
Firm Real-Time System Scheduling
Based on a Novel QoS Constraint

Donglin Liu, Xiaobo Sharon Hu, Senior Member, IEEE, Michael D. Lemmon, and Qiang Ling

Abstract—Many real-time systems have firm real-time requirements which allow occasional deadline violations but discard any jobs

that are not finished by their deadlines. To measure the performance of such a system, a quality of service (QoS) metric is needed.

Examples of often used QoS metrics for firm real-time systems are average deadline miss rates and ðm; kÞ-firm constraints. However,

for certain applications, these metrics may not be adequate measures of system performance. This paper introduces a novel QoS

constraint for firm real-time systems. The new QoS constraint generalizes existing firm real-time constraints. Furthermore, using

networked control system as an example, we show that this constraint can be directly related to the control system’s performance. We

then present three different scheduling approaches with respect to this QoS constraint. Experimental results are provided to show the

effectiveness of these approaches.

Index Terms—Firm real-time system, scheduling, quality of service, networked control system.

�

1 INTRODUCTION

REAL-TIME systems are abundant in our everyday life.
They can be found in many different applications, such

as networked control systems and multimedia conferencing
systems. Real-time systems are usually classified as being
hard, soft, or firm, depending on how the system performs
when one or more deadlines are missed. For hard real-time
systems, no deadline misses are tolerated. For soft real-time
systems, it is acceptable for tasks to miss deadlines
occasionally and tasks not finished by their deadlines are
still completed, albeit with reduced values. Firm real-time
systems (FRTS) also allow occasional deadline misses. But,
unlike soft real-time systems, if an instance (job) of a task is
not completed by its deadline, the instance is considered
valueless and is discarded (or dropped) [4] by the system.
Consider the cruise control in an automobile. Suppose the
software fails to provide current velocity in time for the
control algorithm to use. The control algorithm would then
use the old value to compute necessary control signals
rather than wait for the delayed velocity. The cruise control
system can still function acceptably because the amount of
velocity change between the last sample and the current
sample is small. The delayed measurement is useless to the
system and could be considered as being dropped. This
paper focuses on FRTS.

Quantifying the “occasional deadline misses” is critical
for evaluating the Quality of Service (QoS) of an FRTS.
Previously used QoS metrics for FRTS can be grouped into
two categories: 1) QoS metrics based on the average behavior

of the system dropout (deadline miss) process, such as
deadline miss ratio (or average dropout rate), effective
processor utilization, and completion count [2], [3]. 2) QoS
metrics based on the system dropout pattern within certain
“windows.” (A window refers to a fixed number of
consecutive invocations (or jobs) of a task.) According to
the relationship between adjacent windows, window-based
QoS constraints can be further categorized as fixed-window
constraints [23], [22], where adjacent windows do not
overlap each other, and sliding-window constraints [8],
[24], where the window “slides” along the time line. Both of
the above two categories of QoS constraints have some
shortcomings and limitations in describing the desired
FRTS behaviors under certain circumstances, as we will
show later.

This paper introduces a novel QoS constraint that is
more general and flexible than existing QoS constraints for
FRTS. The constraint is specified based on the Markov
Chain (MC) process. We will show in Section 3.2 that
MC-based QoS constraints can be used to describe all the
QoS metrics or constraints discussed above. The power of
the MC-based constraint lies in that it can incorporate the
probabilistic behavior of the system. Moreover, for a wide
range of control systems, this constraint can be directly
related to the overall control system performance. In fact, it
is the desired control system performance that determines
the actual parameters of the MC-based constraint. We will
illustrate this through an example networked feedback
control system. Since our MC-based constraint is different
from all constraints used in previous work, we present
several alternative scheduling approaches and evaluate
their effectiveness.

The rest of the paper is organized as follows: The next
section presents related work and necessary notational
conventions. In Section 3, we introduce the concept of the
MC-based constraint, elaborate its features, and demonstrate
the usefulness of MC-based constraints by using a Net-
worked Control System as an example. Then, in Section 4, we
present three new scheduling algorithms specifically de-
signed for MC-based constraints and discuss how to compare

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006 1

. D. Liu and X.S. Hu are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556.
E-mail: {dliu, shu}@nd.edu.

. M.D. Lemmon is with the Department of Electrical Engineering,
University of Notre Dame, Notre Dame, IN 46556.
E-mail: lemmon@nd.edu.

. Q. Ling is with Seagate Technology, Pittsburgh, PA 15237.
E-mail: Qiang.Ling@seagate.com.

Manuscript received 14 May 2004; revised 16 July 2005; accepted 30 Aug.
2005; published online 20 Jan. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0159-0504.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

them against traditional scheduling algorithms. We then
show our experimental results in Section 5. Conclusions and
future work are in the final section.

2 RELATED WORK AND NOTATIONAL

CONVENTIONS

In this section, we review related work and define necessary
notation.

2.1 QoS Metrics for FRTS

One often used QoS metric for FRTS is the deadline miss
ratio or average dropout rate (as an instance of a task is
dropped if it cannot be finished by its deadline), defined as
the percentage of the number of deadline misses with
respect to the number of jobs admitted to the system. Two
other similar metrics are the effective processor utilization
and completion count discussed in [2], [3]. The advantage of
these metrics is that they can be estimated offline and used
directly to guide the scheduler design. Several techniques
have been proposed to evaluate the average dropout rate in
the presence of task execution variations for different
scheduling schemes [7], [21], [10], [11].

A drawback with these metrics is that they cannot
directly express how deadline misses or dropouts are
distributed. In some systems, such as those found in control
and multimedia applications, system performance is sensi-
tive to the dropout patterns or the distribution of dropouts.
For example, if dropouts occur consecutively for several
jobs of the same task, then the system performance may be
totally unacceptable.

To overcome the shortcoming of the QoS metrics based
on average dropout rate, a variety of window-based QoS
constraints have been proposed for FRTS. Hamdaoui and
Ramanathan introduced the ðm; kÞ-firm constraint in [8].
The ðm; kÞ-firm constraint specifies that tasks should meet
at least m deadlines in any k consecutive invocations. Koren
and Shasha proposed the skip factor [12] constraint, where a
task with a skip factor of s is allowed to have one job
skipped out of s consecutive jobs. In [4], Bernat et al.
presented the following set of firm real-time constraints
based on the desired deadline miss patterns.

1. n
m

� �
: In any window of m consecutive jobs of a task,

at least n jobs must meet their deadlines.
2. h n

m
i: In any window of m consecutive jobs of a task,

at least n consecutive jobs must meet their deadlines.
3. n

m

� �
: In any window of m consecutive jobs of a task,

no more than n deadlines are missed.
4. h n

m
i: In any window ofm consecutive jobs of a task, no

more than n consecutive jobs miss their deadlines.

The authors of [4] claim that, with the above four
constraints and combinations of them, it is possible to
represent all real scenarios of the desired dropout patterns.
However, as we will show in Section 3.2, there exist some
situations where it is difficult (if not impossible) to
represent the preferred dropout pattern by the above four
constraints or any combinations of them, although the
preferred dropout pattern is simple and straightforward.

The window-based QoS constraints provide a more
comprehensive measure of deadline misses than the
average dropout rate. The associated schedulability analysis
is carried out assuming complete knowledge of the tasks is

available. Unfortunately, many real-time systems must face
the uncertainties inherent in executing software tasks as
well as those arising from the environment. Simply using
the worst-case parameters of the task, e.g., worst-case
execution time, for schedulability analysis would result in
overly expensive system implementations. Furthermore, it
may be inadequate to use just two parameters in the QoS
constraint (e.g., n and m in [4]) to specify the desired
dropout patterns in a system where uncertainties in task
parameters are to be considered.

2.2 Online Scheduling Algorithms for FRTS

To meet an MC-based constraint, previous scheduling
methods (e.g., [4], [8], [12], [17], [18], [24]) are no longer
applicable due to the following reasons:

1. These methods assume a deterministic dropout
pattern, while MC-based constraints are inherently
probabilistic.

2. Some dropout patterns described by MC-based
constraint cannot be described by any existing
constraints for FRTS.

We present several scheduling alternatives for this new
QoS constraint. A common feature of these scheduling
approaches is to use feedback information to adjust the
schedule. They differ in terms of the feedback information
being used and the actual schemes used in adjusting the
schedule.

Using feedback information for scheduler design is not
new. The original work can be traced back to [5] for
scheduling in general-purpose operating systems. In recent
years, using feedback information for scheduling has also
seen an increase in the real-time system area. For example,
in [9], the authors proposed the Adaptive Earliest Deadline
(AED) priority assignment policy to stabilize the perfor-
mance of the Earliest Deadline First (EDF) scheduling
algorithm under overload situations. AED monitors the
HitRatio (the fraction of the task instances that should meet
their deadlines that have actually met their deadlines) to
adjust task priorities. Brandt et al. presented a dynamic QoS
manager (DQM) to change a task’s QoS levels according to
the sampled central processing unit (CPU) utilization or
deadline misses [6]. Another group of work in the real-time
system area can be categorized as applying feedback control
theory to scheduling (e.g., [1], [16], [19], [20]). Based on
feedback control theory, a controller is designed which
takes a certain controlled variable as input and adjusts the
manipulated variable. The controlled variable can be the
deadline miss ratio or CPU utilization, while the manipu-
lated variable can be the utilization allotted to each task or
the task execution time estimation factor.

All of the above approaches (except [19]) target soft real-
time systems where each task has multiple QoS levels. In
this paper, we consider real-time tasks that do not have
multiple QoS levels, but have firm real-time constraints. The
tasks are periodic, but their execution times can vary
between the best-case execution time (BCET) and worst-
case execution time (WCET).

2.3 Notational Conventions

We consider a system consisting of periodic tasks. The
ith task is denoted as �i. The period of �i is denoted by ti
and the deadline of �i is denoted by di. The execution

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

time of �i is modeled by a random variable, Ci, where the
probability of Ci taking the value of ek is denoted by
PCiðekÞ ¼ PrðCi ¼ ekÞ, for k ¼ 1; 2; . . . ; K. Each instance of a
task is called a job. The jth job of �i is denoted as �ij. The
execution time of �ij, denoted by cij, has the same
probability distribution as Ci. That is, Pcij ¼ PCi , for
j ¼ 1; 2;

To simplify the notation, we assume here that PCiðekÞ is a
constant and is independent of other task requests.
However, our work does not depend on this assumption.
The distribution of Ci could be obtained from experiments
or through profiling.

In this paper, we study systems in which a job is
discarded (or dropped) if it is not completed by its deadline.
This practice is adopted in many feedback control systems
[13]. We use fij to denote the completion status of job �ij,
i.e., fij ¼ 1 if �ij is completed at or before its deadline and
fij ¼ 0 otherwise. Note that fij ¼ 0 is due to either the late
finish of �ij or the rejection of �ij before it is started. For
simplicity, we refer to both cases as the jobs being dropped.
The average dropout rate of task �i is denoted by �i.

We use Hni
ij to denote the completion status of the ni

previous jobs of �ij. H
ni
ij is an ni-bit binary string and

Hni
ij ¼ ffiðj�niÞ; fiðj�niþ1Þ; � � � ; fiðj�2Þ; fiðj�1Þg. We also refer to

Hni
ij as the ni-bit execution pattern of �ij. For example, if the

first and the third job of �1 miss their deadlines and the

second job of �1 meets its deadline, then we have: f11 ¼ 0,

f12 ¼ 1, f13 ¼ 0, and H3
14 ¼ f010g. To make the definition

complete, we let fij ¼ 0 when j � 0. The 3-bit execution

pattern of �13, H3
13, is f001g.

3 THE MARKOV CHAIN-BASED QOS CONSTRAINT

Many real-time systems exhibit probabilistic behavior due
to uncertainty inherent in the operating environment and
the task parameters. In such systems, the pattern of jobs
being completed or dropped may also be probabilistic.
Since dropout patterns can have a significant impact on the
overall system performance in certain applications and
neither the dropout rate nor window-based constraints
have the descriptive power to capture probabilistic beha-
viors, we propose in this section a Markov Chain (MC)
based model to describe the desired stochastic job dropout
behavior. We call this Markov Chain the MC-based
constraint. The MC-based constraint associated with �i is
denoted by MCi.

3.1 MC-Based Constraint: Definition and Examples

Given a real-time task � ,MC is a discrete stochastic process
with M states, denoted as XðmÞ for m ¼ 1; 2; � � � ;M, and
M � 2. The transition probability from one state XðjÞ to
another XðkÞ denotes either the probability of the next job
being dropped or the probability of the next job being
completed.

To show the dropout patterns associated with each state
explicitly, each state is associated with a specific string of
the job’s completion status bits, fij, to represent the recent
execution pattern. For example, if we use two bits to store
the job completion status bits, i.e., we only use the execution
status of the two most recent jobs, we can have at most four
states (M ¼ 4). Fig. 1a depicts the general MC process for

the case of using two completion status bits for each state,
where "1 to "4 are the probabilities of the next job being
dropped at the respective states. The state which represents
the execution pattern of one completed job followed by one
dropped job can be written as Xð2Þ ¼ f10g. (We use the
rightmost bit to represent the completion status of the most
recent job.) Note that each state can make a transition to at
most two other states with nonzero transition probabilities.
For instance, state Xð2Þ ¼ f10g can only make a transition to
either state Xð3Þ ¼ f00g (if the next job is dropped) or state
Xð4Þ ¼ f01g (if the next job is completed). This is because the
execution patterns of consecutive jobs are related to each
other. It is easy to see that the last n� 1 bits of Hn

ij are the
same as the first n� 1 bits of Hn

iðjþ1Þ.
Given the fact that a state can only make a transition to at

most two other states based on the completion status of the
next job, the dropout probability (i.e., dropout rate) at each
state, denoted by "m, for m ¼ 1; 2; � � � ;M, is sufficient to
uniquely specify an MC-based constraint. Fig. 1b shows a
specific example of an MC-based constraint which has three
states and "1 represents the dropout probability at state
Xð1Þ ¼ f11g. It is not difficult to verify that this MC-based
constraint is equivalent to the ðm; kÞ-firm constraint [8],
where m ¼ 2 and k ¼ 3. Fig. 1c illustrates another MC-
based constraint which cannot be described by any
window-based constraint.

The completion status of a task, i.e., jobs being dropped
or not, can be considered as a discrete stochastic process
when the task execution times are probabilistic. An
MC-based constraint thus specifies the desired stochastic
dropout process. The length of the bit string associated with
a state (i.e., the number of consecutive jobs observed)

LIU ET AL.: FIRM REAL-TIME SYSTEM SCHEDULING BASED ON A NOVEL QOS CONSTRAINT 3

Fig. 1. Three Markov chains for the case where 2 bits are used for the
execution pattern. (a) The general MC dropout process. (b) An example
MC-based constraint, which is equivalent to ð2; 3Þ-firm constraint. (c) An
example MC-based constraint, which describes the optimal dropout
process in the networked control system in Section 3.3.

determines the general structure (the maximum number of
states and all possible transitions) of an MC-based con-
straint. For example, if we use 4 bits in each state of an
MC-based constraint, the maximum number of states is
24 ¼ 16. In practice, the number of bits used is not large.
Also, the number of states in an MC-based constraint is
usually less than the maximum since the purpose of the
constraint is to eliminate certain dropout patterns so that
the system performance can be improved. In Fig. 2, we
show two MC-based constraints corresponding to the h 2

4
i

(in any window of four consecutive jobs of a task, at least
two consecutive jobs must meet their deadlines) and 2

4

� �
(in

any window of four consecutive jobs of a task, at least two
jobs must meet their deadlines) window-based constraints
defined in [4]. In these cases, each state in the MC-based
constraint is associated with a 3 bit execution pattern.

The MC-based constraint has three distinctive features.
First, it can readily capture dropout rate-based constraints.
Second, it can be used to represent any window-based
constraint. Last and more importantly, it can be used to
quantitatively capture the desired performance of certain
real-time system. We describe the first two features in the
next subsection and the last one in Section 3.3.

3.2 Features of the MC-Based Constraint

Clearly, the MC-based constraint generalizes the dropout
rate-based constraint. To see this, observe that an MC-
based constraint can relate the dropout pattern with the
average dropout rate-based constraint. There exists a one-
to-many mapping from a dropout rate based constraint to
the MC-based constraint. Each different mapping repre-
sents a different dropout pattern. For example, for a
desired dropout rate of 1

3, by setting "1 ¼ 1:0 in Fig. 1b
and setting "1 ¼ 1

3 in Fig. 1c, both MC-based constraints
reflect the desired dropout rate. Similarly, given an MC-
based constraint, one can readily compute the average
dropout rate using the following procedure: First,
compute the stationary state distributions, denoted as �m
for m ¼ 1; 2; � � � ;M, based on the state transition matrix of

the given MC-based constraint. Then, the average dropout
rate � can be calculated as:

� ¼
XM
m¼1

�m � "m: ð1Þ

MC-based constraints also generalize window-based

constraints. Any window-based constraint can be repre-

sented as an MC-based constraint. A straightforward way of

deriving an MC-based constraint that is equivalent to a

window-based constraint is to enumerate all possible

patterns allowed by the window-based constraint and

summarize the patterns by a Markov Chain. We have shown

that a ð2; 3Þ-firm constraint can be represented by the MC-

based constraint in Fig. 1b and a h 2

4
i constraint in [4] can be

represented by the MC-based constraint in Fig. 2a. We should

point out that the mapping from a window-based constraint

to an MC-based constraint is not unique. The MC-based

constraint is characterized by the state transition matrix

(dropout possibilities at each state). Two MC-based con-

straints with different state transition matrices may both

satisfy the same window-based constraint. For example, both

MC-based constraints in Fig. 3 satisfy the window-based

constraint where at least two consecutive jobs must meet their

deadlines in any window of four consecutive jobs. However,

their state transition matrices are not the same.
There exist dropout patterns which can only be

represented by the MC-based constraint. An example of
such a dropout pattern represented by an MC-based
constraint is given in Fig. 1c. Observing the MC-based
constraint given in Fig. 1c carefully, one can find that the
desired dropout pattern really specifies the following:

1. In any window of four jobs, at least two of them
must meet their deadlines.

2. If any job in a window misses its deadline, the next
job has to be dropped by the system.

Note that it is impossible to describe the above desired
dropout pattern by the constraints in [4] or by their
combinations.

The MC-based constraint is more attractive because it
provides much more descriptive power. One might argue

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

Fig. 2. (a) The MC-based constraint which is equivalent to the h 2

4
i

window-based constraint [4]. (b) The MC-based constraint which is

equivalent to the 2
4

� �
window-based constraint [4].

Fig. 3. Two MC-based constraints which satisfy the h 2

4
i window-based

constraint.

that an MC-based constraint can be replaced by simply
combining the dropout rate constraint and the window-
based constraint. But, from the above examples of the
MC-based constraint, one can see that a window-based
constraint does not care about the actual values of the
dropout probabilities, i.e., "m. On the other hand, an
average dropout rate-based constraint cannot uniquely
describe the dropout patterns and the dropout probabilities.

3.3 A Motivational Example

To demonstrate the value of the MC-based constraint, we
briefly review a recent work [14] in networked control
systems and show how an MC-based constraint is used to
quantify the QoS of a networked control system. This
characterization is important as it allows us to directly
evaluate different MC-based constraints in terms of their
impact on application performance.

A networked control system (NCS) is a control system
whose feedback path is realized over a communication
network. Feedback measurements may be occasionally
dropped for one of two reasons: either the medium is
unreliable or the network is overloaded. If we think of the
communication network as a resource and packets to be
transmitted as requests of the resource, packet dropouts are
similar to job dropouts during processor execution.

Fig. 4 shows a generic NCS. This system consists of a

plant and a communication network. The plant’s input,

w½n�, is a zero-mean white noise disturbance. The output,

y½n�, is fed back through the communication network in a

manner that is modeled by a dropout process, fd½n�g. The

dropout process is a binary random process that can be

described by an underlying Markov chain with transition

matrix Q. If d½n� ¼ 1, then there is no dropout and the

plant’s output y½n� is successfully transmitted over the

network. Therefore, the feedback signal equals y½n� when

d½n� ¼ 1. If d½n� ¼ 0, then y½n� is dropped, (e.g., due to

network congestion) and the controller simply reuses the

past feedback signal y½n� 1�. This particular control

system tries to reject the input disturbance, w, at the

output, y. The performance of this control system is

therefore measured by the output power (computed as

kyk2
P ¼ Eðlimn!1

1
N

PN
n¼0 y

2½n�Þ), where systems having

smaller kykP perform better than systems with larger

kykP . The main result in [14] provides a systematic method

for computing kykP as a function of the Markov chain’s

transition matrix Q.
Consider a specific plant described by the following

difference equation:

y½n� þ y½n� 1� þ 2y½n� 2� ¼ u½n� 1� þ 2u½n� 1�: ð2Þ

This plant has the transfer function: zþ2
z2þzþ2, which is open-

loop unstable with a nonminimum phase zero. If the

dropout process, fd½n�g, is independent and identically

distributed (i.i.d.) (i.e., governed by the average dropout

rate constraint), the system performance measured by the

output power, kyk2
P , as a function of the average dropout

rate is shown by the circled curve in Fig. 5 [14]. If the

dropout process, fd½n�g, follows the ð2; 3Þ-firm guarantee

dropout policy (i.e., the ð2; 3Þ-firm constraint, which is a

sliding-window-based constraint), the system performance

is depicted by the crossed curve in Fig. 5 [14]. Clearly,

different dropout processes may lead to different perfor-

mance, even when the dropout rate is the same.
A natural question to ask is what dropout process can

maximize overall system performance (i.e., minimize out-
put power) subject to a lower bound on the average dropout
rate. This is precisely the problem studied in [14]. The
solution to this problem, which is a Markov Chain, provides
the statistical pattern of dropouts that degrade overall
control system performance as little as possible for a given

LIU ET AL.: FIRM REAL-TIME SYSTEM SCHEDULING BASED ON A NOVEL QOS CONSTRAINT 5

Fig. 4. NCS model.

Fig. 5. Comparison of the three dropout processes.

dropout rate. Thus, using this “optimal” dropout process as
the QoS constraint should lead to superior system perfor-
mance. The results in [14] reveal that this “optimal” dropout
process for the plant described by (2) is simply the Markov
Chain in Fig. 1c.

The “�” curve in Fig. 5 depicts the performance for this
“optimal” dropout process. It is evident that the “optimal”
dropout process performs much better than either the
ð2; 3Þ-firm dropout process or i.i.d. dropout process. Note
that systems driven by the ð2; 3Þ-firm dropout process and
i.i.d. dropout process go unstable (output power larger than
100) at dropout rates in excess of 20 percent, while the
optimal dropout process greatly extends the region of
stability for the closed loop system.

Through the above example, one can see that the
MC-based constraint provides more descriptive power
and can capture desirable dropout processes that cannot
be modeled by existing firm real-time constraints. Though
the results shown in Fig. 5 are not representative of all
networked control systems, they do underscore an im-
portant point, namely, that it can be dangerous to use ad hoc
heuristics to specify QoS constraints in feedback control
systems. The closed loop nature of these systems requires a
much more flexible approach in characterizing QoS con-
straints. We believe that the MC-based constraint provides
such flexibility. Note that the example control system is
representative of a wide range of control applications, such
as power-train control systems in automobiles and satellite
control systems.

4 DESIGN AND EVALUATION OF SCHEDULING

APPROACHES

Given a set of real-time tasks and MC-based constraints
associated with some of the tasks, one could still use a
scheduling algorithm designed without considering
MC-based constraints, but such algorithms may not per-
form well. Consider a simple example where a task set
contains two periodic tasks (�1 and �2) with the task
parameters as given in Table 1. Let �1 be a task that sends
a feedback signal to a plant and is associated with the
MC-based constraint given in Fig. 1c. The period and
deadline of �1 is five time units. Possible execution times of
�1 are either two time units with a probability of 0:75 or five
time units with a probability of 0:25. �2’s period and
deadline is 10 time units. All jobs of �2 take four time units.

Consider the task execution pattern in the first 40 time
units. Assume that �12 and �14 each take five time units to
finish while the rest of jobs of �1 task two time units.
Suppose we use the nonpreemptive Earliest Deadline First
(EDF) scheduling algorithm to schedule the task set and a
job is dropped if it is not finished by its deadline. Fig. 6a
depicts the resulting execution pattern, where the horizon-
tally shaded boxes represent �1’s jobs that finish on time,

vertically shaded boxes represent �2’s jobs that finish on
time, and the black boxes represent �1’s jobs that miss their
deadlines. Note that �12 and �14 did not finish by their
deadlines and, hence, were dropped. The execution pattern
of �1 can be described as 10101111, where 1 means a job
meets the deadline and 0 otherwise. If we assume that the
execution pattern is repeated infinitely, then the average
dropout rate of �1, �1, is equal to 0.25.

We could use some other algorithm to obtain a different
execution pattern shown in Fig. 6b. In this execution
sequence, �12 and �13 missed their deadlines. The execution
pattern now is 10011111, but �1 is still 0.25. Task �2 in both
cases always finishes by its deadline. The only difference
between the two schedules is the dropout patterns of �1. In
terms of meeting the MC-based constraint (see Fig. 1c), the
execution pattern in Fig. 6b is clearly more desirable. If we
compare the output power under the dropout processes
indicated by the two execution patterns, we can also get that
the power corresponding to the second pattern is much
lower than that of the first one.

The above example reveals that there exist different
dropout patterns that satisfy the same dropout rate and
using existing scheduling algorithms may not help to satisfy
the MC-based constraints because they are not trying to
enforce an MC dropout process. So, it is worthwhile to
investigate scheduling approaches for systems having
MC-based constraints.

Recall from Section 3.1 that an MC-based constraint is
specified by the dropout rate at each state. Each combina-
tion of dropout rate values results in one average dropout
rate, �. The average dropout rate � of a task should not take
any arbitrary value between 0 and 1 as it impacts both the
system performance and the load that the task presents to
the system. We use � and � to represent the upper and lower
bound on �. For example, the upper bound on � of the
MC-based constraint in Fig. 1c should be smaller than 0:5
because, when the dropout rate of a task is higher than 0:5,
it is impossible to satisfy the MC-based constraint in Fig. 1c.
The dropout probabilities as well as the � bounds will be
used by the scheduling approaches.

A good scheduler in term of meeting the MC-based
constraint should have the resulting dropout process be as

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

TABLE 1
The Timing Parameters of an Example Task Set

Fig. 6. Two different execution patterns for the tasks in Table 1. Jobs

that miss their deadlines are colored black.

close to the MC constraint as possible. However, this cannot
always be done without interfering with other tasks that
share the same resource and may have other types of QoS
constraints. Measuring the “goodness” of a scheduler in
such a case is not a trivial matter. We will discuss how to
evaluate the performance of a scheduler later in this section.

4.1 Three Online Scheduling Algorithms

Without loss of generality, we consider that there are two
types of tasks in the firm real-time system: tasks with
MC-based constraints (referred to as control tasks, such as
those in an NCS) and tasks with average dropout rate
constraints (referred to as noncontrol tasks). We are aiming
at achieving better control performance without sacrificing
the performance of the tasks with average dropout rate
constraints by satisfying the MC-based constraints.

Because some tasks have probabilistic execution times, the
actual dropout patterns of tasks are also probabilistic and
change dynamically. In order to help a control task follow the
MC-based constraint, an online scheduling algorithm should
be a good choice because it is able to reassign the priority
based on the recently observed dropout pattern. For example,
if the recent execution pattern H2

ij is f01g and the MC-based
constraint is as given in Fig. 1c, then �ij should be assigned to a
higher priority so that it has a higher chance to meet its
deadline. In this way, the dropout process would follow the
given MC-based constraint.

All three scheduling algorithms we propose in this paper
are online algorithms. The common idea among them is to
partition jobs dynamically into different groups. Some
groups are given higher priorities than others, while jobs
within each group are scheduled by some conventional
scheduling algorithms. This is similar to the mandatory
versus optional job partitioning used in [17], [18]. Instead of
a two-way partition, we use three groups, Must Finish (MF),
Better Finish (BF), and Optional Finish (OF). As the names
indicate, the three groups have decreasing priorities. The
jobs in the first two groups are scheduled by a priority-
based scheduling algorithm such as the EDF scheduling
algorithm or Rate Monotonic (RM) algorithm, while the
tasks in the OF group can be scheduled by a randomized
priority assignment similar to [9]. (Note that if a non-
preemptive scheduling scheme is adopted, the jobs in the
OF group can simply be discarded so that they will not
block the execution of tasks in other groups. More
sophisticated algorithms could be used in this case to
predict if a job in the OF group can be completed without
interfering with the jobs in the other groups. But, this is
beyond the focus of this paper.)

In our scheduling algorithms, when the average dropout
rate of a noncontrol task is higher than the given constraint,
the jobs of this task are always put in the MF group.
Otherwise, the jobs of this task are put in the BF group. Jobs
of the control tasks are partitioned between the MF and
OF groups. Our goal is to make the tasks’ dropout processes
follow the MC-based constraints as close as possible and to
bound the average dropout rates by � and � through
judiciously partitioning the jobs into different groups.

The job partitioning is performed during runtime so as to
better respond to system variations. The three algorithms
differ in their ways of partitioning the jobs of control tasks
and are discussed in detail in the rest of the section.

4.1.1 MC Driven Algorithm (MDA)

The MDA directly uses MC-based constraints to partition
jobs. That is, the dropout probabilities of the given
MC-based constraint are used to decide whether a newly
arrived job is put in the MF or OF group. Since the actual
value of the dropout probability at a specific state depends
on the value of the average dropout rate, we need to
determine which average dropout rate should be used.
Note that this average dropout rate reflects the desired load
that the corresponding task should present to the system
and should be bounded by � and �. A reasonable choice is
the estimated deadline miss ratio of the task when
scheduling the task set by an algorithm optimal in terms
of schedulability (e.g., RM or EDF).

Specifically, for a given task set and a chosen scheduling
algorithm such as EDF or RM, we first apply offline an
estimation algorithm such as the ones introduced in [7],
[10], [11], [21] to obtain the average dropout rate for each
task. (An alternative to using an estimation method is
simulation.) Based on the average dropout rate of �i, we
obtain the dropout probability "m at each state of MCi. Let
the number of bits used to represent the states inMCi be ni.
During runtime, the scheduler records the execution pattern
of the most recent ni jobs. Assuming the newly arrived job
is �ij, the current execution pattern of �ij is specified by Hni

ij .
If Hni

ij corresponds to the mth state XðmÞ in MCi, �ij is put
into the OF group with probability "m and put into the
MF group with probability 1� "m. This probabilistic group-
ing method can be implemented online using a random
number generator.

The time complexity of this scheduling algorithm
depends on the number of states in the MC-based constraint
and the random number generation. Usually, the number of
states is small. The efficiency of a random number generator
depends on the desired quality; minimal standard gen-
erators require 1 to less than 10 multiplications and 5 to
10 additions [15].

4.1.2 Dropout-Rate Driven Algorithm (DDA)

The main difference between the MDA and DDA is that the
latter retains, for each task, a “long” execution pattern
instead of just the most recent execution pattern used to
determine the previous state of the system dropout process.
This long execution pattern contains the execution pattern
of a task and is used to compute the estimated average
dropout rate of �i, �̂�ij, at the beginning of �i’s jth period.
Therefore, the DDA gets the average dropout rate from the
feedback information instead of offline estimation, as is the
case with the MDA. The length of this execution pattern, L,
is a parameter set by the user.

During runtime, the DDA uses the long execution
pattern for �i, represented by an L bit binary number, to
compute �̂�ij, i.e.,

�̂�ij ¼ 1�
PL

k¼1 fj�k
L

; ð3Þ

where �ij is the newly arrived job. Hni
ij is used to determine

the current state of the dropout process. The algorithm then
applies the following rules to decide in which group the
newly arrived job is placed:

1. If �̂�ij > �i, put �ij in the MF group.

LIU ET AL.: FIRM REAL-TIME SYSTEM SCHEDULING BASED ON A NOVEL QOS CONSTRAINT 7

2. If �̂�ij < �i, put �ij in the OF group.

3. If �i � �̂�ij � �i, find the dropout probability, i.e, "k
corresponding to the current state. �ij is put in the
OF group with this dropout probability. Otherwise,
it is put in the MF group.

The rationale behind the DDA is to make the average
dropout rate stay within the given bounds and the dropout
process follow the MC-based constraint at �̂�ij. DDA is less
efficient than MDA in terms of memory usage since it must
maintain an execution pattern usually much longer than
MDA. However, DDA only needs a few more (less than 10)
operations than MDA. Note that the execution pattern being
monitored to compute �̂�ij should not be too long so that the
recent dropout process is not overshadowed by the dropout
process a long time ago. We have set L to 60, 80, 100, 120, 140,
and 200 and found that the results of our scheduling
algorithm did not vary much. In our experiments, we used
L ¼ 100.

4.1.3 Feedback Driven Algorithm (FDA)

The FDA uses a somewhat different way to partition jobs. It
avoids the use of any random number generator while still
trying to achieve the same goal as the other algorithms.
Similarly to DDA, for each control task �i, FDA retains a
“long” execution pattern to assist the computation of �̂�ij.
Furthermore, this execution pattern is used to compute the
estimated dropout probability at each state of the MC-based
constraint for �i.

During runtime, upon arrival of �ij, the FDA first
computes �̂�ij according to (3) and determines the current
state of the dropout process similar to DDA. Then, it
computes the estimated dropout probability, denoted as "̂"k,
at the current state XðkÞ.

"̂"k ¼
Total number of transition from XðkÞ to XðpÞ in HL

ij

Total number of state XðkÞ in HL
ij

:

ð4Þ

XðpÞ is the state which can be reached from XðkÞ if the next
job is dropped. FDA also finds the desired dropout
probability "k for the average dropout rate �̂�ij from the
MC-based constraint specification as MDA does. The
algorithm finally applies the following rules to decide in
which group the newly arrived job is placed.

1. If �̂�ij > �i, put �ij in the MF group.

2. If �̂�ij < �i, put �ij in the OF group.

3. If �i � �̂�ij � �i and "̂"k > "k, �ij is put in the MF group.
Otherwise, it is put in the OF group.

The FDA monitors the dropout probabilities as well as
the average dropout rates and uses both to partition jobs. Its
philosophy is similar to DDA, but it avoids the use of a
random number generator by employing the observed
dropout probabilities.

4.2 Evaluation of Scheduling Algorithms

We have proposed three scheduling algorithms to help
meet MC-based constraints. One challenge we are still
facing is how to measure the “goodness” of a scheduler in
order to compare the performance of different schedulers.
As we pointed out earlier, a good scheduler should produce

a dropout process as close to the MC-based constraint as
possible. Comparing the “closeness” of one stochastic
process to another is not a trivial issue. It may seem that
this problem bears similarities to the evaluation problem in
the Hidden Markov Model (HMM) [27]. However, given
that an MC-based constraint often contains transition
probabilities equal to zero, applying the method for solving
the evaluation problem of HMM often leads to meaningless
results. Since an MC-based constraint must come from the
specification of an application and its selection depends on
some performance measure of the application, it is natural
to evaluate the resulting stochastic process by the perfor-
mance of the intended application. Without loss of general-
ity, we resort to the control performance, as discussed in
Section 3.3, to tackle this problem.

We have pointed out in Section 3.3 that the output power
of a control system is a proper performance measurement
when the task dropout process is modeled as a stochastic
process. Given the same task specification, a scheduler
essentially determines the task dropout process. So, one
could use the output power to indicate the goodness of a
scheduler. However, a low output power may not necessa-
rily mean that the task dropout process is close to the
MC-based constraint. This can be illustrated by observing
the data shown in Fig. 5. For example, when the average
dropout rate is 0.12, the dropout process corresponding to
the (2, 3)-rule gives a power value of 15 and, when the
average dropout rate is 0.35, the dropout process corre-
sponding to the optimal MC constraint gives a power of
value 20. Though the former leads to a lower power value, it
requires a much lower average dropout rate and is far from
the optimal dropout process. A lower average dropout rate
demands more resources and may adversely effect the
performance of other tasks. A good scheduler should lead
to a dropout process that has lower output power for each
control task and does not increase the dropout rates of
noncontrol tasks.

Based on the above discussion, we propose the following
method to compare two schedulers, A and B, when they are
applied to a task set: If �i in the task set is a control task, we
denote the output power resulted from applying A and B
by pAi and pBi , respectively. If �j is a noncontrol task, the two
measured average dropout rates resulted from applying A
and B are denoted by �Aj and �Bj , respectively. We say that A
performs better than B for this task set if the following
conditions are satisfied:

. �Aj � �Bj for every noncontrol task �j and

. pAi � pBi for every control task �i.

Note that the above metrics do not impose a total order on
different schedulers applied to a given task set. However, one
can repeatedly perform the above comparison for many
randomly generated task sets and use a scoring system to
rank different schedulers. If a scheduler makes the dropout
processes of control tasks closely follow the optimal dropout
process specified by the MC-based constraint, it tends to
receive a higher score since such a scheduler helps to achieve
lower output power under the same dropout rate.

We propose a scoring system as follows: Let the number
of task sets used for comparing the schedulers be N . If a
total of n number of task sets satisfy the two conditions
discussed above, scheduler A gets a score of n

N � 100%. This

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

is similar to comparing alternatives according to multiple,
competing criteria [25].

5 EXPERIMENTAL RESULTS

In this section, we present experimental results to evaluate
the performance of the scheduling algorithms proposed in
the previous section.

5.1 Comparison with EDF

The EDF scheduling algorithm is one of the most commonly
used scheduling algorithms in real-time systems. In this
section, we compare our scheduling algorithms with
nonpreemptive EDF and preemptive EDF. That is, given a
collection of task sets, we applied the nonpreemptive and
preemptive EDF algorithms to schedule each task set
directly and obtained performance results. Then, we used
the nonpreemptive/preemptive EDF algorithm to schedule
the tasks within the MF and BF groups resulting from
employing MDA, DDA, and FDA. Finally, we compared the
results obtained from using MDA, DDA, and FDA to those
obtained directly from EDF. Below, we first describe our
experimental setup and then present the relevant data.

In our experiments, we randomly generated a large
number of task sets, each of which contains 5, 10, or 20 tasks.
In each task set, some of the tasks (control tasks) are associated
with the MC-based constraint, which is the same as the one
given in Fig. 1c. The other tasks (noncontrol tasks) simply use
the average dropout rate as a QoS metric. The period of each
task was randomly selected from a uniform distribution
between 2 to 50 time units and the deadline of each task was
set to be the same as its period. The execution time
distribution of every task was also randomly generated. That
is, we first randomly selected a number ki to be the number of
discrete values that �i’s execution time can take and then
generated ki pairs of random numbers, one as the execution
time and the other as the corresponding probability. After a
task set was generated, we used the method in [11] to compute
the average dropout rate of each task with an MC-based
constraint. If the dropout rate of such a task was higher than
40 percent, we discarded the task set because the control
system behavior under such a high dropout rate is usually
unstable and the comparison of output power is meaningless.
We also discarded task sets in which a control task had a
dropout rate lower than 2 percent since, in this case, the
dropout patterns no longer make any difference (see Fig. 5).

We have developed a simulation environment to
simulate the task execution process according to the four
schedulers, EDF, MDA, DDA, and FDA. For the DDA and
FDA, the upper bound � could take various values between
40 percent to 50 percent, while the lower bound � could take
values between 3 percent and 5 percent. We found that the
trends of the algorithms remain the same for different
bound values. Therefore, we will only show the results for
� ¼ 50% and � ¼ 5%. Note that, for dropout rates outside
these bounds, the system performance is either unstable or
insensitive to the dropout pattern variations (see Fig. 5). For
a noncontrol task, the dropout rate constraint was set to be
the dropout rate obtained from directly applying the
EDF algorithm. A job of noncontrol task was put in either
the MF or BF group depending on whether the current
dropout rate is above or below the constraint.

For each task set, we simulated the execution of each
scheduler to obtain the dropout pattern for each task up to
one million jobs. We then employed a control system
simulator (MATLAB Simulink) to determine the output
power of the control tasks. For each task’s dropout pattern,
we ran the control system simulator three times and
recorded the average power. Note that, since obtaining
the output power is a statistical analysis process, this means
the power value needs to be treated as having an error
range. We use the bootstrapping method [26] to obtain the
simulation error distribution. That is, first, we randomly
generated 100 dropout patterns of different dropout rates.
Second, each of these dropout patterns is fed to the
simulator and we ran the simulation 10,000 times. Finally,
we analyzed the histogram of the result power value of each
of these dropout patterns to obtain the error distribution
characteristics. We observed that the maximal standard
deviation of the simulation results is around 10 percent of
the mean value and the probability of a single simulation
result being 10 percent larger (or small) than its mean value
is less than 0:04. Therefore, in applying the scoring
approach, we considered pA to be different from pB only
if jpA � pBj > ��minfpA; pBg. In our experiments, we let �
equal 0:2, which will give us a error probability around
0.0016. (By error probability, we refer to the probability of
getting a wrong comparison result using the above
comparison scheme.) If both pA and pB are greater than
100, we ignore the comparison result since a system with
power greater than 100 is considered unstable in the control
sense. We simulated a large number of task sets in order to
collect the statistical behavior of the schedulers. The
performances of the different scheduling algorithms are
compared by the scoring approach discussed in Section 4.2.

As an example, Table 2 shows the actual simulation results
for two task sets, each of which contains four noncontrol tasks
and one control task. Rows 2-5 and 6-9 correspond to task sets
1 and 2, respectively. The dropout rates of all five tasks in each
task set are given in columns 2-6, where column 6 is for the
control task. The last column provides the average output
power of the control system. If one examines the data for task
set 1, it is easy to see that FDA performs better than EDF
because it results in smaller output power and lower dropout
rates for noncontrol tasks. In particular, for the control task,
though the dropout rate has increased significantly for FDA
compared to EDF (47.5 percent versus 26.3 percent), the
output power has decreased greatly. This reveals that the

LIU ET AL.: FIRM REAL-TIME SYSTEM SCHEDULING BASED ON A NOVEL QOS CONSTRAINT 9

TABLE 2
Simulation Output for Two Example Task Sets

dropout pattern for the FDA case is much closer to the optimal
dropout pattern (refer to Fig. 5). Similarly, we can see that
MDA and DDA result in smaller output power and similar
dropout rates (deviation is smaller or less than 1 percent) for
tasks with dropout rate constraints. Of course, in some cases,
we may not be able to say one scheduler is definitely better
than another. For instance, comparing FDA and EDF for task
set 2, we see that the dropout rates for some tasks are
decreased, while, for others, the rates are increased.

Table 3 summarizes the comparison results based on a
total of 300 task sets. Each task set contains 5, 10, 20 tasks
(see rows 2-7) with only one of them being a control task.
Six groups of comparisons (see columns 2-7) are provided.
By “EDF vs MDA,” we mean that the data are based on
testing if EDF is better than MDA. Recall that the scoring
method presented in Section 4.2 only gives a partial order
(in contrast to a total order) when comparing two
schedulers applied to the same task set. Thus, we need
both “EDF vs MDA” and “MDA vs EDF” to see which is
better. The other columns have the same meaning. From
Table 3, one can readily observe that, when the non-
preemptive scheme is used, EDF never scores against MDA,
DDA, and FDA, while the three new algorithms score
between 35 percent to 84 percent. When the preemptive
scheme is used, the results are similar. Thus, all three new
algorithms outperform the EDF algorithm.

Table 4 shows similar information as Table 3 but the task
sets now contain two control tasks (instead of one) among
five tasks. The data again demonstrates that our algorithms
outperform EDF. The better performance of MDA, DDA,
and FDA is attributed to the fact that these algorithms have
reduced the output power without penalizing the dropout
rates of noncontrol tasks.

The fact that our proposed algorithms indeed improve
the job dropout processes in terms of meeting the MC-based
constraints can be further demonstrated by the plots in
Fig. 7. Each point in the plots depicts the resulted control
task’s performance obtained by applying one particular
scheduler to one task set. The optimal dropout process (i.e.,

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

TABLE 3
Scheduler Scores Based on 300 Task Sets (in Percentages)

for Tasks Set with Various Number of Tasks

TABLE 4
Scheduler Scores (in Percentages) for 100 Task Sets

Each task set contains two control tasks and three noncontrol tasks. The
nonpreemptive scheme is used.

Fig. 7. Output power versus the dropout rate for applying four different

schedulers to 300 task sets. Each task sets contains four noncontrol

tasks and one control task. The nonpreemptive scheme is used. The

optimal dropout process is also shown as the solid line.

the MC-based constraint) corresponds to the curve below
all the points in each plot. From the plots, one can readily
see that the data corresponding to MDA, DDA, and FDA
are close to the optimal dropout curve, while those of EDF
in general are not. This is especially true when the dropout
rate is high (say greater than 18 percent). A horizontal long-
dashed line indicating power being equal to 100 is also
shown in the plot. It is clear that EDF resulted in many more
points above this line than the other algorithms. Since a
control system is considered unstable when the power
value is larger than 100, MDA, DDA, and FDA again
outperform EDF greatly in this regard.

Fig. 7 also reveals that FDA tends to make tasks have
higher dropout rates than MDA and DDA, but output
power values of the tasks are still quite low. Thus, FDA
seems to be more effective in reducing the output power
(i.e., meeting the MC-based constraints) without increasing
resource demands. The data in Table 5 also verify this
observation. Table 5 shows that, when FDA is used, the
number of tasks (without MC-based constraints) whose
dropout rates are higher than 50 percent (30 percent) is
smaller, compared with when MDA and DDA are used.

We have shown that our scheduling algorithms are
better than EDF in a way that they are able to achieve the
same or better average dropout rates for the noncontrol
tasks while improving the control system performance at
the same time for a large percentage of randomly generated
task sets. The conclusion should not be surprising as the
EDF algorithm does not pay any special attention to the
dropout patterns of control tasks.

5.2 Comparison with Window-Based Scheduling
Algorithms

Experimental results from the last subsection show that the
EDF algorithm, being not mindful of dropout patterns, does
not perform well in the presence of MC-based constraints.
A natural question to ask is how the scheduling algorithms

designed for the window-based constraints behave under
the MC-based constraints. In this section, we will compare
our scheduling algorithm with the scheduling algorithm
introduced in [24] (referred to as WHSA). WHSA makes
scheduling decisions based on dropout patterns and is one
of the most general and powerful online algorithms for
window-based constraints.

The experimental setup for comparing WHSA with our

algorithms is the same as the one in the previous subsection.

The MC-based constraint for a control task is given in

Fig. 1c. In order to make the comparison fair, we need to

choose the window-based constraints for WHSA carefully.

For a noncontrol task �i,
ni
mi

� �
as defined in [4] is used, i.e., in

any window of mi consecutive jobs of a task, at least ni jobs

must meet their deadlines. We let mi ¼ 100 and ni ¼
d"i � 100e ("i is the desired average dropout rate of �i).

For a control task, because there is no window-based

constraint equivalent to the MC-based constraint used, we

selected the two window-based constraints most similar to

the MC-based constraint, i.e., 2
4

� �
(in any window of four

consecutive jobs of a task, at least two jobs must meet their

deadlines), and h 2

4
i (in any window of four consecutive jobs

of a task, at least two consecutive jobs must meet their

deadlines). Note that the partitioning method used by

WHSA on noncontrol tasks is the same as the methods used

by MDA, DDA, and FDA. The only difference between

WHSA and our scheduling algorithms is the way in which

the jobs of the control tasks are partitioned between

different priority groups. The group assignment in WHSA

is deterministic since there are no probabilistic parameters

in the window-based constraint. (For more details of

WHSA, refer to [24].)

We applied WHSA to the same task sets that are used in

Table 3 and used EDF’s results as a common base to

compare WHSA and our scheduling algorithms. The results

are shown in Table 6. There is one control task in each task

set. We designate the WHSA using 2
4

� �
as the constraint as

“WHSA1” and that for h 2

4
i as “WHSA2.”

From Table 6, we can see that WHSA scores for only a
small percentage of task sets against EDF, while MDA,
DDA, and FDA do a much better job for the same task sets
(as shown in Table 3). This shows that WHSA cannot
adequately deal with the MC-based constraints, which are
handled nicely by our algorithms.

Readers might question why we use the scoring
mechanism to compare WHSA and our scheduling ap-
proaches with EDF separately. Recall that the goal of
applying WHSA or our scheduling algorithms is to improve

LIU ET AL.: FIRM REAL-TIME SYSTEM SCHEDULING BASED ON A NOVEL QOS CONSTRAINT 11

TABLE 5
Scheduler’s Effect on the Dropout Rates of the Tasks without MC-Based Constraints

Task sets are the same as those for Fig. 7.

TABLE 6
Scheduler Scores (in Percentages) of the Window-Based

Scheduling Algorithm and EDF
Based on the Same Task Sets Used in Table 3

Only one control task in each task set.

the control task’s performance without increasing the

dropout rates of noncontrol tasks. In WHSA and our

scheduling algorithms, the dropout rate constraints of

noncontrol tasks are preset to the dropout rates obtained

from applying the EDF algorithm. Thus, comparing WHSA

and our scheduling algorithms with EDF separately

demonstrates how well a scheduling algorithm fulfills the
goal, which is the intent of the scoring mechanism.

Direct comparison of WHSA with our scheduling algo-
rithms using the scoring mechanism can be done and the
results are shown in Table 7 and Table 8. One can see that
neither WHSA nor our algorithms are able to achieve high
scores against each other. This can be attributed to the

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

TABLE 7
Scheduler Scores Based on 300 Task Sets (in Percentages) for Tasks Set with Various Number of Tasks

TABLE 8
Scheduler Scores Based on 300 Tasks Sets (in Percentages) for Tasks Set with Various Number of Tasks

Fig. 8. Output power versus the dropout rate for applying four different schedulers to 300 task sets. Each task set contains nine noncontrol tasks and

one control task. The nonpreemptive scheme is used. The optimal dropout process is also shown as the solid line. The horizontal long-dashed line in

each plot indicates output power being equal to 100. The “unstable points” are those points whose output power exceeds 100.

following facts: 1) Only when a scheduler results in a better
performance for every task in the task set than another
scheduler can the former score 1 point. 2) A scheduler that
results in a worse control performance may unnecessarily
decrease a noncontrol task’s dropout rate (i.e., make a
noncontrol task’s dropout rate much lower than the dropout
rate constraint). The reason that our algorithms do not score
significantly higher than WHSA is due to the dropout rates of
noncontrol tasks being unnecessarily lower in WHSA.

To examine the performance of WHSA further, we plot
the control task’s performance of WHSA and our schedul-
ing algorithms in Fig. 8. The meaning of this plot is the same
as that of Fig. 7. Since a good number of points overlap each
other, some plots, i.e., the plots for WHSA1 and FDA, seem
to have fewer points. However, each plot in Fig. 8 contains
exactly 300 points. To help readers understand Fig. 8 better,
we also show the “unstable point percentage” in each plot.
The “unstable points” are those points whose output power
exceed 100. (Because the control system is considered to be
unstable when the output power is larger than 100.) One
can observe that our scheduling algorithms perform much
better than WHSA as our algorithms result in much fewer
unstable points.

6 CONCLUSIONS

In this paper, we consider firm real-time tasks with
probabilistic execution times (which are often found in
control applications). We have introduced a novel QoS
constraint which is based on the Markov chain model. The
new QoS constraint generalizes both the dropout rate type
of constraints and the window-based constraints. More
importantly, it provides the flexibility needed to precisely
specify the desired stochastic behavior of a system. This is
particularly valuable for control systems where the system
performance can be expressed as a function of the dropout
process’s transition matrix. A networked control system has
been used to illustrate this point.

For the new QoS constraint, we show that traditional
scheduling algorithms may not be adequate. We have
presented three online algorithms which attempt to deal
with the QoS constraint explicitly. The aim of these
algorithms is to lead to job dropout processes as close to
the QoS constraint as possible without impacting the
utilization of the resource by other tasks. We have
developed a simulation environment to help us evaluate
different scheduling algorithms. The experimental results
indicate that our scheduling algorithms indeed outperform
scheduling algorithms that do not consider the QoS
constraint. We also compare our algorithms with the
algorithm in [24], which is designed to satisfy certain
dropout patterns represented as window-based constraints.
The result shows that the algorithm in [24] performs better
than EDF, but it is far less effective than our algorithms.

As for future work, improvements can be made by
incorporating various admission control schemes to help
adjust the jobs in the different groups. We plan to
investigate this and other directions.

ACKNOWLEDGMENTS

This research is supported in part by the US National
Science Foundation under grant numbers CNS-0410771,

CCR-0208537, and ECS-0225265. Part of the work by

X. Sharon Hu was carried out during her sabbatical visit

to the Hong Kong University of Science and Technology.

REFERENCES

[1] T.F. Abdelzaher, K. Shin, and N. Bhatti, “Performance Guarantees
for Web Server End-Systems: A Control-Theoretical Approach,”
IEEE Trans. Parallel and Distributed Systems, vol. 13, no. 1, pp. 80-96,
Jan. 2002.

[2] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L.
Rosier, D. Shasha, and F. Wang, “On the Competitiveness of On-
Line Real-Time Task Scheduling,” Real-Time Systems, vol. 4,
pp. 125-144, 1992.

[3] S. Baruah, J. Haritsa, and N. Sharma, “Scheduling for Overload in
Real-Time Systems,” IEEE Trans. Computers, vol. 46, no. 9, pp. 1034-
1039, Sept. 1997.

[4] G. Bernat, A. Burns, and A. Llamosi, “Weakly Hard Real-Time
Systems,” IEEE Trans. Computers, vol. 50, no. 4, pp. 308-321, Apr.
2001.

[5] P.R. Blevins and C.V. Ramamoorthy, “Aspects of a Dynamically
Adaptive Operating Systems,” IEEE Trans. Computers, vol. 25,
no. 7, pp. 713-725, July 1976.

[6] S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A Dynamic Quality
of Service Middleware Agent for Mediating Application Resource
Usage,” Proc. Real-Time Systems Symp., pp. 307-317, 1998.

[7] J.L. Diaz, D.F. Garcia, K. Kim, C. Lee, L. Lo Bello, J.M. Lopez, L.M.
Sang, and O. Mirabella, “Stochastic Analysis of Periodic Real-
Time Systems,” Proc. Real-Time Systems Symp., pp. 289-300, 2002.

[8] M. Hamdaoui and P. Ramanathan, “A Dynamic Priority Assign-
ment Technique for Streams with (m, k)-Firm Deadlines,” IEEE
Trans. Computers, vol. 44, pp. 1443-1451, 1995.

[9] J.R. Haristsa, M. Livny, and M.J. Carey, “Earliest Deadline
Scheduling for Real-Time Database Systems,” Proc. Real-Time
Systems Symp., pp. 232-242, 1991.

[10] A. Kalavade and P. Mogh, “A Tool for Performance Estimation of
Networked Embedded End-Systems,” Proc. Design Automation
Conf., pp. 257-262, 1998.

[11] S. Manolache, P. Eles, and Z. Peng, “Memory and Time-Efficient
Schedulability Analysis of Task Sets with Stochastic Execution
Time,” Proc. 13th Euromicro Conf. Real-Time Systems, pp. 19-26,
2001.

[12] G. Koren and D. Shasha, “Skip-Over: Algorithms and Complexity
for Overloaded Systems that Allow Skips,” Proc. Real-Time Systems
Symp., pp. 110-117, 1995.

[13] Q. Ling and M.D. Lemmon, “Robust Performance of Soft Real-
Time Networked Control Systems with Data Dropouts,” Proc.
IEEE Conf. Decision and Control, vol. 2, pp. 1225-1230, 2002.

[14] Q. Ling and M.D. Lemmon, “Soft Real-Time Scheduling of
Networked Control Systems with Dropouts Governed by a
Markov Chain,” Proc. Am. Control Conf., 2003.

[15] S.K. Park and K.W. Miller, “Random Number Generators: Good
Ones Are Hard to Find,” Comm. ACM, vol. 31, no. 10, pp. 1192-
1201, 1988.

[16] C. Lu, J.A. Stankovic, S.H. Son, and T. Gang, “Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms,”
Real-Time Systems, vol. 23, nos. 1-2, pp. 85-126, 2002.

[17] G. Quan and X. Hu, “Enhanced Fixed-Priority Scheduling with
(m, k)-Firm Guarantee,” Proc. IEEE Real-Time Systems Symp.,
pp. 79-88, 2000.

[18] P. Ramanathan, “Overload Management in Real-Time Control
Applications Using (m, k)-Firm Guarantee,” IEEE Trans. Parallel
and Distributed Systems, vol. 10, no. 6, pp. 549-559, June 1999.

[19] D.R. Sahoo, S. Swaminathan, R. Al-Omari, G. Manimaran, M.
Salapaka, and A. Soomani, “Feedback Control for Real-Time
Scheduling,” Proc. Am. Control Conf., vol. 2, pp. 1254-1259, 2002.

[20] J.A. Stankovic, C. Lu, S.H. Son, and T. Gang, “The Case for
Feedback Control Real-Time Scheduling,” Proc. 11th Euromicro
Conf. Real-Time Systems, pp. 11-20, 1999.

[21] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and
J.W.-S. Liu, “Probabilistic Performance Guarantee for Real-Time
Tasks with Varying Computation Times,” Proc. Real-Time Technol-
ogy and Applications Symp., pp. 164-173, 1995.

[22] R. West and C. Poellabauer, “Analysis of a Window-Constrained
Scheduler for Real-Time and Best-Effort Packet Streams,” Proc.
Real-Time Systems Symp., pp. 239-248, 2000.

LIU ET AL.: FIRM REAL-TIME SYSTEM SCHEDULING BASED ON A NOVEL QOS CONSTRAINT 13

[23] A.K. Mok and W. Wang, “Window-Constrained Real-Time
Periodic Task Scheduling,” Proc. IEEE Real-Time Systems Symp.,
pp. 15-24, 2001.

[24] G. Bernat and R. Cayssials, “Guaranteed On-Line Weakly-Hard
Real-Time Systems,” Proc. IEEE Real-Time Systems Symp., pp. 25-
34, 2001.

[25] T. Loukil, J. Teghem, and D. Tuyttens, “Solving Multi-Objective
Production Scheduling Problems Using Metaheuristics,” European
J. Operational Research, 2003.

[26] B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap.
Chapman and Hall, 1993.

[27] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. IEEE, vol. 77, no. 2,
1989.

Donglin Liu received the BS degree in electrical
engineering from Tianjin University, China, in
1996. He received the MS degrees in computer
science and engineering from the University of
Notre Dame in 2005. His primary research
interests are in the area of networked control
system and real-time system scheduling algo-
rithm design and evaluation.

Xiaobo Sharon Hu (S’85-M’89-SM’02) received
the BS degree from Tianjin University, China,
the MS degree from the Polytechnic Institute of
New York, and the PhD degree from Purdue
University, West Lafayette, Indiana. She is an
associate professor in the Department of Com-
puter Science and Engineering at the University
of Notre Dame. She also worked at General
Motors Research Laboratories as a senior
research engineer and at Western Michigan

University as an assistant professor. Her research interests include
hardware-software codesign, real-time embedded systems, low-power
system design, and design automation algorithms. She has published
more than 90 papers in related areas. She has served on the program
committees of a number of conferences, such as the Design Automation
Conference, International Conference on Computer-Aided Design,
Design, Automation and Test in Europe Conference, IEEE Real-Time
Systems Symposium, etc. She was the program cochair of the
International Symposium on Hardware-Software Codesign in 2001 and
the general cochair of the same conference in 2002. She is a senior
member of the IEEE.

Michael D. Lemmon received the BS degree in
electrical engineering from Stanford University in
1979. He received the MS and PhD degrees in
electrical and computer engineering from Car-
negie-Mellon University in 1987 and 1990,
respectively. He joined the University of Notre
Dame in 1990, where he currently holds an
appointment as a professor of electrical engi-
neering. He served as program chair for the Fifth
International Workshop on Hybrid Systems in

1997 and the 1999 International Symposium on Intelligent Control. He is
a former associate editor of the IEEE Transactions on Neural Networks
and the IEEE Transactions on Control Systems Technology. Dr.
Lemmon’s primary research interests are in the area of control theory,
including hybrid control systems and supervisory control of discrete-
event systems. He is currently studying decentralized control, detection,
and estimation over ad hoc sensor-actuator networks.

Qiang Ling received the BS degree in auto-
matic control from the University of Science
and Technology of China in 1997, the ME
degree in control theory and control engineer-
ing from Tsinghua University in 2000, and the
PhD degree in electrical engineering from
University of Notre Dame in 2005. He joined
Seagate Technology, Pittsburgh, Pennsylvania,
in 2005. His research interests include stochas-
tic control, networked control systems, and

quantized control systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

