HODGE NUMBERS OF COMPLETE INTERSECTIONS

LIVIU I. NICOLAESCU

1. Holomorphic Euler characteristics

Suppose X is a compact Kähler manifold of dimension n and E is a holomorphic vector bundle. For every $p \leq \operatorname{dim}_{\mathbb{C}} X$ we have a sheaf $\Omega^{p}(E)$ whose sections are holomorphic ($p, 0$)forms with coefficients in E. We set

$$
H^{p, q}(X, E):=H^{q}\left(X, \Omega^{p}(E)\right), \quad h^{p, q}(X, E):=\operatorname{dim}_{\mathbb{C}} H^{p, q}(X, E)
$$

and we define the holomorphic Euler characteristics

$$
\chi^{p}(X, E):=\sum_{q \geq 0}(-1)^{q} h^{p, q}(X, E) .
$$

It is convenient to introduce the generating function of these numbers

$$
\chi_{y}(X, E):=\sum_{p \geq 0} y^{p} \chi^{p}(X, E) .
$$

Observe that

$$
\Omega^{p}(E) \cong \Omega^{0}\left(\Lambda^{p} T^{*} X^{1,0}\right)
$$

so that

$$
h^{p, q}(X, E)=h^{0, q}\left(X, \Lambda^{p} T^{*} X^{1,0} \otimes E\right)
$$

and

$$
\chi^{p}(X, E)=\chi^{0}\left(X, \Lambda^{p} T^{*} X^{1,0} \otimes E\right) .
$$

If E is the trivial holomorphic line bundle \mathbb{C} then we write $\chi_{y}(X)$ instead of $\chi_{y}(X, \mathbb{C})$. Observe that

$$
\begin{gathered}
\left.\chi_{y}(X)\right|_{y=-1}=\sum_{p, q}(-1)^{p+q} h^{p, q}(X)=\chi(X), \\
\chi^{n-p}(X)=(-1)^{n} \chi^{p}(X) .
\end{gathered}
$$

Hence for $n=1$ we have

$$
\chi(X)=2 \chi^{0}(X),
$$

while for $n=2$ we have

$$
\chi(X)=2 \chi^{0}(X)-\chi^{1}(X) .
$$

Example 1.1. $X=\mathbb{P}^{N}$ then

$$
h^{p, q}\left(\mathbb{P}^{N}\right)=\left\{\begin{array}{lll}
1 & \text { if } & 0 \leq p=q \leq N \\
0 & \text { if } & p \neq q
\end{array} .\right.
$$

Hence

$$
\chi^{p}\left(\mathbb{P}^{N}\right)=(-1)^{p}, ; \chi-y\left(\mathbb{P}^{N}\right)=\sum_{p=0}^{N} y^{p}=\frac{y^{N+1}-1}{y-1} .
$$

2. The Riemann-Roch-Hirzebruch formula

The main tool for computing the holomorphic Euler characteristics $\chi^{p}(X, E)$ is based on the following fundamental result.

Theorem 2.1 (Riemann-Roch-Hirzebruch).

$$
\chi^{0}(X, E)=\langle\mathbf{t d}(X) \boldsymbol{\operatorname { c h }}(E),[X]\rangle
$$

where

$$
\operatorname{td}(X)=\sum_{k \geq 0} \operatorname{td}_{k}(X), \quad \operatorname{td}_{k}(X) \in H^{2 k}(X, \mathbb{Q})
$$

denotes the Todd genus of the complex tangent bundle of X,

$$
\operatorname{ch}(E)=\sum_{k \geq 0} \operatorname{ch}_{k}(E), \quad \operatorname{ch}_{k}(E) \in H^{2 k}(X, \mathbb{Q})
$$

denotes the Chern character of E and $\langle\bullet, \bullet\rangle$ denotes the Kronecker pairing between cohomology and homology.

We have the following immediate corollary.

Corollary 2.2.

$$
\chi^{p}(X, E)=\chi^{0}\left(X, \Lambda^{p} T^{*} X^{1,0} \otimes E\right)=\left\langle\operatorname{td}(X) \boldsymbol{\operatorname { c h }}\left(\Lambda^{p} T^{*} X^{1,0}\right) \operatorname{ch}(E),[X]\right\rangle
$$

For a vector bundle $V \rightarrow X$ we define

$$
\operatorname{ch}_{y}(V)=\sum_{p \geq 0} y^{p} \boldsymbol{\operatorname { c h }}\left(\Lambda^{p} V\right)
$$

For simplicity we set $T^{*} X=T^{*} X^{1,0}$. The result in the previous corollary can be rewritten as

$$
\chi_{y}(X, E)=\left\langle\mathbf{t d}(X) \cdot \operatorname{ch}_{y}\left(T^{*} X\right) \operatorname{ch}(E),[X]\right\rangle
$$

To use this equality we need to recall a few basic properties of the Todd genus and the Chern character of a complex vector bundle.

Proposition 2.3. (a) Suppose $L \rightarrow X$ is a complex line bundle and set $x=c_{1}(L) \in$ $H^{2}(X, \mathbb{Z})$. Then

$$
\operatorname{td}(L)=\frac{x}{1-e^{-x}}=e^{x / 2} \cdot \frac{x / 2}{\sinh (x / 2)}, \quad \operatorname{ch}(L)=e^{x}, \quad \operatorname{ch}_{y}(L)=1+y e^{x}
$$

(b) If

$$
0 \rightarrow E_{0} \rightarrow E \rightarrow E_{1} \rightarrow 0
$$

is a short exact sequence of complex vector bundles then

$$
\begin{aligned}
\mathbf{t d}(E)= & \mathbf{t d}\left(E_{0}\right) \mathbf{t d}\left(E_{1}\right), \quad \mathbf{c h}(E)=\mathbf{c h}\left(E_{0}\right)+\mathbf{c h}\left(E_{1}\right) \\
& \mathbf{c h}_{y}\left(E_{0} \oplus E_{1}\right)=\mathbf{c h}_{y}\left(E_{0}\right) \cdot \mathbf{c h}_{y}\left(E_{1}\right)
\end{aligned}
$$

Moreover

$$
\boldsymbol{\operatorname { c h }}\left(E_{0} \otimes E_{1}\right)=\boldsymbol{\operatorname { c h }}\left(E_{0}\right) \boldsymbol{\operatorname { c h }}\left(E_{1}\right)
$$

Example 2.4. Suppose $X=\mathbb{P}^{N}$. We want to compute $\boldsymbol{\operatorname { t d }}(X)$ and $\boldsymbol{c h}_{y}\left(T^{*} X^{1,0}\right)$. Denote by $H \rightarrow \mathbb{P}^{N}$ the hyperplane line bundle. Its sections can be identified with linear maps $\mathbb{C}^{N+1} \rightarrow \mathbb{C}$. We denote its first Chern class by h. As is known we have the equality

$$
\left\langle h^{N},\left[\mathbb{P}^{N}\right]\right\rangle=\int_{\mathbb{P}^{N}} h^{N}=1
$$

and an isomorphisms of rings

$$
H^{\bullet}\left(\mathbb{P}^{N}, \mathbb{Z}\right) \cong \mathbb{Z}[h] /\left(h^{N+1}\right)
$$

The dual H^{*} of H is the tautological line bundle which is a subbundle of the trivial bundle $\underline{\mathbb{C}}^{N+1} \rightarrow \mathbb{P}^{N}$. We denote by Q the quotient $\underline{\mathbb{C}}^{N+1} / H^{*}$. The tangent bundle of \mathbb{P}^{N} can be identified with $\operatorname{Hom}\left(H^{*}, Q\right) \cong H \otimes Q$. By tensoring the short exact sequence

$$
0 \rightarrow H^{*} \rightarrow \underline{\mathbb{C}}^{N+1} \rightarrow Q \rightarrow 0
$$

with H we obtain the short exact sequence

$$
0 \rightarrow \mathbb{C} \rightarrow H^{N+1} \rightarrow T X \rightarrow 0
$$

and we deduce

$$
\begin{equation*}
\boldsymbol{\operatorname { t d }}\left(H^{N+1}\right)=\boldsymbol{t d}(\underline{\mathbb{C}}) \mathbf{t d}(T X) \Longrightarrow \boldsymbol{t d}(T X)=\boldsymbol{\operatorname { t d }}(H)^{N+1}=\left(\frac{h}{1-e^{-h}}\right)^{N+1} \tag{2.1}
\end{equation*}
$$

Similarly, from the sequence

$$
0 \rightarrow T^{*} X^{1,0} \rightarrow\left(H^{*}\right)^{N+1} \rightarrow \mathbb{C} \rightarrow 0
$$

we deduce

$$
\begin{gather*}
(1+y) \cdot \operatorname{ch}_{y}\left(T^{*} X\right)=\operatorname{ch}_{y}\left(H^{*}\right)^{N+1}=\left(1+y e^{-h}\right)^{N+1} \Longrightarrow \\
\operatorname{ch}_{y}\left(T^{*} X\right)=\frac{\left(1+y e^{-h}\right)^{N+1}}{1+y} \tag{2.2}
\end{gather*}
$$

3. Hodge numbers of hypersurfaces in \mathbb{P}^{N}.

Consider the line bundle $m H=H^{\otimes m}$ on $X=\mathbb{P}^{N}$. Its sections can be identified with degree m homogeneous polynomials in the variables $\left(z_{0}, \cdots, z_{N}\right)$. For a generic section s the zero set is a smooth hypersurface of degree m. We denote it by Z. We want to compute $h^{p, q}(Z)$. We follow closely the approach in [1]. For this we need to use the following fundamental result.

Theorem 3.1 (Lefschetz). For $k<N-1=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} Z$ the induced morphism

$$
H^{k}\left(\mathbb{P}^{N}, \mathbb{C}\right) \rightarrow H^{k}(Z, \mathbb{C})
$$

is an isomorphism. Moreover the morphism

$$
H^{N-1}\left(\mathbb{P}^{N}, \mathbb{Z}\right) \rightarrow H^{N-1}(Z, \mathbb{C})
$$

is one-to-one.
We deduce that for $k<(N-1)$

$$
b_{k}(Z)=b_{k}\left(\mathbb{P}^{N}\right)=\left\{\begin{array}{lll}
1 & \text { if } & k \in 2 \mathbb{Z} \\
0 & \text { if } & k \in 2 \mathbb{Z}+1
\end{array}\right.
$$

Using the equalities

$$
b_{k}(Z)=\sum_{p=0}^{k} h^{p, k-p}(Z)
$$

we deduce

$$
h^{p, q}(Z)=h^{p, q}\left(\mathbb{P}^{N}\right), \quad \forall p+q<(N-1)
$$

Hence if we set $\nu=(N-1)=\operatorname{dim}_{\mathbb{C}} Z$ we deduce

$$
\chi^{0}(Z)=1-(-1)^{\nu} h^{0, \nu}(Z), \quad \chi^{1}(Z)=-1+(-1)^{\nu-1} h^{1, \nu-1}, \text { etc. }
$$

Thus to compute the Hodge numbers it suffices to compute $\chi_{y}(Z)$.
The first Chern class of $m H$ is $m h$ so that

$$
\boldsymbol{\operatorname { c h }}(m H)=e^{m h}
$$

If we denote by $N_{Z} \rightarrow Z$ the normal bundle of the embedding $Z \hookrightarrow X$ then we have the adjunction formula

$$
\left.(m H)\right|_{Z} \cong N_{Z}
$$

and a short exact sequence

$$
\left.\left.0 \rightarrow T Z \rightarrow T X\right|_{Z} \rightarrow(m H)\right|_{Z} \rightarrow 0
$$

Using Proposition 2.3(b), and the identities (2.1) and (2.2) we deduce that

$$
\boldsymbol{\operatorname { t d }}(Z) \cdot \mathbf{t d}\left(\left.(m H)\right|_{Z}\right)=\left.\mathbf{t d}(X)\right|_{Z} \Longrightarrow \mathbf{t d}(Z)=\left.\left.\left(\frac{h}{1-e^{-h}}\right)^{N+1}\right|_{Z} \cdot \frac{1-e^{-m h}}{m h}\right|_{Z}
$$

and

$$
\operatorname{ch}_{y}\left(T^{*} Z\right)=\left.\left.\mathbf{c h}_{y}\left(T^{*} X\right)\right|_{Z} \cdot \mathbf{c h}_{y}(-m H)^{-1}\right|_{Z}=\left.\frac{\left(1+y e^{-h}\right)^{N+1}}{(1+y)\left(1+y e^{-m h}\right)}\right|_{Z}
$$

Hence

$$
\begin{gathered}
\chi_{y}(Z)=\left\langle\mathbf{t d}(Z) \operatorname{ch}_{y}\left(T^{*} Z\right),[Z]\right\rangle \\
=\left\langle\left.\left.\left.\left(\frac{h}{1-e^{-h}}\right)^{N+1}\right|_{Z} \cdot \frac{1-e^{-m h}}{m h}\right|_{Z} \frac{\left(1+y e^{-h}\right)^{N+1}}{(1+y)\left(1+y e^{-m h}\right)}\right|_{Z},[Z]\right\rangle
\end{gathered}
$$

Since the cohomological class Poincaré dual to $[Z]$ in X is $m h$ we deduce

$$
\begin{aligned}
\chi_{y}(Z)= & \left\langle\left(\frac{h}{1-e^{-h}}\right)^{N+1} \cdot \frac{1-e^{-m h}}{m h} \cdot \frac{\left(1+y e^{-h}\right)^{N+1}}{(1+y)\left(1+y e^{-m h}\right)} \cdot m h,[X]\right\rangle \\
& =\left\langle h^{N+1}\left(\frac{1+y e^{-h}}{1-e^{-h}}\right)^{N+1} \cdot \frac{1-e^{-m h}}{(1+y)\left(1+y e^{-m h}\right)},[X]\right\rangle
\end{aligned}
$$

We deduce that $\chi_{y}(Z)$ can be identified with the coefficient of z^{-1} in the Laurent expansion of the function

$$
z \longmapsto\left(\frac{1+y e^{-z}}{1-e^{-z}}\right)^{N+1} \cdot \frac{1-e^{-m z}}{(1+y)\left(1+y e^{-m z}\right)}
$$

This coefficient can be determined using the residue formula so that

$$
\chi_{y}(Z)=\frac{1}{2 \pi \mathbf{i}} \int_{|z|=\varepsilon}\left(\frac{1+y e^{-z}}{1-e^{-z}}\right)^{N+1} \cdot \frac{1-e^{-m z}}{(1+y)\left(1+y e^{-m z}\right)} d z
$$

If we make the change in variables

$$
\begin{gathered}
\zeta=1-e^{-z} \Longleftrightarrow e^{-z}=1-\zeta, e^{-m z}=(1-\zeta)^{m} \\
e^{-z} d z=-d \zeta \Longrightarrow d z=-\frac{1}{1-\zeta} d \zeta
\end{gathered}
$$

we deduce that $\chi_{y}(Z)$ is given by

$$
\chi_{y}(Z)=\frac{1}{2 \pi \mathbf{i}} \int_{C_{\varepsilon}}\left(\frac{1+y(1-\zeta)}{\zeta}\right)^{N+1} \cdot \frac{1-(1-\zeta)^{m}}{(1+y)(1-\zeta)\left(1+y(1-\zeta)^{m}\right)} d \zeta,
$$

where C_{ε} is a small closed path with winding number around 0 equal to 1 . This residue is equal to the coefficient of ζ^{N} in the ζ-Taylor expansion of the function

$$
f_{N}(y, \zeta)=\frac{(1+y(1-\zeta))^{N+1}}{(1-\zeta)(1+y)} \frac{1-(1-\zeta)^{m}}{1+y(1-\zeta)^{m}}
$$

For our purposes it is perhaps more productive to understand the y-expansion on $f_{N}(y, \zeta)$

$$
f_{N}(y, \zeta)=\sum_{p \geq 0} f_{N, p}(\zeta) y^{p}
$$

and then compute the coefficient of ζ^{N} in $f_{N, p}(\zeta)$. Set $u=(1-\zeta)$. We have

$$
\begin{gathered}
\frac{1-(1-\zeta)^{m}}{(1+y)\left(1+y(1-\zeta)^{m}\right)}=\frac{1-u^{m}}{(1+y)\left(1+u^{m} y\right)}=\left(1-u^{m}\right)\left(\sum_{i \geq 0}(-1)^{i} y^{i}\right)\left(\sum_{j \geq 0}(-1)^{j} u^{m j} y^{j}\right) \\
=\left(1-u^{m}\right) \sum_{k \geq 0}(-1)^{k}\left(\sum_{j=0}^{k} u^{m j}\right) y^{k}=\sum_{k \geq 0}(-1)^{k}\left(1-u^{m(k+1)}\right) y^{k} . \\
(1+u y)^{N+1}=\sum_{j=0}^{N+1}\binom{N+1}{j} u^{j} y^{j} .
\end{gathered}
$$

From the equalities

$$
\sum_{p \geq 0} f_{N, p}(\zeta) y^{p}=f_{y}(\zeta)=\frac{1}{u}\left(\sum_{k \geq 0}(-1)^{k}\left(1-u^{m(k+1)}\right) y^{k}\right)\left(\sum_{j=0}^{N+1}\binom{N+1}{j} u^{j} y^{j}\right)
$$

we deduce

$$
f_{N, p}(\zeta)=\frac{1}{u} \sum_{k=0}^{p}(-1)^{k}\binom{N+1}{p-k}\left(1-u^{m(k+1)}\right) u^{p-k} .
$$

Note that

$$
\begin{gathered}
f_{N, 0}(\zeta)=\frac{\left(1-u^{m}\right)}{u}=\frac{1-(1-\zeta)^{m}}{(1-\zeta)}=\frac{1}{1-\zeta}-(1-\zeta)^{m-1} \\
f_{N, 1}(\zeta)=(N+1)\left(1-u^{m}\right)-\frac{\left(1-u^{2 m}\right)}{u}=(N+1)\left(1-(1-\zeta)^{m}\right)-(1-\zeta)^{-1}+(1-\zeta)^{2 m-1}
\end{gathered}
$$

The holomorphic Euler characteristic $\chi^{p}(Z)$ is the coefficient of ζ^{N} in $f_{N, p}(\zeta)$. For any power series $a(x)=\sum_{n \geq 0} a_{n} x^{n}$ we set

$$
T_{n}(a(x)):=a_{n}
$$

We want to discuss a few special cases.

- $N=2$. In this case Z is a plane curve and we have $\chi^{0}(Z)=1-h^{0,1}(Z)=\frac{1}{2} \chi(Z)$. Then

$$
T_{2}\left(f_{2,0}\right)=\chi^{0}(Z)=T_{2}(1-\zeta)^{-1}-T_{2}(1-\zeta)^{m-1}=1-\frac{(m-1)(m-2)}{2}
$$

We deduce

$$
h^{0,1}(Z)=h^{1,0}(Z)=\frac{(m-1)(m-2)}{2}=\frac{1}{2} b_{1}(Z)
$$

so that Z is a Riemann surface of genus $\frac{(m-1)(m-2)}{2}$. Note that if $m=N+1=3$ we have

$$
h^{N-1,0}=h^{1,0}=1
$$

so that Z is an elliptic curve. Z is a 1-dimensional Calabi-Yau manifold.

- $N=3$ so that Z is an algebraic surface. We have

$$
\chi^{0}(Z)=1+h^{0,2}(Z), \quad \chi^{1}(Z)=-h^{1,1}(Z), \quad \chi^{2}(Z)=\chi^{0}(Z)=h^{2,0}(Z)+1
$$

We have

$$
\begin{aligned}
\chi^{0}(Z)=T_{3}\left(f_{3,0}\right) & =T_{3}(1-\zeta)^{-1}-T_{3}(1-\zeta)^{m-1}=1+\binom{m-1}{3} \\
& =1+\frac{(m-1)(m-2)(m-3)}{6} \\
\chi^{1}(Z)=T_{3}\left(f_{3,1}\right)= & -4 T_{3}(1-\zeta)^{m}-T_{3}(1-\zeta)^{-1}+T_{3}(1-\zeta)^{2 m-1} \\
& =4\binom{m}{3}-1-\binom{2 m-1}{3} \\
=-1+4 \frac{m(m-1)(m-2)}{6} & -\frac{(2 m-1)(2 m-2)(2 m-3)}{6}=-\frac{4 m^{3}-12 m+14 m}{6} .
\end{aligned}
$$

Hence

$$
\begin{gathered}
h^{2,0}(Z)=h^{0,2}(Z)=\frac{(m-1)(m-2)(m-3)}{6} \\
h^{1,1}(Z)=\frac{4 m^{3}-12 m+14 m}{6} \\
b_{2}(Z)=2 h^{0,2}+h^{1,1}(Z)=1+2\binom{m-1}{3}-4\binom{m}{3}+\binom{2 m-1}{3}=m^{3}-4 m^{2}+6 m-2
\end{gathered}
$$

Note that if $m=(N+1)=4$ we have

$$
h^{N-1,0}=h^{2,0}=1, \quad h^{1,1}=20
$$

In this case we say that X is a $K 3$ surface. It is a 2 -dimensional Calabi-Yau manifold.

4. Hodge numbers of complete intersection curves in \mathbb{P}^{3}

Consider two generic hypersurfaces $Z_{m}, Z_{n} \subset \mathbb{P}^{3}$ of degree m and respectively n. Their intersection is a curve $C=C_{m, n}$. We want to compute its genus. Denote by N_{C} the normal bundle of the embedding $C_{m, n} \hookrightarrow \mathbb{P}^{3} . N_{C} \rightarrow C$ is a rank 2 vector bundle over C and we have the adjunction isomorphism

$$
\left.N_{C} \cong(m H \oplus n H)\right|_{C}
$$

Hence we obtain a short exact sequence

$$
\left.\left.0 \rightarrow T C \rightarrow\left(T \mathbb{P}^{3}\right)\right|_{C} \rightarrow(m H \oplus n H)\right|_{C} \rightarrow 0
$$

so that

$$
1+c_{1}(T C)=\mathbf{c h}(T C)=\left.\mathbf{c h}\left(T \mathbb{P}^{3}\right)\right|_{C}-\left.\mathbf{c h}(m H)\right|_{C}-\left.\mathbf{c h}(n H)\right|_{C}
$$

From the exact sequence

$$
0 \rightarrow \underline{\mathbb{C}} \rightarrow H^{\oplus 4} \rightarrow T \mathbb{P}^{3} \rightarrow 0
$$

we deduce

$$
\operatorname{ch}\left(T \mathbb{P}^{3}\right)=4 e^{h}-1
$$

so that

$$
1+c_{1}(T C)=\left.\left(4 e^{h}-1-e^{m h}-e n h\right)\right|_{C}
$$

so that

$$
e(C)=c_{1}(T C)=\left.(4-m-n) h\right|_{C}
$$

We deduce that

$$
\chi(C)=\langle e(C),[C]\rangle=\left\langle\left.(4-m-n) h\right|_{C},[C]\right\rangle
$$

Since $[C]$ is the homology class Poincaré dual to $m n h^{2}$ we deduce

$$
\chi\left(C_{m, n}\right)=\left\langle(4-m-n) m n h^{3},\left[\mathbb{P}^{3}\right]\right\rangle=-(m+n-4) m n
$$

so that

$$
g\left(C_{m, n}\right)=h^{1,0}\left(C_{m, n}\right)=1+\frac{m n(m+n-4)}{2}
$$

Remark 4.1. If $X=X_{m_{1}, \cdots, m_{k}}^{n} \subset \mathbb{P}^{n+k}$ is a generic intersection of k hypersurfaces of degrees $m_{1}, \cdots, m_{k}\left(\right.$ so $\left.\operatorname{dim}_{\mathbb{C}} X=n\right)$ then

$$
\sum_{n \geq 0} \chi_{y}\left(X_{m_{1}, \cdots, m_{k}}^{n}\right) z^{n+k}=\frac{1}{(1+z y)(1-z)} \prod_{j=1}^{k} \frac{(1+z y)^{m_{i}}-(1-z)^{m_{i}}}{(1+z y)^{m_{i}}+y(1-z)^{m_{i}}}
$$

For a proof, we refer to [1, Appendix I].

References

[1] F. Hirzebruch: Topological Methods in Algebraic Geometry, Springer Verlag, New York, 1966.
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618.
E-mail address: nicolaescu.1@nd.edu

