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Abstract— Event-triggered control systems are systems in
which the control signal is recomputed when the plant’s outpt
signal leaves atriggering-set. There has been recent interest
in event-triggered control systems as a means of reducing ¢h
communication load in control systems. This paper re-exanmies
a problem [1] whose solution characterizes triggering-set that
minimize a quadratic control cost over a finite horizon subject
to a hard constraint on the number of times the feedback
control is computed. Computational complexity confined pror
solutions of this problem to scalar linear systems. This paper
presents an approximate solution that is suitable for mult
dimensional linear systems. This approximate solution usefam-
ilies of quadratic forms to bound the value functions generted
in solving the probelm. This approach has a computational
complexity that is polynomial in state-space dimension an#iori-
zon length. This paper’s results may therefore provide a bas
for developing practical methods for the event-triggered atput
control of multi-dimensional discrete-time linear systens.

I. INTRODUCTION

There has been recent interestewent-triggeredcontrol
systems. Event-triggered controllers adapt the real-tyse

is quantified by théntersampling intervalthe time between
consecutive samples. These papers analytically deteriméne
minimum intersampling interval for event-triggered sysse
enforcing a specified stability concept such as input-to-
state stability [4] orL, stability [5]. The determination of
the associated intersampling interval, however, is done as
an afterthought. In other words, these results first enforce
the desired stability concept and then determine what the
resulting intersampling interval will be. For some systems
this approach leads to a more efficient use of the feedback
channel. It is also relatively easy, however, to use these
methods to obtain event-triggered systems that exhibibZen
sampling [6]. In such cases the system generates an infinite
sequence of intersampling intervals that asymptoticatly g
to zero over a finite time interval. This leads to infinitely
fast sampling of the system state, which clearly does not
minimize the information rate in the feedback channel.
What is really needed is an analysis that treats control
system performance and computational resource utilizatio

tem’s task period directly in response to the application’within the same analytical framework. One well used frame-
performance [2]. Under event-triggering, the control taskvork treats the design of event-triggers as a constrainéd op
is only executed when the application’s error signal leave®ization problem that optimizes control system perfornganc

a specifiedtriggering-set Ostensibly, this error provides subject to a constraint on the feedback rate. This framework
a measure of how valuable the current sensor data is Was used in [7] where the mean square control cost was
maintaining the overall system’s closed-loop performancéninimized over an infinite horizon subject to a feedback rate

Since the system state is always changing, this approae@nstraint. Related finite horizon versions of this problem

generates amperiodic sequence of controller invocations.were considered in [1] and [8]. In general, these problems
In general, the hope is that the average rate of this aperiodivere all solved using dynamic programming methodologies
task set will be much lower than the rate of a periodic tasthat optimize system performance with respect to the event
set with comparable performance levels. triggering-sets.

There is experimental evidence to support the assertionln practice, however, this framework was of limited utility
that event-triggered feedback can maintain performance lefor it was quickly recognized that the complexity of com-
els while reducing feedback information. Results from [3puting the optimal triggering-sets was impractical for tiul
consider a controlled scalar diffusion process where ebntrdimensional systems. As a result nearly all of the recent
updates are triggered when the absolute value of the systayarks [9], [10], [11] based on this framework have confined
state exceeds a specified constant threshold. These restiigr attention to scalar linear systems. This restriction
show that the event-triggered system has better perforenarggalar systems is of limited use in developing real-life
(in the sense of a lower steady state state variance) thapplications of event-triggered systems. A major chakeng
a comparable system with periodically triggered contrdlo be addressed by the research community therefore lies in
updates. Such results have helped stimulate interest my usifinding practical ways of extending this analytical frameko
event-triggering as a means of minimizing the feedbacke multi-dimensional systems.
information used in achieving control objectives. First efforts at such multi-dimensional extensions were

Recent work in [4], [5] has quantified the feedback rate isuggested in [12], [13] with respect to the infinite horizon
state-dependent event-triggered systems. The feedb&zk raroblem posed in [7]. The approach in [12] used a single
quadratic form to approximate the value function used in
determining the optimal triggering-sets. This quadrate a
proximation was well suited to the infinite horizon problems
in [7], but it was less effective in approximating the value
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functions for the finite horizon problem in [1]. This is These estimates are computed using a Kalman filter. The
because the value functions for the finite-horizon problerilter equations for the system are,
may not be convex. Recent work [14] suggested that this

problem could be addressed by using families of quadratic f’@ = Eloe| Y] =7 + Li(ye — C7y)
forms. The results presented below show how the suggestion Pr = E [(zx — Tr)*| Yy
in [14] might be used for event-triggered output feedback = AP, AT + Q — Li,C(AP;,_1 AT + Q)

control over a finite horizon.
for k =1,2,..., M whereLy is the Kalman filter gain and

IIl. PROBLEM STATEMENT T, = ATy—1 + Buy_:1. The initial conditionz, is the first
posteriori update based gp and Py, is the covariance of

is initial estimate.

Because the sensor subsystem has access to the informa-
n received by actuator subsystem, tbeal observercan
rHuplicate the state estimate, made by the remote observer

in the actuator subsystem. The behavior of local and remote

. . . . - a
Consider a linear discrete-time process over a finite horh-1
zon of lengthM + 1, during which onlyb € {0,1,--- , M +
1} transmissions are allowed. A block diagram of the closeqi-0
loop system is shown in figure 1. This closed-loop syste
consists of a discrete-time lineglant which generates
measurement sequence, a sensor su_bsystem which proc_e@%%rvers will be explained later.
the measurement sequence and decide when to transmit ' _
. he event detectorobserves the filtered statg, and
processed data and an actuator subsystem which uses the ) .
: ) the gap between filtered state and the remote estimated
information sent by sensor subsystem to compute the contro =
signal. state,e,, = T = &, . If the vector[ ef ] lies outside
k
the specified triggering se$?, whereb is the remaining
local [ transmission times, the filtered statg will be transmitted
T e to the actuator subsystem. Given a set of transmission times
. L {(79%_,, let Xy = {Z.1,Ty2,..., T} denote the filter
| Filter Goenic | I (N P . estimates that were transmitted to the remote observer by

;A Detector

), T e ) time k where (k) = max{¢ : 7° < k}. This is the
—» LU T — information set available to the rgmote observer at tkme
T o o The actuator-subsystem consists of two components; a
u Contolle S B D W remote observeand thecontroller gain The remote observer
= uses the received information to compute an a posteriori
~ estimatez of the process state that minimizes the MSEE,
E [(z — )% |Xk], at timek conditioned on the informa-
tion received up to and including tinke The a priori estimate

Fig. 1. Event-Triggered Control System

g . : of the remote observet,” : [0,1,..., M] — R™, minimizes
The plant satisfies the difference equation below E [(s — )| Xu_1], the MSEE at timet conditioned on
Thp1 = Axp+ Buy + wg, the information received up to and including tinmie— 1.
u = Czp+op These estimates take the form
for k € [0,1,...,M] where A is an x n real matrix, % E [2r | Xe-1] :’é}:fk‘l + Bug— .
B is an x m real matrix,u is the control input, and ;  _ E [k | K] :{ o, don't transmit at stefk
w:[0,1,...,M] — R" is a zero mean white noise process T transmit at stegk

with covariance matrix). The initial statey, is a Gaussian
random variable with meap, and variancdl. y; is the
sensor measurement at tinke C' is a realp x n matrix
andv : [0,1,...,M] — R™ is another zero mean white
noise process with variande. w,v andx, are uncorrelated
with each other. We assume that, B, C) is controllable St (k) = {S,’;“a"{o’b_k”}, » .,S,‘fi“{b’M“_k}}
and observable. The sensor outputs are fed into a sensor-
subsystem that decides when to transmit information to tr@genote the triggering sets to be used at skegith b
actuator-subsystem transmissions remaining. We 18f = {S%(r),...,Sb(M)}
The sensor-subsystem consists of three componem’@,e, the collection of all triggering-sets that will be used by
a filter, a local observer and an event detector Let the sensor-subsystem after and including time step
Yr = {yo,v1,...,yr} denote the sensor information avail- We are now in a position to formally state the problem
able at timek. The filter generates a state estimaie being addressed. Consider the cost function
that minimizes the mean square estimation error(MSEE) M
> i Zpx
k=0

wherez, = uo. This estimate is then used to compute the
control, up, = Ky, for k =0,1,..., M where K is some
real m x n matrix.

For convenience, we let

E [(z) —T1)* | Yi] at each time step conditioned on all of JM(SE) - F
the sensor information received up to and including time




whereZ = { Zn Zi } is a symmetric and positive semi- (0,7 +1) and (b — 1,7 +1). This computational dependence
Zor Zzo in the recursion is illustrated in figure 2. This figure shows
definite2n by 2n matrix andp;, = Tk | is the system state the indices including the the triggering set collecti®h The
€k indices for the initial value functions are filled in. The erd

attimek, whereé,, = x; — iy, is the remote state estimation ¢ computation used to compu$g is shown by the arrows.

error. The objective is to find the collectidsf, of triggering-
sets that minimizes the cost function. The optimal cost then
becomes b 0 1 g 3 4

Jir = min Jar(Sp)
S

IIl. MAIN RESULTS

The problem is an optimal control problem whose controls
are the triggering-sets i§%. The solution may be charac-
terized using dynamic programming techniques. Define the
problem’s value function as

M
V(8,b;r) = Héll)n <Z pi Zpi | I, = (0, b)) . Fig. 2. Index Sets for Value Function Recursion
" k=r

T = The selection in equation (1) defines the triggering-sets
For convenience, indicat% ef ] by ¢, and{ er ] by g;.  used by the event detector.

T

I~ is the a priori information set at time stepconsisting of ~ Corollary 3.2: The optimal triggering-set used at time
an ordered paifq;,b) with b remaining transmissions. The Stepr with b transmissions remaining will be
value function is defined as the minimum cost conditioned .
ong- =6=| " | with b remaining transmissions. Sy (n) = {9 - [ ¢
The initial triggering-sets ar€%* = R2" and §M H17")* =
V(0,b;r) = min{V,.(6,b,7), Vi(6,b,7)} @ 0.

, ) ) . The recursion used in equations (2) and (3) may only

whereV;,, is the cost function without transmitting at St€p o ractable for first order linear systems. In this case, the

andV; is the _cost function if transmitting at step Both of triggering sets are subsets Bf and the bisection search
them are defined as from [14] may be employed to determine the triggering-sets
Vit (0,b,7) = E[V(gy,bir+ 1)L = (6,b)] Sﬁ’_*. This is done for a s_pecifif: example belqw._ Extending
0T 20+ 3 @ this approach to multi-dimensional systems is impractical
" The approach used in [14] involves computing the value
Vi(0.b,7) = E[V(¢y1,b—Lr+1)|L, = (6,5~ 1)] function over a grid of points in the state space. Overall,
+0L 2600 + B, (3) there areb(M + 1 — b) triggering sets in the collection
S¥*. If each value function is evaluated in2a-dimensional
space over a range d¢fc/2,¢/2] with a granularity ofe,
(qr, ). 0 = { Z } and 6, = g ] are the actual values then there are a total of¢)”" points at which the value
of a posteriori random variable,. The scalar8, equals functions are computed. This means the computationalteffor

V] b <viesn) @

Theorem 3.1:The value function satisfies

where [,. is the posteriori information set with ordered pair

tr(P, (Z11 + Z1a + Zo1 + Za3)) required to computel/(6,b;r) will be on the order of
r ) - - 2n .. . .

This theorem indicates that the value function choose tHe (b(M+ 1-b)(9) ) This is exponential in the state
smaller one between these two cost functions. space dimension and generallywill be very large. As a

The preceding theorem shows tHad, b, ) can be com- result this approach is impractical for all but scalar linea
puted through a recursion that ranges over the indicessystems.
(number of remaining transmissions) andcurrent time). Since the computational complexity of the recursion in
The initial conditions for this recursion occur whén= 0  equations (2) and (3) will be prohibitively large, one must
orb = M + 1 —r for all values ofr. For the first case resort to approximation methods. One useful approximation
(b = 0), this corresponds to the cost of never transmittinffl2] was developed for the infinite horizon problem con-
after time step-. The other caseh(= M +1—r) corresponds sidered in [7]. This approximation used a single quadratic
to transmitting at every single remaining time step. In botlfiorm to over bound the value function. While this method
cases, the value function can be computed in closed formvorks well for infinite horizon problems, it seems to be ill-
and the expressions are given in appendix. suited for finite horizon problems. In particular, recentrkvo

Given these initial conditions, the value function at indexX14] for the finite horizon estimation problem [15] shows
(b,r) may be computed from the value function at indiceshat the value functions are non-convex and are therefore



poorly approximated by a single quadratic form. The Workcb o c$+17j + B + tr(KiHJ) j=1,... 7p£+1(9)
in [14] suggested that a family of quadratic forms provide ™ b, + B, + tr(ﬁiﬁ) j=p
a much better way of approximating the value function for

b Tqb—1
the estimation problem. This approach can also be adopteg’“ = Zn +A(A +ABK) V(4 + BK) (10)
for the output feedback control problem considered in thisd, = min{A2, U211} + 5, (11)
paper.
o . o ) where
The basic idea behind the approximations used in [14] Y . _
is as follows. While the value functionl/, is inherently Ay = STLTHAZT’H,J-LTH
non-convex due to the choice in equation 1, the functions ﬁbfl _ gl b L
V; andV,,; may be well approximated by quadratic forms. r+l T ISl Bl
This conjecture is based on two observations. First theinit Afﬂ = min tr(Kl:ij) + c‘;;} j
value functionsV/ (6, b,r) for b =0 andb= M +1 —r are J€MLpy3a] 7
quadratic and second that the recursion in equations (2) and @QH - tr@iﬂ) + dﬁﬂ.

(3) are nearly quadratic. It therefore seems possible teatw
can bound/,,; (6, b,r) andV; (6, b, r) from above by a family In this casep’ equalsM +1 —b—r for b > 1, and1 for

of quadratic forms. b = 0. The initial condition is the same as defined in theorem
Proposition 3.3: There existAl; € R | Wl ¢ 3.1. _ o _

R™*" and scalarsd;J, d for r e [0,1,...,M], b € Because the_ recursion used _above mimics the recursions

0,1 B, andj € [1,2 pb] such that used for the original value function, we expect these bounds
) 3 ) 1 Y ? ’ r

to be relatively tight. Precisely how tight these bounds are
= B , Tab b is still being quantified.
Var (6,0,7) < Vi (8,,7) = mmpg] {0 Ar0+ CW'} ®) Computing the suboptimal triggering-sets involvezisby
V0. bor) < Vo(0.b.1) — n Wby + b, (g) 27 Matrix-matrix multiplication with a computational com-
o(6,6,7) < Vel br) =" o+ dy, (6) plexity O((2n)3). The computation oft’,,; dominates the
b o , , effort since it has the most quadratic forms to compute. One
Wherg pr 1S @ f|n_|te. integer associated with stepand .5 therefore show that the effort associated with computin
remaining transmissions ~__ the suboptimal triggering se$’* will be O(B(M + 1 —
With the upper bounds of the true value functioS.;  )(A7+2-5)(2n)). This has a complexity that is polynomial
andV;, we can construct a sub-optimal triggering-$¢t in 5, and quadratic inV/ (the length of the horizon window).

of the form The complexity is much lower than that used in computing
the value functions, so these approximations may represent
SPt =10 eR™ : V,,u(0,b,7) < V(0,b,7)} (7) practical way of implementing optimal event-triggered con

trollers provided the approximations are tight. Prelinnjna

which is an approximation of the optimal triggering-setsSimulation results are given below to experimentally eatgu
S¥* . in equation (4) how good the approximation really is.
o .

We notice that (2) and (3) add a quadratic value to the
expected minimum o#;, and V,,;. The approximation can . )
be done by interchanging the expectation and minimization AS Stated above, we'd like to experimentally evaluate
operators a¥/,; = 67260+ B+ E [min(V;, V,,,)] < 6726 + how clpsely the approxmgtlons in equathns (5) and _(6)
B + min {E[V;], E[V,.]}, where the expected values can@Pproximate the value.functlon computed using the equsition
again be represented by a family of quadratic forms. Pravidd?2) and (3). We'll do this for a specific example. Because we
the variances of the noise processes are relatively srhiil, t €@n only compute the exact value function for scalar systems

IV. PRELIMINARY SIMULATION RESULTS

approximation can be made tight. this example focuses only on the scalar system.
_ A+ BK -BK The system under study is a scalar system where

For convenience, we led = 0 A . ABCD =1 QR =1, pup,lIy = 1, K = —.95,
_ Ly . M = 4 andb = 1. We consider a control problem without
Ly = , = tr(Pr(Z A Z Z .

k { L. | O H(Pe(Zu + Zio + 2o + Z)) penalty on the control input, so th&t= fé 8 l The

_ D T~T T H

and 5y = CAP,AC™ + CQC™ + R. It can be easily value functions and their bounds were computed using the

shown by using ma}thematlcal induction and the fact thEf"écursions described in the preceding section. The results
E [min(Vz, Vae)] < T {EVA], E[Vie]} that. from this comparison are shown below in figure 3.
Lemma 3.4:Equation (5) and (6) hold, if for alb > 1 The left column of the top plots in figure 3 shows the
and allb —b <r<M—0b, value functions and their upper bounds. While it may be
difficult to see, both the value function and the upper bound

Z+ZTA’;+1JZ i=1,...,p0 are shown in these graphs. If one looks closely along the
AL, = 7 AT W, 0 T i (8) plane where) = 0, one may see a white line that marks the
0 0 =P upper bound. Fok = 0 andk = 1, these plots show a small
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Fig. 3. Top plots show value functions and optimal/sub+opti triggering
sets. Bottom plot shows experiment results

difference betweer’ and its bound appears. For the other
values ofk it is nearly impossible to see any difference. The
triggering-sets are easily identified as the boundary of the
deep values in these plots. These boundaries mark wiiere
andV,,; are equal to each other. The triggering-sets are more
clearly seen in the contour plots on the right column of figure
3. The boundary of the optimal triggering-set is marked by
the asterisks. The boundary of the suboptimal triggering se
are marked by the solid lines. These figures show that the
suboptimal and optimal triggering-sets are nearly idemtic
with only small variations appearing fér= 0 andk = 1.

We can evaluate the performance of the system under
periodic, optimal, and suboptimal event-triggering. Ir-pa
ticular, let's vary the number of allowed transmissionhs,
betweenl and 4. For these values of, we computed the
optimal and suboptimal triggering sets and then used these
sets in a simulation of the system. The results of these
simulations are shown in the bottom plot of figure 3. This
figure plots the mean square state with respedi, tawhen
transmission is done using the optimal, sub-optimal and
periodic triggering. One can see that the suboptimal event-
triggers perform are only slightly worse than the optimal
event triggering thresholds, and both of them have smaller
mean square state errors than periodic triggering. Finaty
determine the actual mean square state that should have been
achieved. This value matches what was achieved using the
optimal event-triggers.

In this example, the complexity associated with computing
and using the optimal triggering-sets is a thousand times
greater than the complexity of the suboptimal triggerietss
In particular, the optimal triggering-sets were chardzest
over a range of—20, 20] with a quantization level 0f.2.

This requirest x 10* points per value function. Since there
are M + 1 — b value functions, computing the thresholds
requires us to stord.6 x 10° points. These points are
then used in a bisection search to determine the thresholds.
This search requireRlog,(40/0.2)] = 16 steps to achieve
an accuracy consistent with the quantization level0df,

so a total of 25 x 10° computations to determine the
triggering-set thresholds. For this example there are @ tot
of (2%)2 (M +1—1)b = 1600 thresholds to be used and
checking whether a give# lies in the triggering set or not
requires(40/0.2)2 = 400 comparisons.

In contrast, we only need(M +1—b)(M +2—b) = 10
matrices to characterize the bounds on the value functions.
Determining these matrices requires matrix-matrix multi-
plications on the order of2n)® multiplies, so the total
computational cost required to determine the upper bounds
is 10(2n)® = 80 multiplies. Evaluating the event-triggering
bounds, requires all0 matrices with a computational cost
of (2n)?(M + 1 — r — b) multiplies if the current event
index is (r,b). The second term represents the number of
quadratic forms used in evaluating,,. The worst-case
occurs whenr = b = 0, so the worst-case computational
cost is(2n)?(M + 1) = 20 multiplies.

From the preceding discussion it is clear that the total
space-complexity of the optimal approach is on the order of



25 x 10° whereas the space-complexity of the suboptimalith lemma6.1 and some mathematical deduction, we are
approach isl0(2n)? = 40. The cost of evaluating an event-able to show equation(2) holds.

trigger for the optimal case i$00 whereas the suboptimal
case only require220 multiplies. For this example, the

Follow the same steps, (3) can be shown.
Initial conditions are given for two casds= 0 andb+r =

proposed suboptimal method clearly has a much small@f + 1. For the first caseV,(6,0,r) = 67 AD 10 + 2, and

computational cost than the optimal method. Moreover, the
suboptimal thresholds work nearly as well as the optimg(t
ones as indicated in the bottom plot of figure 3.

0
Cr, 1

V. SUMMARY

Mo —k—r
(6,0,7) = T WOn+d® whereA® | = > (A" )= zA",

r T
k=r
k—1 _T

M -T 4 k—j—1
= > (B + X tr(S;Lj (A )71 ZA
=1 =7

Ljt1))

k j=
and V¥ =0, d¥ = .

This paper presents a computationally tractable approachgq, the second cas; (0, M +1—r,r) = nT UM+1-rp 4

for determining suboptimal event-triggers in finite-honiz

M
output-feedback problems. The approach relies on usingda ' WhereWM*1=" = 37 (A + BK)")*"Z11 (A +

family of quadratic forms to characterize the value funasio

k=r

M k—1

in the problem’s optimal dynamic program. Our example3K)*~" and dM*'=" = (B + > tr(S; L], ((A +
j=r

shows that this sub-optimal sets is much more computationg|
effective and have the similar performance as the optima
triggering sets.

(1]
(2]

VI. APPENDIX
Lemma 6.1:{Ig,Ik}kMZO is Markov.

Ty

Proof: I, Lo — 1

— — b
C Lorgsir e el

f(I, ). Soit's easy to see that/y|[, .- -~ , 1;) = p(Ik|L, ).
17;4-1 = (Aqk, bk+1) + (Lk+1ﬂk, O), whereu;, = CAey, +
Cwg41 + vis1, € = T — Tk IS the local state estimation

error. Becausei,, is independent withly,, I, ,---,I;. So
p(Ilc_Jrl'Ik"" 710_) :p(I,;+1|Ik). n
Proof of theorem 3.1
Proof: By the definition of the value function, we have

V(@, b, ’f‘) = rréibn(Vnt(H, b, T)19€S£1 V}(@, b, T)19¢S£)1

(4]

(5]

(6]

(7]

where
M [8]
Vi (6,b,7) = sITbn—igg E(ZP;}FZPMIT_ = (0,0))1pese,
o [
Vi(0,b,7) = min E(Y_ p{ Zpi|I, = (0,))1ggse.
S=s2 [10]
ConsiderV,,; first,
Vosl.b.) = min E(SpT ZpelI- = (6.0), 0 € S° [
we(6,6,7) = min, (kzzrpk el = (8,0),60 € 57).

K

k=r j=
VI 2 (A + BE)Y T L), u
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