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1. Holomorphic Euler characteristics

Suppose X is a compact Kähler manifold of dimension n and E is a holomorphic vector
bundle. For every p ≤ dimCX we have a sheaf Ωp(E) whose sections are holomorphic (p, 0)-
forms with coefficients in E. We set

Hp,q(X,E) := Hq(X, Ωp(E) ), hp,q(X,E) := dimCHp,q(X,E),

and we define the holomorphic Euler characteristics

χp(X, E) :=
∑

q≥0

(−1)qhp,q(X, E).

It is convenient to introduce the generating function of these numbers

χy(X, E) :=
∑

p≥0

ypχp(X,E).

Observe that
Ωp(E) ∼= Ω0(ΛpT ∗X1,0)

so that
hp,q(X, E) = h0,q(X, ΛpT ∗X1,0 ⊗E)

and
χp(X, E) = χ0(X,ΛpT ∗X1,0 ⊗E).

If E is the trivial holomorphic line bundle C then we write χy(X) instead of χy(X,C).
Observe that

χy(X) |y=−1=
∑
p,q

(−1)p+qhp,q(X) = χ(X),

χn−p(X) = (−1)nχp(X).
Hence for n = 1 we have

χ(X) = 2χ0(X),
while for n = 2 we have

χ(X) = 2χ0(X)− χ1(X).

Example 1.1. X = PN then

hp,q(PN ) =
{

1 if 0 ≤ p = q ≤ N
0 if p 6= q

.

Hence

χp(PN ) = (−1)p, ; χ−y(PN ) =
N∑

p=0

yp =
yN+1 − 1

y − 1
.
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2. The Riemann-Roch-Hirzebruch formula

The main tool for computing the holomorphic Euler characteristics χp(X, E) is based on
the following fundamental result.

Theorem 2.1 (Riemann-Roch-Hirzebruch).

χ0(X, E) = 〈td(X) ch(E), [X]〉,
where

td(X) =
∑

k≥0

tdk(X), tdk(X) ∈ H2k(X,Q),

denotes the Todd genus of the complex tangent bundle of X,

ch(E) =
∑

k≥0

chk(E), chk(E) ∈ H2k(X,Q),

denotes the Chern character of E and 〈•, •〉 denotes the Kronecker pairing between cohomology
and homology.

We have the following immediate corollary.

Corollary 2.2.

χp(X, E) = χ0(X, ΛpT ∗X1,0 ⊗ E) = 〈td(X) ch(ΛpT ∗X1,0) ch(E), [X]〉.
For a vector bundle V → X we define

chy(V ) =
∑

p≥0

yp ch(ΛpV ).

For simplicity we set T ∗X = T ∗X1,0. The result in the previous corollary can be rewritten
as

χy(X,E) = 〈td(X) · chy(T ∗X) ch(E), [X]〉.
To use this equality we need to recall a few basic properties of the Todd genus and the Chern
character of a complex vector bundle.

Proposition 2.3. (a) Suppose L → X is a complex line bundle and set x = c1(L) ∈
H2(X,Z). Then

td(L) =
x

1− e−x
= ex/2 · x/2

sinh(x/2)
, ch(L) = ex, chy(L) = 1 + yex.

(b) If
0 → E0 → E → E1 → 0.

is a short exact sequence of complex vector bundles then

td(E) = td(E0) td(E1), ch(E) = ch(E0) + ch(E1),

chy(E0 ⊕ E1) = chy(E0) · chy(E1).

Moreover
ch(E0 ⊗ E1) = ch(E0) ch(E1).

ut
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Example 2.4. Suppose X = PN . We want to compute td(X) and chy(T ∗X1,0). Denote
by H → PN the hyperplane line bundle. Its sections can be identified with linear maps
CN+1 → C. We denote its first Chern class by h. As is known we have the equality

〈hN , [PN ]〉 =
∫

PN

hN = 1

and an isomorphisms of rings

H•(PN ,Z) ∼= Z[h]/(hN+1).

The dual H∗ of H is the tautological line bundle which is a subbundle of the trivial bundle
CN+1 → PN . We denote by Q the quotient CN+1/H∗. The tangent bundle of PN can be
identified with Hom(H∗, Q) ∼= H ⊗Q. By tensoring the short exact sequence

0 → H∗ → CN+1 → Q → 0

with H we obtain the short exact sequence

0 → C→ HN+1 → TX → 0

and we deduce

td(HN+1) = td(C) td(TX) =⇒ td(TX) = td(H)N+1 =
( h

1− e−h

)N+1
. (2.1)

Similarly, from the sequence

0 → T ∗X1,0 → (H∗)N+1 → C→ 0

we deduce
(1 + y) · chy(T ∗X) = chy(H∗)N+1 = (1 + ye−h)N+1 =⇒

chy(T ∗X) =
(1 + ye−h)N+1

1 + y
. (2.2)

3. Hodge numbers of hypersurfaces in PN .

Consider the line bundle mH = H⊗m on X = PN . Its sections can be identified with degree
m homogeneous polynomials in the variables (z0, · · · , zN ). For a generic section s the zero
set is a smooth hypersurface of degree m. We denote it by Z. We want to compute hp,q(Z).
We follow closely the approach in [1]. For this we need to use the following fundamental
result.

Theorem 3.1 (Lefschetz). For k < N − 1 = 1
2 dimR Z the induced morphism

Hk(PN ,C) → Hk(Z,C)

is an isomorphism. Moreover the morphism

HN−1(PN ,Z) → HN−1(Z,C)

is one-to-one. ut

We deduce that for k < (N − 1)

bk(Z) = bk(PN ) =
{

1 if k ∈ 2Z
0 if k ∈ 2Z+ 1
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Using the equalities

bk(Z) =
k∑

p=0

hp,k−p(Z)

we deduce
hp,q(Z) = hp,q(PN ), ∀p + q < (N − 1).

Hence if we set ν = (N − 1) = dimC Z we deduce

χ0(Z) = 1− (−1)νh0,ν(Z), χ1(Z) = −1 + (−1)ν−1h1,ν−1, etc.

Thus to compute the Hodge numbers it suffices to compute χy(Z).
The first Chern class of mH is mh so that

ch(mH) = emh.

If we denote by NZ → Z the normal bundle of the embedding Z ↪→ X then we have the
adjunction formula

(mH) |Z∼= NZ

and a short exact sequence

0 → TZ → TX |Z→ (mH) |Z→ 0.

Using Proposition 2.3(b), and the identities (2.1) and (2.2) we deduce that

td(Z) · td((mH) |Z) = td(X) |Z=⇒ td(Z) =
( h

1− e−h

)N+1
|Z ·1− e−mh

mh
|Z

and

chy(T ∗Z) = chy(T ∗X) |Z · chy(−mH)−1 |Z=
(1 + ye−h)N+1

(1 + y)(1 + ye−mh)
|Z .

Hence
χy(Z) = 〈td(Z) chy(T ∗Z), [Z]〉

=
〈( h

1− e−h

)N+1
|Z ·1− e−mh

mh
|Z (1 + ye−h)N+1

(1 + y)(1 + ye−mh)
|Z , [Z]

〉
.

Since the cohomological class Poincaré dual to [Z] in X is mh we deduce

χy(Z) =
〈( h

1− e−h

)N+1
· 1− e−mh

mh
· (1 + ye−h)N+1

(1 + y)(1 + ye−mh)
·mh, [X]

〉

=
〈
hN+1

(1 + ye−h

1− e−h

)N+1
· 1− e−mh

(1 + y)(1 + ye−mh)
, [X]

〉

We deduce that χy(Z) can be identified with the coefficient of z−1 in the Laurent expansion
of the function

z 7−→
(1 + ye−z

1− e−z

)N+1
· 1− e−mz

(1 + y)(1 + ye−mz)
.

This coefficient can be determined using the residue formula so that

χy(Z) =
1

2πi

∫

|z|=ε

(1 + ye−z

1− e−z

)N+1
· 1− e−mz

(1 + y)(1 + ye−mz)
dz.

If we make the change in variables

ζ = 1− e−z ⇐⇒ e−z = 1− ζ, e−mz = (1− ζ)m,

e−zdz = −dζ =⇒ dz = − 1
1− ζ

dζ
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we deduce that χy(Z) is given by

χy(Z) =
1

2πi

∫

Cε

(1 + y(1− ζ)
ζ

)N+1
· 1− (1− ζ)m

(1 + y)(1− ζ)(1 + y(1− ζ)m)
dζ,

where Cε is a small closed path with winding number around 0 equal to 1. This residue is
equal to the coefficient of ζN in the ζ-Taylor expansion of the function

fN (y, ζ) =

(
1 + y(1− ζ)

)N+1

(1− ζ)(1 + y)
1− (1− ζ)m

1 + y(1− ζ)m

For our purposes it is perhaps more productive to understand the y-expansion on fN (y, ζ)

fN (y, ζ) =
∑

p≥0

fN,p(ζ)yp,

and then compute the coefficient of ζN in fN,p(ζ). Set u = (1− ζ). We have

1− (1− ζ)m

(1 + y)(1 + y(1− ζ)m)
=

1− um

(1 + y)(1 + umy)
= (1− um)

(∑

i≥0

(−1)iyi
)(∑

j≥0

(−1)jumjyj
)

= (1− um)
∑

k≥0

(−1)k
( k∑

j=0

umj
)
yk =

∑

k≥0

(−1)k(1− um(k+1))yk.

(1 + uy)N+1 =
N+1∑

j=0

(
N + 1

j

)
ujyj .

From the equalities

∑

p≥0

fN,p(ζ)yp = fy(ζ) =
1
u

(∑

k≥0

(−1)k(1− um(k+1))yk
)(N+1∑

j=0

(
N + 1

j

)
ujyj

)

we deduce

fN,p(ζ) =
1
u

p∑

k=0

(−1)k

(
N + 1
p− k

)
(1− um(k+1))up−k.

Note that

fN,0(ζ) =
(1− um)

u
=

1− (1− ζ)m

(1− ζ)
=

1
1− ζ

− (1− ζ)m−1.

fN,1(ζ) = (N + 1)(1− um)− (1− u2m)
u

= (N + 1)
(
1− (1− ζ)m

)− (1− ζ)−1 + (1− ζ)2m−1.

The holomorphic Euler characteristic χp(Z) is the coefficient of ζN in fN,p(ζ). For any power
series a(x) =

∑
n≥0 anxn we set

Tn(a(x)) := an.

We want to discuss a few special cases.

• N = 2. In this case Z is a plane curve and we have χ0(Z) = 1− h0,1(Z) = 1
2χ(Z). Then

T2(f2,0) = χ0(Z) = T2(1− ζ)−1 − T2(1− ζ)m−1 = 1− (m− 1)(m− 2)
2

We deduce

h0,1(Z) = h1,0(Z) =
(m− 1)(m− 2)

2
=

1
2
b1(Z)
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so that Z is a Riemann surface of genus (m−1)(m−2)
2 . Note that if m = N + 1 = 3 we have

hN−1,0 = h1,0 = 1,

so that Z is an elliptic curve. Z is a 1-dimensional Calabi-Yau manifold.

• N = 3 so that Z is an algebraic surface. We have

χ0(Z) = 1 + h0,2(Z), χ1(Z) = −h1,1(Z), χ2(Z) = χ0(Z) = h2,0(Z) + 1.

We have

χ0(Z) = T3(f3,0) = T3(1− ζ)−1 − T3(1− ζ)m−1 = 1 +
(

m− 1
3

)

= 1 +
(m− 1)(m− 2)(m− 3)

6
χ1(Z) = T3(f3,1) = −4T3(1− ζ)m − T3(1− ζ)−1 + T3(1− ζ)2m−1

= 4
(

m

3

)
− 1−

(
2m− 1

3

)

= −1 + 4
m(m− 1)(m− 2)

6
− (2m− 1)(2m− 2)(2m− 3)

6
= −4m3 − 12m + 14m

6
.

Hence

h2,0(Z) = h0,2(Z) =
(m− 1)(m− 2)(m− 3)

6
,

h1,1(Z) =
4m3 − 12m + 14m

6
,

b2(Z) = 2h0,2 + h1,1(Z) = 1 + 2
(

m− 1
3

)
− 4

(
m

3

)
+

(
2m− 1

3

)
= m3 − 4m2 + 6m− 2.

Note that if m = (N + 1) = 4 we have

hN−1,0 = h2,0 = 1, h1,1 = 20.

In this case we say that X is a K3 surface. It is a 2-dimensional Calabi-Yau manifold.

4. Hodge numbers of complete intersection curves in P3

Consider two generic hypersurfaces Zm, Zn ⊂ P3 of degree m and respectively n. Their
intersection is a curve C = Cm,n. We want to compute its genus. Denote by NC the normal
bundle of the embedding Cm,n ↪→ P3. NC → C is a rank 2 vector bundle over C and we have
the adjunction isomorphism

NC
∼= (mH ⊕ nH) |C .

Hence we obtain a short exact sequence

0 → TC → (TP3) |C→ (mH ⊕ nH) |C→ 0

so that
1 + c1(TC) = ch(TC) = ch(TP3) |C − ch(mH) |C − ch(nH) |C .

From the exact sequence
0 → C→ H⊕4 → TP3 → 0

we deduce
ch(TP3) = 4eh − 1

so that
1 + c1(TC) = (4eh − 1− emh − enh) |C
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so that
e(C) = c1(TC) = (4−m− n)h |C .

We deduce that
χ(C) = 〈e(C), [C]〉 = 〈(4−m− n)h |C , [C]〉.

Since [C] is the homology class Poincaré dual to mnh2 we deduce

χ(Cm,n) = 〈(4−m− n)mnh3, [P3]〉 = −(m + n− 4)mn

so that
g(Cm,n) = h1,0(Cm,n) = 1 +

mn(m + n− 4)
2

.

Remark 4.1. If X = Xn
m1,··· ,mk

⊂ Pn+k is a generic intersection of k hypersurfaces of degrees
m1, · · · ,mk (so dimCX = n) then

∑

n≥0

χy(Xn
m1,··· ,mk

)zn+k =
1

(1 + zy)(1− z)

k∏

j=1

(1 + zy)mi − (1− z)mi

(1 + zy)mi + y(1− z)mi
.

For a proof, we refer to [1, Appendix I]. ut
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