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Abstract— Event-triggered control systems are systems in
which the control signal is recomputed when the plant’s output
signal leaves atriggering-set. There has been recent interest
in event-triggered control systems as a means of reducing the
communication load in control systems. This paper re-examines
a problem [1] whose solution characterizes triggering-sets that
minimize a quadratic control cost over a finite horizon subject
to a hard constraint on the number of times the feedback
control is computed. Computational complexity confined prior
solutions of this problem to scalar linear systems. This paper
presents an approximate solution that is suitable for multi-
dimensional linear systems. This approximate solution uses fam-
ilies of quadratic forms to bound the value functions generated
in solving the probelm. This approach has a computational
complexity that is polynomial in state-space dimension andhori-
zon length. This paper’s results may therefore provide a basis
for developing practical methods for the event-triggered output
control of multi-dimensional discrete-time linear systems.

I. I NTRODUCTION

There has been recent interest inevent-triggeredcontrol
systems. Event-triggered controllers adapt the real-timesys-
tem’s task period directly in response to the application’s
performance [2]. Under event-triggering, the control task
is only executed when the application’s error signal leaves
a specified triggering-set. Ostensibly, this error provides
a measure of how valuable the current sensor data is in
maintaining the overall system’s closed-loop performance.
Since the system state is always changing, this approach
generates anaperiodic sequence of controller invocations.
In general, the hope is that the average rate of this aperiodic
task set will be much lower than the rate of a periodic task
set with comparable performance levels.

There is experimental evidence to support the assertion
that event-triggered feedback can maintain performance lev-
els while reducing feedback information. Results from [3]
consider a controlled scalar diffusion process where control
updates are triggered when the absolute value of the system
state exceeds a specified constant threshold. These results
show that the event-triggered system has better performance
(in the sense of a lower steady state state variance) than
a comparable system with periodically triggered control
updates. Such results have helped stimulate interest in using
event-triggering as a means of minimizing the feedback
information used in achieving control objectives.

Recent work in [4], [5] has quantified the feedback rate in
state-dependent event-triggered systems. The feedback rate

Lichun Li and Michael Lemmon are with the department of Electrical
Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. (e-
mail:lli3,lemmon@nd.edu). The authors gratefully acknowledge the partial
financial support of the National Science Foundation NSF-CNS-0925229.

is quantified by theintersampling interval; the time between
consecutive samples. These papers analytically determinethe
minimum intersampling interval for event-triggered systems
enforcing a specified stability concept such as input-to-
state stability [4] orL2 stability [5]. The determination of
the associated intersampling interval, however, is done as
an afterthought. In other words, these results first enforce
the desired stability concept and then determine what the
resulting intersampling interval will be. For some systems,
this approach leads to a more efficient use of the feedback
channel. It is also relatively easy, however, to use these
methods to obtain event-triggered systems that exhibit Zeno-
sampling [6]. In such cases the system generates an infinite
sequence of intersampling intervals that asymptotically go
to zero over a finite time interval. This leads to infinitely
fast sampling of the system state, which clearly does not
minimize the information rate in the feedback channel.

What is really needed is an analysis that treats control
system performance and computational resource utilization
within the same analytical framework. One well used frame-
work treats the design of event-triggers as a constrained opti-
mization problem that optimizes control system performance
subject to a constraint on the feedback rate. This framework
was used in [7] where the mean square control cost was
minimized over an infinite horizon subject to a feedback rate
constraint. Related finite horizon versions of this problem
were considered in [1] and [8]. In general, these problems
were all solved using dynamic programming methodologies
that optimize system performance with respect to the event
triggering-sets.

In practice, however, this framework was of limited utility
for it was quickly recognized that the complexity of com-
puting the optimal triggering-sets was impractical for multi-
dimensional systems. As a result nearly all of the recent
works [9], [10], [11] based on this framework have confined
their attention to scalar linear systems. This restrictionto
scalar systems is of limited use in developing real-life
applications of event-triggered systems. A major challenge
to be addressed by the research community therefore lies in
finding practical ways of extending this analytical framework
to multi-dimensional systems.

First efforts at such multi-dimensional extensions were
suggested in [12], [13] with respect to the infinite horizon
problem posed in [7]. The approach in [12] used a single
quadratic form to approximate the value function used in
determining the optimal triggering-sets. This quadratic ap-
proximation was well suited to the infinite horizon problems
in [7], but it was less effective in approximating the value



functions for the finite horizon problem in [1]. This is
because the value functions for the finite-horizon problem
may not be convex. Recent work [14] suggested that this
problem could be addressed by using families of quadratic
forms. The results presented below show how the suggestion
in [14] might be used for event-triggered output feedback
control over a finite horizon.

II. PROBLEM STATEMENT

Consider a linear discrete-time process over a finite hori-
zon of lengthM +1, during which onlȳb ∈ {0, 1, · · · ,M +
1} transmissions are allowed. A block diagram of the closed-
loop system is shown in figure 1. This closed-loop system
consists of a discrete-time linearplant which generates
measurement sequence, a sensor subsystem which processes
the measurement sequence and decide when to transmit the
processed data and an actuator subsystem which uses the
information sent by sensor subsystem to compute the control
signal.
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Fig. 1. Event-Triggered Control System

The plant satisfies the difference equation below

xk+1 = Axk +Buk + wk,

yk = Cxk + vk

for k ∈ [0, 1, . . . ,M ] where A is a n × n real matrix,
B is a n × m real matrix, u is the control input, and
w : [0, 1, . . . ,M ] → R

n is a zero mean white noise process
with covariance matrixQ. The initial state,x0, is a Gaussian
random variable with meanµ0 and varianceΠ0. yk is the
sensor measurement at timek. C is a realp × n matrix
and v : [0, 1, . . . ,M ] → R

m is another zero mean white
noise process with varianceR. w,v andx0 are uncorrelated
with each other. We assume that(A,B,C) is controllable
and observable. The sensor outputs are fed into a sensor-
subsystem that decides when to transmit information to the
actuator-subsystem

The sensor-subsystem consists of three components:,
a filter, a local observer, and an event detector. Let
Yk = {y0, y1, . . . , yk} denote the sensor information avail-
able at time k. The filter generates a state estimatex
that minimizes the mean square estimation error(MSEE)
E
[

(xk − xk)
2 |Yk

]

at each time step conditioned on all of
the sensor information received up to and including timek.

These estimates are computed using a Kalman filter. The
filter equations for the system are,

xk = E [xk |Yk] = x−
k + Lk(yk − Cx−

k )

P k = E
[

(xk − xk)
2 |Yk

]

= AP k−1A
T +Q− LkC(AP k−1A

T +Q)

for k = 1, 2, . . . ,M whereLk is the Kalman filter gain and
x−
k = Axk−1 + Buk−1. The initial conditionx0 is the first

a posteriori update based ony0 andP 0 is the covariance of
this initial estimate.

Because the sensor subsystem has access to the informa-
tion received by actuator subsystem, thelocal observercan
duplicate the state estimate,x̂, made by the remote observer
in the actuator subsystem. The behavior of local and remote
observers will be explained later.

The event detectorobserves the filtered state,xk and
the gap between filtered state and the remote estimated

state,e−k = xk = x̂−
k . If the vector

[

xk

e−k

]

lies outside

the specified triggering setSb
k, where b is the remaining

transmission times, the filtered statexk will be transmitted
to the actuator subsystem. Given a set of transmission times
{τ ℓ}bℓ=1, let Xk = {xτ1 , xτ2 , . . . , xτℓ(k)} denote the filter
estimates that were transmitted to the remote observer by
time k where ℓ(k) = max{ℓ : τ ℓ ≤ k}. This is the
information set available to the remote observer at timek.

The actuator-subsystem consists of two components; a
remote observerand thecontroller gain. The remote observer
uses the received information to compute an a posteriori
estimatex̂ of the process state that minimizes the MSEE,
E
[

(xk − x̂k)
2 |Xk

]

, at timek conditioned on the informa-
tion received up to and including timek. The a priori estimate
of the remote observer,̂x− : [0, 1, . . . ,M ] → R

n, minimizes
E
[

(xk − x̂k)
2 |Xk−1

]

, the MSEE at timek conditioned on
the information received up to and including timek − 1.
These estimates take the form

x̂−
k = E

[

xk |Xk−1

]

= Ax̂k−1 +Buk−1

x̂k = E
[

xk |Xk

]

=

{

x̂−
k don’t transmit at stepk

xk transmit at stepk

wherex̂−
0 = µ0. This estimate is then used to compute the

control,uk = Kx̂k, for k = 0, 1, . . . ,M whereK is some
realm× n matrix.

For convenience, we let

S
b
r(k) =

{

S
max{0,b−k+r}
k , . . . , S

min{b,M+1−k}
k

}

denote the triggering sets to be used at stepk with b
transmissions remaining. We letSbr = {Sbr(r), . . . , S

b
r(M)}

be the collection of all triggering-sets that will be used by
the sensor-subsystem after and including time stepr.

We are now in a position to formally state the problem
being addressed. Consider the cost function

JM (Sb0) = E

[

M
∑

k=0

pTkZpk

]



whereZ =

[

Z11 Z12

Z21 Z22

]

is a symmetric and positive semi-

definite2n by 2n matrix andpk =

[

xk

êk

]

is the system state

at timek, whereêk = xk− x̂k, is the remote state estimation
error. The objective is to find the collection,S

b
0, of triggering-

sets that minimizes the cost function. The optimal cost then
becomes

J∗
M = min

Sb0

JM (Sb0)

III. M AIN RESULTS

The problem is an optimal control problem whose controls
are the triggering-sets inSb0. The solution may be charac-
terized using dynamic programming techniques. Define the
problem’s value function as

V (θ, b; r) = min
Sb
r

(

M
∑

k=r

pTkZpk | I
−
r = (θ, b)

)

.

For convenience, indicate

[

xr

e−r

]

by q−r and

[

xr

er

]

by qr.

I−r is the a priori information set at time stepr consisting of
an ordered pair(q−r , b) with b remaining transmissions. The
value function is defined as the minimum cost conditioned

on q−r = θ =

[

η
ζ

]

with b remaining transmissions.

Theorem 3.1:The value function satisfies

V (θ, b; r) = min {Vnt(θ, b, r), Vt(θ, b, r)} (1)

whereVnt is the cost function without transmitting at stepr
andVt is the cost function if transmitting at stepr. Both of
them are defined as

Vnt(θ, b, r) = E
[

V (q−r+1, b; r + 1) | Ir = (θ, b)
]

+θTZθ + βr (2)

Vt(θ, b, r) = E
[

V (q−r+1, b− 1; r + 1) | Ir = (θ0, b− 1)
]

+θT0 Zθ0 + βr (3)

whereIr is the posteriori information set with ordered pair

(qr, b). θ =

[

η
ζ

]

and θ0 =

[

η
0

]

are the actual values

of a posteriori random variable,qr. The scalarβr equals
tr(P r (Z11 + Z12 + Z21 + Z22)).
This theorem indicates that the value function choose the
smaller one between these two cost functions.

The preceding theorem shows thatV (θ, b, r) can be com-
puted through a recursion that ranges over the indicesb
(number of remaining transmissions) andr (current time).
The initial conditions for this recursion occur whenb = 0
or b = M + 1 − r for all values ofr. For the first case
(b = 0), this corresponds to the cost of never transmitting
after time stepr. The other case (b = M+1−r) corresponds
to transmitting at every single remaining time step. In both
cases, the value function can be computed in closed form,
and the expressions are given in appendix.

Given these initial conditions, the value function at index
(b, r) may be computed from the value function at indices

(b, r+1) and(b− 1, r+1). This computational dependence
in the recursion is illustrated in figure 2. This figure shows
the indices including the the triggering set collectionS

2
1. The

indices for the initial value functions are filled in. The order
of computation used to computeS21 is shown by the arrows.

S
2

1

Fig. 2. Index Sets for Value Function Recursion

The selection in equation (1) defines the triggering-sets
used by the event detector.

Corollary 3.2: The optimal triggering-set used at time
stepr with b transmissions remaining will be

Sb∗
r (η) =

{

θ =

[

η
ζ

]

|Vnt(θ, b, r) ≤ Vt(θ, b, r)

}

(4)

The initial triggering-sets areS0∗
r = R

2n andS(M+1−r)∗
r =

∅.
The recursion used in equations (2) and (3) may only

be tractable for first order linear systems. In this case, the
triggering sets are subsets ofR2 and the bisection search
from [14] may be employed to determine the triggering-sets
Sb∗
r . This is done for a specific example below. Extending

this approach to multi-dimensional systems is impractical.
The approach used in [14] involves computing the value
function over a grid of points in the state space. Overall,
there areb(M + 1 − b) triggering sets in the collection
S
b∗
0 . If each value function is evaluated in a2n-dimensional

space over a range of[−c/2, c/2] with a granularity ofǫ,
then there are a total of

(

c
ǫ

)2n
points at which the value

functions are computed. This means the computational effort
required to computeV (θ, b; r) will be on the order of

O
(

b(M + 1− b)
(

c
ǫ

)2n
)

. This is exponential in the state
space dimension and generallycǫ will be very large. As a
result this approach is impractical for all but scalar linear
systems.

Since the computational complexity of the recursion in
equations (2) and (3) will be prohibitively large, one must
resort to approximation methods. One useful approximation
[12] was developed for the infinite horizon problem con-
sidered in [7]. This approximation used a single quadratic
form to over bound the value function. While this method
works well for infinite horizon problems, it seems to be ill-
suited for finite horizon problems. In particular, recent work
[14] for the finite horizon estimation problem [15] shows
that the value functions are non-convex and are therefore



poorly approximated by a single quadratic form. The work
in [14] suggested that a family of quadratic forms provide
a much better way of approximating the value function for
the estimation problem. This approach can also be adopted
for the output feedback control problem considered in this
paper.

The basic idea behind the approximations used in [14]
is as follows. While the value function,V , is inherently
non-convex due to the choice in equation 1, the functions
Vt andVnt may be well approximated by quadratic forms.
This conjecture is based on two observations. First the initial
value functionsV (θ, b, r) for b = 0 andb = M + 1− r are
quadratic and second that the recursion in equations (2) and
(3) are nearly quadratic. It therefore seems possible that we
can boundVnt(θ, b, r) andVt(θ, b, r) from above by a family
of quadratic forms.

Proposition 3.3:There existΛb
r,j ∈ R

2n×2n , Ψb
r ∈

R
n×n, and scalarscbr,j, dbr for r ∈ [0, 1, . . . ,M ], b ∈

[0, 1, . . . , b], andj ∈ [1, 2, . . . , ρbr] such that

Vnt(θ, b, r) ≤ V nt(θ, b, r) = min
j∈[1,...,ρb

r
]

{

θTΛb
r,jθ + cbr,j

}

(5)

Vt(θ, b, r) ≤ V t(θ, b, r) = ηTΨb
rη + dbr, (6)

where ρbr is a finite integer associated with stepr and
remaining transmissionsb.

With the upper bounds of the true value functions,V nt

andV t, we can construct a sub-optimal triggering-setSb+
r

of the form

Sb+
r =

{

θ ∈ R
2n : V nt(θ, b, r) ≤ V t(θ, b, r)

}

(7)

which is an approximation of the optimal triggering-sets,
Sb∗
r , in equation (4).
We notice that (2) and (3) add a quadratic value to the

expected minimum ofVt and Vnt. The approximation can
be done by interchanging the expectation and minimization
operators asVnt = θTZθ+β+E [min(Vt, Vnt)] ≤ θTZθ+
β + min {E[Vt], E[Vnt]} , where the expected values can
again be represented by a family of quadratic forms. Provided
the variances of the noise processes are relatively small, this
approximation can be made tight.

For convenience, we letA =

[

A+BK −BK
0 A

]

,

Lk =

[

Lk

Lk

]

, βk = tr(P k(Z11 + Z12 + Z21 + Z22))

and Sk = CAP kA
TCT + CQCT + R. It can be easily

shown by using mathematical induction and the fact that
E [min(Vt, Vnt)] ≤ min {E[Vt], E[Vnt]} that

Lemma 3.4:Equation (5) and (6) hold, if for allb ≥ 1
and all b̄− b ≤ r ≤ M − b,

Λb
r,j =







Z +A
T
Λb
r+1,jA j = 1, . . . , ρbr+1

Z +A
T
[

Ψb
r+1 0
0 0

]

A j = ρbr
(8)

cbr,j =

{

cbr+1,j + βr + tr(Λ
b

r+1,j) j = 1, . . . , ρbr+1

dbr+1 + βr + tr(Ψ
b−1

r+1) j = ρbr
(9)

Ψb
r = Z11 + (A+BK)TΨb−1

r+1(A+BK) (10)

dbr = min{Λ̂b−1
r+1, Ψ̂

b−1
r+1}+ βr (11)

where

Λ
b

r+1,j = SrL
T

r+1Λ
b
r+1,jLr+1

Ψ
b−1

r+1 = SrL
T
r+1Ψ

b
r+1Lr+1

Λ̂b−1
r+1 = min

j∈[1,ρb−1
r+1]

[

tr(Λ
b−1

r+1,j) + cb−1
r+1,j

]

Ψ̂b−1
r+1 = tr(Ψ

b−1

r+1) + db−1
r+1.

In this case,ρbr equalsM + 1 − b − r for b ≥ 1, and1 for
b = 0. The initial condition is the same as defined in theorem
3.1.

Because the recursion used above mimics the recursions
used for the original value function, we expect these bounds
to be relatively tight. Precisely how tight these bounds are
is still being quantified.

Computing the suboptimal triggering-sets involves a2n by
2n matrix-matrix multiplication with a computational com-
plexity O((2n)3). The computation ofV nt dominates the
effort since it has the most quadratic forms to compute. One
can therefore show that the effort associated with computing
the suboptimal triggering setSb+

r will be O(b(M + 1 −
b)(M+2−b)(2n)3). This has a complexity that is polynomial
in n and quadratic inM (the length of the horizon window).
The complexity is much lower than that used in computing
the value functions, so these approximations may representa
practical way of implementing optimal event-triggered con-
trollers provided the approximations are tight. Preliminary
simulation results are given below to experimentally evaluate
how good the approximation really is.

IV. PRELIMINARY SIMULATION RESULTS

As stated above, we’d like to experimentally evaluate
how closely the approximations in equations (5) and (6)
approximate the value function computed using the equations
(2) and (3). We’ll do this for a specific example. Because we
can only compute the exact value function for scalar systems,
this example focuses only on the scalar system.

The system under study is a scalar system where
A,B,C,D = 1, Q,R = 1, µ0,Π0 = 1, K = −.95,
M = 4 and b = 1. We consider a control problem without

a penalty on the control input, so thatZ =

[

1 0
0 0

]

. The

value functions and their bounds were computed using the
recursions described in the preceding section. The results
from this comparison are shown below in figure 3.

The left column of the top plots in figure 3 shows the
value functions and their upper bounds. While it may be
difficult to see, both the value function and the upper bound
are shown in these graphs. If one looks closely along the
plane whereη = 0, one may see a white line that marks the
upper bound. Fork = 0 andk = 1, these plots show a small
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Fig. 3. Top plots show value functions and optimal/sub-optimal triggering
sets. Bottom plot shows experiment results

difference betweenV and its bound appears. For the other
values ofk it is nearly impossible to see any difference. The
triggering-sets are easily identified as the boundary of the
deep values in these plots. These boundaries mark whereVt

andVnt are equal to each other. The triggering-sets are more
clearly seen in the contour plots on the right column of figure
3. The boundary of the optimal triggering-set is marked by
the asterisks. The boundary of the suboptimal triggering sets
are marked by the solid lines. These figures show that the
suboptimal and optimal triggering-sets are nearly identical
with only small variations appearing fork = 0 andk = 1.

We can evaluate the performance of the system under
periodic, optimal, and suboptimal event-triggering. In par-
ticular, let’s vary the number of allowed transmissions,b̄,
between1 and 4. For these values ofb, we computed the
optimal and suboptimal triggering sets and then used these
sets in a simulation of the system. The results of these
simulations are shown in the bottom plot of figure 3. This
figure plots the mean square state with respect tob̄, when
transmission is done using the optimal, sub-optimal and
periodic triggering. One can see that the suboptimal event-
triggers perform are only slightly worse than the optimal
event triggering thresholds, and both of them have smaller
mean square state errors than periodic triggering. Finally, we
determine the actual mean square state that should have been
achieved. This value matches what was achieved using the
optimal event-triggers.

In this example, the complexity associated with computing
and using the optimal triggering-sets is a thousand times
greater than the complexity of the suboptimal triggering-sets.
In particular, the optimal triggering-sets were characterized
over a range of[−20, 20] with a quantization level of0.2.
This requires4× 104 points per value function. Since there
are M + 1 − b value functions, computing the thresholds
requires us to store1.6 × 105 points. These points are
then used in a bisection search to determine the thresholds.
This search requires⌈2 log2(40/0.2)⌉ = 16 steps to achieve
an accuracy consistent with the quantization level of0.2,
so a total of 25 × 105 computations to determine the
triggering-set thresholds. For this example there are a total
of
(

40
0.2

)

2
(

M + 1− b
)

b = 1600 thresholds to be used and
checking whether a givenθ lies in the triggering set or not
requires(40/0.2)2 = 400 comparisons.

In contrast, we only need12 (M +1− b)(M +2− b) = 10
matrices to characterize the bounds on the value functions.
Determining these matrices requires matrix-matrix multi-
plications on the order of(2n)3 multiplies, so the total
computational cost required to determine the upper bounds
is 10(2n)3 = 80 multiplies. Evaluating the event-triggering
bounds, requires all10 matrices with a computational cost
of (2n)2(M + 1 − r − b) multiplies if the current event
index is (r, b). The second term represents the number of
quadratic forms used in evaluatingV nt. The worst-case
occurs whenr = b = 0, so the worst-case computational
cost is(2n)2(M + 1) = 20 multiplies.

From the preceding discussion it is clear that the total
space-complexity of the optimal approach is on the order of



25 × 105 whereas the space-complexity of the suboptimal
approach is10(2n)2 = 40. The cost of evaluating an event-
trigger for the optimal case is400 whereas the suboptimal
case only requires20 multiplies. For this example, the
proposed suboptimal method clearly has a much smaller
computational cost than the optimal method. Moreover, the
suboptimal thresholds work nearly as well as the optimal
ones as indicated in the bottom plot of figure 3.

V. SUMMARY

This paper presents a computationally tractable approach
for determining suboptimal event-triggers in finite-horizon
output-feedback problems. The approach relies on using a
family of quadratic forms to characterize the value functions
in the problem’s optimal dynamic program. Our example
shows that this sub-optimal sets is much more computational
effective and have the similar performance as the optimal
triggering sets.

VI. A PPENDIX

Lemma 6.1:
{

I−k , Ik
}M

k=0
is Markov.

Proof: Ik =

([

xk

e−k 1q−
k
/∈S

b
k

k

]

, bk − 1
q−
k
/∈S

b
k

k

)

=

f(I−k ). So it’s easy to see thatp(Ik|I
−
k , · · · , I−0 ) = p(Ik|I

−
k ).

I−k+1 =
(

Aqk, bk+1

)

+
(

Lk+1ūk, 0
)

, whereūk = CAēk +
Cwk+1 + vk+1, ēk = xk − xk is the local state estimation
error. Becausēuk is independent withIk, I

−
k , · · · , I−0 . So

p(I−k+1|Ik, · · · , I
−
0 ) = p(I−k+1|Ik).

Proof of theorem 3.1
Proof: By the definition of the value function, we have

V (θ, b; r) = min
Sb
r

(Vnt(θ, b, r)1θ∈Sb
r
, Vt(θ, b, r)1θ/∈Sb

r
),

where

Vnt(θ, b, r) = min
Sb
r
−Sb

r

E(

M
∑

k=r

pTkZpk|I
−
r = (θ, b))1θ∈Sb

r
,

Vt(θ, b, r) = min
Sb
r
−Sb

r

E(

M
∑

k=r

pTkZpk|I
−
r = (θ, b))1θ/∈Sb

r
.

ConsiderVnt first,

Vnt(θ, b, r) = min
Sb
r
−Sb

r

E(

M
∑

k=r

pTkZpk|I
−
r = (θ, b), θ ∈ Sb

r).

The condition is equivalent withI−r = Ir = (θ, b), because
θ ∈ Sb

r means no transmission at stepr. With lemma6.1,
we can derive that

Vnt(θ, b, r) = min
Sb
r
−Sb

r

E(

M
∑

k=r

pTkZpk|Ir = (θ, b)).

We can pull the cost at therth step out of the minimum, and
the remaining costs are only related withSb

r+1, so

Vnt(θ, b, r) = θTZθ+βr+min
Sb

r+1

E(

M
∑

k=r+1

pTkZpk|Ir = (θ, b))

With lemma6.1 and some mathematical deduction, we are
able to show equation(2) holds.

Follow the same steps, (3) can be shown.
Initial conditions are given for two cases:b = 0 andb+r =

M + 1. For the first case,Vnt(θ, 0, r) = θTΛ0
r,1θ + c0r,1 and

Vt(θ, 0, r) = ηTΨ0
rη+d0r whereΛ0

r,1 =
M
∑

k=r

(A
T
)k−rZA

k−r
,

c0r,1 =
M
∑

k=1

(βk +
k−1
∑

j=r

tr(SjL
T

j+1(A
T
)k−j−1ZA

k−j−1
Lj+1))

andΨ0
r = 0, d0r = ∞.

For the second case,Vt(θ,M+1−r, r) = ηTΨM+1−r
r η+

dM+1−r
r , whereΨM+1−r

r =
M
∑

k=r

((A + BK)T )k−rZ11(A +

BK)k−r and dM+1−r
r =

M
∑

k=r

(βk +
k−1
∑

j=r

tr(SjL
T
j+1((A +

BK)T )k−j−1Z11(A+BK)k−j−1Lj+1)).
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