordT (x) ≤ n and

strT (0) =
(
str[T (x)]n

)
x=0

= str[T0]n.

We want to extend the above concept of order and symbol to differential operators. Let R(E0)[∂] be
the ring of partial differential operators with coefficients in R(E0), acting on R(E0). A differential
operator P ∈ R(E0)[∂] can be put in the canonical form

P =
∑
α

Pα∂
α, Pα ∈ R(E0)

where all but finitely many Pα’s are zero, and for any multi-index α we set

∂α := ∂α1
1 · · · ∂

αn
n , ∂i := ∂xi .
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The product of two such operators can be put in canonical form by iteratively employing the com-
mutation relations

∂i ◦ T = (∂iT ) ◦ ∂0 + T∂i, ∀T ∈ R(E0), i = 1, . . . , n.

Given
P =

∑
α

Pα∂
α ∈ R(E0)[∂]

we say that ordP ≤ k if
ordPα + |α| ≤ k.

Denote by Sn(W,x)[∂] the ring of formal partial differential operators with coefficients in Sn(W,x).
If

P =
∑
α

Pα∂
α ∈ R(E0)[∂],

and ordP ≤ k, then we set

[P ]k =
∑
α

[Pα]k−|α|∂
α ∈ Sn(W,x)[∂].

The operator P is said to have order k if ordP ≤ k and [P ]k 6= 0. In this case we set

[P ] = [P ]k = [P ]ordP

and we say that [P ] is the Getzler symbol of P . Note that

ord ∂α = |α| [∂α] = ∂α.

Moreover if P,Q ∈ R(E0)[∂], ordP ≤ k, ordQ ≤ `, then

ordPQ ≤ k + `, [PQ]k+` = [P ]k[Q]`. (4.3.11)

Using the above trivialization of E over BR(q0), we can regard∇ as a connection on the trivial
bundle E0BR(0)

and as such it has the form

∇ = ∇0 +A, A ∈ Ω1(BR(0))⊗ End(E0),

where∇0 denotes the trivial connection. Set∇i = ∇∂i and Ai = ∂i A ∈ R(E0) so that

∇i = ∂i +Ai ∈ R(E0)[∂].

We have the following elementary but miraculous consequence of the fact that∇ is compatible with
the Clifford multiplication, [4, Lemma 4.15].

Lemma 4.3.6. We have

Ai =
1

4

∑
j,k<`

Rk`ijx
jckc` +

∑
k<`

fik`(x)ckc` + gi(x),

where R is the Riemann curvature of g

Rijk` = gq0
(ei, R(ek, e`)ej),

fik` ∈ C∞(BR(0)), ord fik` ≤ −2,

and
gi : BR(0)→ End(W )

is a smooth function such that gi(x) = O(|x|) as x→ 0 so that ord gi ≤ −1. ut
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Using Lemma 4.3.6 we deduce that ord∇i ≤ 1 and we observe that the Getzler symbol of ∇i
is

[∇i]1 = ∂i + [Ai]1 = ∂i +
1

4

∑
j

∑
k<`

Rk`ijx
jek ∧ e`. (4.3.12)

We set
Rij :=

∑
k<`

Rk`ije
k ∧ e` ∈ Λ2Rn, ∀i, j

so that we can rephrase (4.3.12) as

[∇i]1 = ∂i + [Ai]1 = ∂i +
1

4

∑
j

xjRijx
j . (4.3.13)

Observe that

D =
n∑
i=1

ci∇i.

Since ord ci ≤ 1 and ∇icj = 0 at 0, we deduce from (4.3.11) that ord D ≤ 2 and

[D ]2 =
∑
i

ei∂i +
1

4

∑
i

∑
j,k<`

Rk`ijx
jei ∧ ek ∧ e` ∈ Sn(W,x)[∂].

In particular, we deduce that ord D2 ≤ 4. In fact, we can do a lot better.

Proposition 4.3.7. ord D2 = 2 and

[D ]2 = −
∑
i

[∇i]2 = −
∑
i

∂i +
1

4

∑
j

xjRij

2

+ FE/S ∈ Sn(W,x)[∂]. (4.3.14)

Proof. From the Weitzenboöck formula we deduce

D2 = ∇∗∇+
s(g)

4
+ c
(
FE/S

)
= ∇∗∇+

s(g)

4
+
∑
i<j

FE/S(ei, ej)c(ei)c(ej).

Since
FE/S(ei, ej) ∈ EndCln(E0) = End(W ),

we deduce that

ord c
(
FE/S

)
= 2, [c

(
FE/S

)
] =

∑
i<j

FE/S(ei, ej)e
i ∧ ej = FE/S.

Note that ord s(g) ≤ 0. On the other hand,

∇∗∇ = −
∑
i,j,k

gjk(∇j∇k − Γijk∇i),

where Γijk are the Christoffel symbols of g in the coordinates x. Since x are normal coordinates, we
deduce Γijk(0) = 0 so that ord Γijk ≤ −1 and thus

ord Γijk∇i ≤ 0.
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We have ord gjk ≤ 0 and [gjk]0 = gjk(0) = δjk. Hence ∇∗∇ has order 2 and using (4.3.13) we
deduce

[∇∗∇]2 = −
∑
i

[∇2
i ]2 = −

∑
i

[∇i]2 = −
∑
i

∂i +
1

4

∑
j

xjRij

2

.

ut

The functions Θj(x) defined in (4.3.9) belong to the noncommutative ring R(E0) and satisfy the
differential equations (4.3.7)

∇r∂rΘj +

(
j +

r∂r|g|
4|g|

)
Θj = −D2Θj−1, and Θ0(0) = 1E0 (4.3.15)

Observe that
r∂r =

∑
i

xi∂i

so that
ord r∂r ≤ 0, [r∂r]0 = [r∂r] = r∂r =

∑
i

xi∂i.

Observe that
[∇r∂r] =

∑
i

[xi∂i] + [
∑
i,j

Rijx
ixj ] = r∂r

since Rij = −Rji. Since ∂r|g| = 0 at 0 we deduce that

ord
r∂r|g|
4|g|

< 0⇒
[
r∂r|g|
4|g|

]
0

= 0,

and we conclude that

[Θ0] = 1E0 , r∂r[Θj ] + j[Θj ] = −[D2][Θj−1], ∀j = 1, 2, . . . . (4.3.16)

This implies inductively that
ord Θj ≤ 2j.

Consider the ring R(E0)[[t−1, t] which consists of formal series of the form

St(x) =
∑
j∈Z

tjSj(x), Sj(x) ∈ R(E0),

such that Sj = 0 for j � 0. We say that ordSt(x) ≤ k if

−2j + ordSj ≤ k, ∀j.

We set
[St(x)]k :=

∑
j

tj [Sj(x)]k+2j ∈ Sn(W,x)[[t−1, t].

We say that St(x) has order k if ordSt(x) ≤ k and [St(x)]k 6= 0. In this case we define the Getzler
symbol of St(x) to be

[St(x)] = [St(x)]k.

Note that
ord tj = −2j, [tj ] = tj .
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The series

ht(x) =
1

(4πt)
n
2

exp
(
−r

2

4t

)
1E0 =

1

(4πt)
n
2

∑
k≥0

1

4kk!
t−kr2k

1E0 ,

can be viewed both as an element in R(E0)[[t−1, t] and as an element in Sn(W,x)[[t−1, t]. As
an element in R(E0)[[t−1, t] satisfies ordht(x) = n. Moreover we have the following equality in
Sn(W,x)[[t−1, t]

[ht(x)] = ht(x).

Consider the ring R(E0)[t−1, t] of Laurent polynomials with coefficients in the ring R(E0). Form
the ring

R(E0)[t−1, t][∂t, ∂x]

of partial differential operators with coefficients in R(E0)[t−1, t].

P =
∑
k

∑
α

Pα,k,t(x)∂kt ∂
α, Pα,k,t(x) ∈ R(R0)[t−1, t] ⊂ R(R0)[[t−1, t].

We set
ordP := max

k,α

(
ordPα,k,t(x) + 2k + |α|

)
,

and we define th Getzler symbol of P to be

[P ] =
∑

2k+|α|=ordP−ordPk,α,t

[Pα,k,t(x)]∂tk∂
α ∈ Sn(W,x)[[t−1, t][∂t, ∂x].

If P,Q are two such operators, then ordPQ ≤ ordP + ordQ and

[PQ] = [P ][Q].

We want to remark that
ord ∂t = 2, [∂t] = ∂t.

Note that

∂t + D2 ∈ R(E0)[t−1, t][∂t, ∂x], H =
1

ht
(∂t + D2)ht ∈ R(E0)[t−1, t][∂t, ∂x].

Recalling the equality (4.3.5)

H = ∂t + D2 +
1

t
∇r∂r +

r

4t
(∂r log |g|)

we deduce that ordH ≤ 2 and

[H] = [H]2 = ∂t + [D2] +

[
1

t
∇r∂r

]
2

= ∂t + [D2] +
r

t
∂r.

If set

[Θt(x)] =

n
2∑
j=0

tj [Θj(x)] ∈ Sn(W,x)[t] ⊂ Sn(W,x)[[t−1, t],

then we can rewrite the equalities (4.3.16) in the compact form

[H][Θ(x)] = 0.

Given that H = 1
ht

(∂t + D2)ht we can further rewrite the last equality as a differential equation in
Sn(W,x)[[t−1, t],

(∂t + [D2])
(
ht[Θt(x)]

)
= 0.
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If we set

Kt(x) := ht(x)

n
2∑
j=0

tj [Θj(x)] ∈ Sn(W,x)[[t−1, t]

and invoke (4.3.14), then we see that Kt(x) satisfies the differential equation(
∂t −

∑
i

(
∂i +

1

4

∑
j

xjRij

)2
+ FE/S

)
Kt(x) = 0. (4.3.17)

4.3.3. Mehler formula. Suppose we are given the following data.

• A finite dimensional commutative C-algebra A .

• A finite dimensional complex vector space W .

• An n× n skew-symmetric matrix R with coefficients in A .

• An element F ∈ End(W )⊗A .

Denote by R the ring of smooth function BR(0) → End(W ) ⊗ A . Form the differential
operator

S : R → R, S = −
∑
i

(
∂i +

1

4

∑
j

Rijx
j
)2

︸ ︷︷ ︸
=S0

+F.

Observe that S0 commutes with H .

Proposition 4.3.8. For any A0 ∈ End(W ) ⊗ A there exists a unique formal solution pt(x) =
pt(x,R, F,A0) ∈ R of the the heat equation

(∂t + Sx)pt(x) = 0 (4.3.18)

which has the form

pt(x) = ht(x)
∞∑
k=0

tkΦk(x)︸ ︷︷ ︸
=:Φt(x)

, Φ0(0) = A0. (4.3.19)

Proof. Observe that the equation

(∂t + Sx)
(
ht(x)Φt(x)

)
= 0⇐⇒

(
∂t

1

t
r∂r + Sx

)
Φt(x) = 0

⇐⇒ r∂rΦ0 = 0, (r∂r + k)Φk = −SxΦk−1 = 0, ∀k > 0.

We see that Φ0 is the constant function a0 while the second equation reads

∂r(r
kΦk) = −rk−1SxΦk−1

which determines Φk ∈ R uniquely. ut

For any symmetric n× n matrix A with coefficients in A we set〈
x|A|x

〉
:=
∑
i,j

aijx
ixj .



166 Liviu I. Nicolaescu

Proposition 4.3.9 (Mehler formula).

pt(x,R, F,A0) =
1

(4πt)
n
2

det
1
2

(
tR/2

sinh tR/2

)
exp
(
− 1

4t

〈
x|(tR/2) coth(tR/2)|x

〉)
exp(−tF )A0.

ut

4.3.4. Putting all the moving parts together.
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8(1960), 116–120.

[25] M. Reed, B. Simon: Methods of Modern Mathematical Physics I. Functional Analysis, Academic Press,
1980.

[26] F. Riesz, B. Sz.-Nagy: Functional Analysis, Dover Publications, 1990.

[27] J. Roe: Elliptic operators, topology and asymptotic methods, 2nd Edition, Pitman Research Notes in Math
Series vol. 395, Logman 1998.

[28] N. Saveliev: Invariants fot Homology 2-Spheres, Encyclopædia of Math. Sci., vol.140, Springer Verlag, 2002.
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CR operator, 112
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spinorial representation, 73
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Nirenberg-Newlander, 105
Noether, 119
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Sobolev embedding, 57
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transgression, 24
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twisting curvature, 85, 115, 124

vector bundle, 1
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trivial, 13
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holomorphic, 109
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metric, 8

morphism, 3
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pullback, 6
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p-integrable, 55
covariant constant, 16
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pullback of, 9
weakly differentiable, 55

standard fiber, 2
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trivial, 2
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weak solution, 55
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connection, 54
formula, 87
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