
Scheduling Tasks with Markov-Chain Based Constraints

Donglin Liu, Xiaobo Sharon Hu
Dept. of Computer Science and Engineering

Univ. of Notre Dame, IN 46556, USA
dliu, shu@nd.edu

Michael D. Lemmon, Qiang Ling
Dept. of Electrical Engineering

Univ. of Notre Dame, IN 46556, USA
lemmon, qling@nd.edu

Abstract

Markov-Chain (MC) based constraints have been shown
to be an effective QoS measure for a class of real-time
systems, particularly those arising from control applica-
tions. Scheduling tasks with MC constraints introduces new
challenges because these constraints require not only spe-
cific task finishing patterns but also certain task completion
probability. Multiple tasks with different MC constraints
competing for the same resource further complicates the
problem. In this paper, we study the problem of schedul-
ing multiple tasks with different MC constraints. We present
two scheduling approaches which (i) lead to improvements
in “overall” system performance, and (ii) allow the system
to achieve graceful degradation as system load increases.
The two scheduling approaches differ in their complexities
and performances. We have implemented our scheduling
algorithms in the QNX real-time operating system environ-
ment and used the setup for several realistic control tasks.
Data collected from the experiments as well as simulation
all show that our new scheduling algorithms outperform al-
gorithms designed for window-based constraints as well as
previous algorithms designed for handling MC constraints.

1 Introduction

In many real-time applications such as networked con-
trol systems and multimedia services, jobs are allowed to
occasionally miss their deadlines and such jobs are often
discarded or dropped since finishing these late jobs does not
improve system performance. Such systems are referred to
as Firm real-time systems (FRTS) [6]. Quantifying the “oc-
casional deadline misses” is critical for evaluating the Qual-
ity of Service (QoS) of a FRTS. One group of often used
QoS metrics for FRTS are based on the average behavior of
a task’s long execution sequence such as deadline miss ratio
or average dropout rate, effective processor utilization and
completion count [4, 5]. Another group of QoS metrics for
FRTS are based on the task’s completion pattern within a

certain “window” [9, 20, 22, 6, 11].
In [16], Liu, et. al. introduced a new type of constraints

for FRTS, i.e., Markov Chain (MC) based constraints. An
MC constraint specifies a task’s desired dropout process in
the form of a Markov Chain. That is, the probability of dis-
carding or dropping a job (i.e., a task’s instance) depends on
the current state of the task dropout process. MC constraint
bear similarities with the average behavior based constraints
as well as the window based constraints, but it is more gen-
eral than both. In fact, these two types of constraints are
special cases of MC constraints. More importantly, it is
shown in [16] that MC constraints provide the flexibility and
preciseness needed to specify the desired stochastic behav-
ior of a system. This is particularly valuable for those FRTS
whose QoS can be expressed as a function of the state tran-
sition probabilities in the associated dropout process, which
is the case for many control applications [15].

In this paper, we consider FRTS containing multiple
tasks with different MC constraints. Such FRTS can be
found in a number of applications, e.g., a robot control sys-
tem which must execute several control tasks on one re-
source. In such a system, the performance of each control
task is a function of the respective dropout process and the
control tasks need to be coordinated to accomplish some
common goal. Existing scheduling algorithms, as we will
show later, are not able to achieve good overall performance
due to their various drawbacks.

We present two new scheduling approaches, the State
Sensitivity based algorithm (referred to as SSA) and
Grouped Fair Dropout Rate algorithm (referred to as
GFDR), for the FRTS under consideration. Both SSA and
GFDR partition jobs into three priority groups, instead of
two as done by most FRTS schedulers. They differ in their
methods of assigning priorities to jobs within each prior-
ity group. In SSA, we adopt a novel priority assignment
scheme based on some interesting observations. GFDR
used a more straightforward intra-group priority assignment
scheme which trades in quality for efficiency. Both algo-
rithms effectively overcome the shortcomings of the exist-
ing algorithms as shown by simulation results.

For new scheduling algorithms, it is important to study
their effect in a real-world scenario. Towards this end, we
have implemented our new scheduling approaches as well
as existing ones pertinent to this work in the QNX real-time
operating system environment [13]. The observations of the
dropout processes in this experimental setup again demon-
strate the superiority of the new scheduling algorithms.

The remainder of this paper is organized as follows.
Section 2 provides preliminary information. In Section 3,
we discuss some useful observations about MC constraints
and our proposed methods to solve the scheduling problem.
Section 4 presents the detailed experimental setup as well
as experimental data. We conclude the paper in Section 5.

2 Preliminaries, motivation and related work

In this section, we first review the MC constraint con-
cept. (Interested readers are referred to [16] for more de-
tails.) Then we use an example to motivate the problem to
be solved and give a formal problem formulation. We last
discuss related work.

2.1 MC constraints

Before presenting the MC constraint definition, we intro-
duce some necessary notation. Let τi be the i-th task, and
τij be the jth instance or job of τi. The period of τi is de-
noted by ti, and the deadline of τi is denoted by di. Without
loss of generality, we assume that the execution time of τi is
a random variable denoted by Ci. We use fij to denote the
completion status of job τij , i.e., fij = 1 if τij is completed
at or before its deadline and fij = 0 otherwise. Note that
fij = 0 is due to either the late finish of τij or the rejection
of τij before it is started. For simplicity, we refer to both
cases as the jobs being dropped. The average dropout rate
of task τi is denoted by θi.

Given a task τi, we refer to the completion status of a
long sequence of τi’s jobs as its dropout process and de-
note it by DPi. Each DPi can be considered as a discrete
stochastic process since the task execution time is a random
variable. An MC constraint is defined for a task’s dropout
process to indicate that the dropout process should follow
the MC constraint. An MC constraint for task τi is de-
noted by MCi. MCi is a discrete stochastic process with Mi

states and Mi ≥ 2. Each state is represented by X i
m where

m = 1, 2 · · · , Mi. The transition probability from one state
X i

j to another X i
k indicates either the probability of the next

job being dropped or the probability of the next job being
completed. Each state is associated with the dropout pattern
expressed as a binary string of the status bits fij to repre-
sent the most recent completion status for τij . For example,
if two bits are used for each state in MCi, then there are at
most 4 states (Mi = 4) in MCi. The state which represents
the execution pattern of one completed job followed by one

21−ε

4

 0100 11 10

(c)

(b)

 01 11

 0100 11 10

(a)

 ε

 X

11−ε 1 ε
(3) X(1) X

11−ε 1 ε
(4) X(3) X(2) X(1) X

(2)

11−ε 31−ε1 ε 2 ε
(4) X(3) X(2) X(1) X

41−ε

3 ε

 10

Figure 1. (a) A general MC dropout process with 2 bits
for each state. (b) An example MC constraint, which is
equivalent to (2, 3)-firm constraint. (c) An example MC
constraint, which describes the optimal dropout process in
a networked control system.

dropped job can be written as X i
m = {10}, and so on. Fig-

ure 1(a) depicts the general MC process for the case of using
two completion status bits for each state, where ε1 to ε4 are
the probabilities of the next job being dropped at the respec-
tive states. Given the fact that a state can only transition to at
most two other states based on the completion status of the
next job, the dropout probability (i.e., dropout rate) at each
state, denoted by εm, for m = 1, 2, · · · , Mi, is sufficient to
uniquely specify MCi. Note that the average dropout rate of
task τi, θi, is a function of the dropout probability at each
state. Figure 1(b) shows a specific example of an MC con-
straint, which has three states and ε1 represents the dropout
probability at state X(1) = {11}. It is not difficult to verify
that this MC constraint is equivalent to the (m, k)-firm con-
straint [9], where m = 2 and k = 3. Figure 1(c) illustrates
another MC constraint which cannot be described by any
window based constraint.

2.2 A motivational example

From the discussion of MC constraints, it is not difficult
to see that MC constraints generalize not only average be-
havior based constraints but also window based constraints.
Another unique feature of MC constraints is that they can
be directly related to the QoS of a task. We use a net-
worked control system (NCS) to illustrate this and motivate
the needs for MC constraints. The example will also be used
in later sections for explaining our algorithms.

Networked control systems are widely used in modern
control applications. An NCS is a feedback control system

where sensor and actuator data are sent to and from the con-
trol plant over a communication network. These data are
occasionally delayed due to one of two reasons: either the
medium is unreliable or the network is overloaded. Since a
delayed signal is useless to the system, an NCS can be cate-
gorized as a FRTS. In [15], Ling and Lemmon show that an
NCS’s performance can be expressed as a function of the
dropout process (represented by an Markov chain) of the
communication network. To optimize the performance of
an NCS, the dropout process should follow a specific MC
process. This MC process can thus be considered as the
constraint for the dropout process.

In Figure 2 (top), a typical NCS model is given. This
system consists of a loop function L(z) whose input, w[n],
is a zero-mean white noise disturbance. The output y[n]
is fed back through the network in a manner that is con-
trolled by a dropout process, {d[n]}. The dropout process
is a binary random process that models the behavior of the
network. Since this particular control system tries to reject
disturbances, the system’s performance, i.e., QoS, is char-
acterized by the output signal power. Varying the dropout
process even for the same average dropout rate can lead
to different system performance. Ling and Lemmon show
that the dropout process that maximizes the system perfor-
mance (i.e., minimizes the output signal power) follows the
Markov Chain given in Figure 1(c) [15].

To better understand the implications of MC constraints,
we reproduce a figure from [15] in Figure 2(bottom). This
figure depicts three curves corresponding to the system out-
put signal power when the system dropout process fol-
lows three different distributions, i.e., the one given in Fig-
ure 1(b), an independent and identically distributed pro-
cess, and the one given in Figure 1(c). For a given average
dropout rate (the x-axis), different dropout processes lead
to different output signal power values. Since lower out-
put signal power is more desirable, it is clear that following
the Markov Chain in Figure 1(c), i.e., the MC constraint
for the system, results in optimal system performance. This
shows that the system QoS depends on not only the average
dropout rate but also the dropout patterns. Furthermore, this
QoS can be expressed as a function of the dropout process
and the QoS is maximized when the dropout process satis-
fies the MC constraint at every average dropout rate value.

The above example uses a communication network to il-
lustrate signal dropouts. However, this can be generalized
to any FRTS in which multiple “consumers” compete for a
limited resource. For example, in a robot control system a
CPU may need to receive data from multiple sensors, ex-
ecute several control tasks, and send data to a number of
actuators. All of these tasks compete for the CPU resource
and some jobs may have to be dropped when the CPU is
overloaded. How to design a scheduler to improve the over-
all system performance can be very challenging.

][ˆ ny

][ny

][ny

-

1−z ⊗
][nd

][nu][nw
)(zL

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

120

Dropout rate

C
os

t =
 P

ow
er

(y
)

Cost vs. dropout rate for different dropout policies

(2,3)−firm guarantee policy
i.i.d. dropout policy
optimal Markov chain policy

Figure 2. Top - NCS model: Bottom - comparison of the
three dropout models

2.3 Problem Formulation and Related Work

We are interested in solving the following problem:

Problem 1 Given an FRTS with n tasks, τ1, τ2, . . . , τn,
which share a single resource, and each task τi is associated
with an MC constraint MCi, design a scheduling approach
for the resource to maximize overall system performance.

We assume that the system utilization is larger than one in
the worst case, otherwise the problem is trivial when the ear-
liest deadline first (EDF) scheduling algorithm is used. This
problem bears some similarity with the resource allocation
problem for the Q-RAM model [12, 18, 19] since both
strive to quantitatively measure QoS. One might consider
the dropout process of each task as a QoS dimension. Then
optimizing the overall system performance can be treated
as maximizing the system utility defined as a function of
the task dropout process [12]. A key difference between the
problem under consideration and the Q-RAM model is that
the QoS measure of the former is a stochastic process while
the QoS measures for the latter are deterministic. Further-
more, the resource allocation approach for Q-RAM can be
quite costly if used online.

Many papers have studied the scheduling problem for
overloaded systems with probabilistic execution times. Tia
et. al. uses a task transformation method to separate jobs
into different groups which are executed either by a rate-
monotonic scheduler (RMS) or a sporadic server [21]. At-
las and Bestavros propose the stochastic rate-monotonic
scheduling approach which employs a novel admission con-

trol strategy to ensure task isolation and job schedulabil-
ity [2]. Admission control based on control theory and other
methods such as slack stealing have also been discussed
(e.g., [3, 17]). All of these methods are only concerned with
task completion probability as the QoS. This is the same as
considering only the average dropout rate while ignoring
the underlying dropout process in our problem. As we have
shown earlier, same average dropout rate may not necessar-
ily lead to the same performance (see Figure 2). Scheduling
algorithms for systems with MC constraints must pay close
attention to job dropout patterns.

Scheduling approaches for systems with window-based
constraints indeed consider dropout patterns (e.g., [8, 10,
11, 9, 20, 22]). These papers address overload situations
by partitioning jobs into two priority groups: the manda-
tory and optional. An underlying assumption of such par-
titioning is that the system performance improves as more
optional jobs are finished on time. For a task with an MC
constraint, this assumption is no longer true. For example,
observe the optimal Markov Chain in Figure 1 for the sys-
tem in Figure 2(top), it is desirable to actually drop the next
job if the dropout process is at state {10}.

There are several unique challenges in designing sched-
uler for tasks with MC constraints. First, the scheduling
goal for a task with an MC constraint is to achieve a dropout
process as similar as possible to the MC constraint. Recall
that a dropout process is a stochastic process and is best
evaluated by relatively long history dropout pattern. How-
ever, when designing an online scheduler, the scheduler can
only afford to make decisions based on “local” informa-
tion such as temporary system load. Second, merely forcing
the dropout process of a task to follow the given MC con-
straints without any concern for the average dropout rate
could still hurt the task performance. This can be seen from
Figure 2 (bottom) where the output signal power can be less
desirable if the dropout process follows the optimal Markov
Chain at a much higher average dropout rate (say 45%) than
if it follows the i.i.d. process at a lower average dropout
rate (say 12%). Thus, the scheduler must “fairly” allocate
the resource. Third, depending on the current state of the
dropout process of each task, finishing on time the next job
of a certain task can be much more important than that of
another task. It is desirable to have a strategy for evaluating
the criticality of each state.

From the above discussion, it can be seen that any al-
gorithms that target at only average dropout behavior or
window based patterns cannot adequately address the chal-
lenges introduced by MC constraints. Liu, et. al. proposed
three scheduling algorithms (MDA, DDA, and FDA) which
consider specifically MC constraints. These algorithms de-
termine online whether a job of a task with an MC con-
straint should be a must-finish job or an optional-finish job.
Jobs within each group are scheduled by the EDF algorithm.

Algorithms in [16] addressed the first challenge discussed
above. However, they do not explicitly address the sec-
ond and third challenge since there is no consideration of
“fairness” or “criticality”. Furthermore, there is no strategy
for comparing tasks with different MC constraints, and the
evaluation of the overall system performance is not formal.
The work presented in this paper intends to overcome these
shortcomings.

3 Scheduling tasks with MC constraints

To find a good scheduling strategy for maximizing the
overall performance of a system with multiple tasks with
different MC constraints, we need to quantify overall sys-
tem performance. Since each task is associated with an MC
constraint, it is natural for each task to express its perfor-
mance as a function of the respective dropout process as
well as the average dropout rate. For example, for the task
model in Figure 2, its performance can be considered as
the reciprocal of the output signal power which depends on
both the dropout process and the average dropout rate (see
Figure 2 (bottom)).

Let Pi = Gi(DPi, θi) denote the performance of τi

where Gi() represents a function. It is not difficult to see
that Pi has a similar meaning as the utility function used
by the Q-RAM model [12]. (We choose to use performance
instead of utility since utility might be miss interpreted as
some measure of system utilization.) Therefore, we employ
the same way as the Q-RAM model to define the overall
system performance. Let P denote the overall system per-
formance. Then, P is obtained by

P =

n∑

i

wiPi

=

n∑

i

wi(Gi(DPi, θi) − min
θi

Gi(DPi, θi))

max
θi

Gi(DPi, θi) − min
θi

Gi(DPi, θi)
, (1)

where wi is the weight or relative importance of τi, and P i

is the normalized performance of τi. Evaluating Pi can be
computationally intensive since it involves statistical analy-
sis of a long job dropout pattern (such as over one million
jobs). This can be tolerated if the analysis is done offline.
Evaluating P online for scheduling decisions is too costly.

In SSA, we use a hybrid offline/online scheduling ap-
proach. A priority driven, preemptive scheduler is used on-
line to dispatch jobs. Due to the dynamic nature of a task
dropout process, dynamically assigned priorities are pre-
ferred for meeting MC constraints. Our challenge then is
how to determine the priorities of jobs upon their release.
We approach the online priority assignment problem by
carefully studying the properties of MC constraints. Given
each possible state of the dropout process, we want to of-
fline predict what types of future dropout patterns would be

more desirable or more hurtful in terms of overall perfor-
mance. This prediction is used online to guide the priority
assignment process so as to enforce certain types of future
dropout patterns. Unlike SSA, GFDR is a purely online
algorithm which used a more straightforward heuristic ap-
proach. We will discuss our approaches in detail below.

3.1 Observations and implications

Observation 1 There are at most three types of states in
any MC constraint:

1. Must-Finish (MF) state:state from which the dropout
probability of the next job is equal to 0

2. Better-Finish (BF) state:state from which the dropout
probability of the next job is between 0 and 1

3. Better-Drop (BD) state: state from which the dropout
probability of the next job is equal to 1

For example, state {10} in Figure 1(b), state {11} in Fig-
ure 1(b) and state {10} in Figure 1(c) are MF, BF and BD
states respectively. Given task τi and MCi, by monitoring
the most recent job finishing patterns, the state of DPi (the
dropout process of τi) at each job release as well as the type
of the state can be readily determined. For example, if a
two-bit string is used in MCi, the state of DPi at the release
of τij is simply {fi(j−2)fi(j−1)}. For simplicity, we refer
to the state of DPi at the release of τij as the state which τij

is in or just τij’s state.
Based on Observation 1, a scheduler should strive to treat

jobs in different types of states differently so as to follow a
given MC constraint. Specifically, we introduce three pri-
ority groups for jobs with MC constraints, i.e., MF group,
BF group, and BD group in the order of decreasing priority
levels. Jobs in an MF state are assigned to the MF group
since a miss in an MF state would violate the basic Markov
Chain transition structure. The jobs in a BF state are put to
the BF group as a temporary miss at this state is acceptable.
In other words, a miss in an MF state causes the system per-
formance to degrade much more severely than a miss in a
BF state. Jobs in a BD state are assigned to the BD group
such that they are only executed if there is no any other re-
source demand. We do not simply drop jobs at a BD state
since finishing them could improve the system performance
in a long run by decreasing the average dropout rate. Note
that this 3-way partitioning method is an extension of the
mandatory v.s. optional partitioning used by existing work.

There can be more than one job in each priority group.
To prioritize the jobs within a group, one might consider to
use EDF or RM for simplicity or other algorithms aimed
at maximizing the completion ratio (e.g., [5]). However, as
we pointed out earlier, these algorithms do not address the
special requirements of MC constraints. As system load in-
creasing, some jobs in the BF or even MF group may be

dropped. Dropping different jobs can degrade the system
performance differently. Ideally, we would like to drop the
jobs which have the least negative “impact” on system per-
formance as defined in equation (1). The more negative the
impact is, the higher priority this job should receive. Such
impact depends on both wi and Gi in equation (1). The
weight of each task, wi, assuming known, reflects the rela-
tive importance of the task to the overall application, which
is out of the scope of this paper. More illusive is to cap-
ture the impact of the task dropout process, DPi, at the re-
lease of τij on the performance. We have pointed out ear-
lier that evaluating function Gi online is computationally
prohibitive.

The following observation and subsequent discussion
help shed some light on how to quantify the impact of drop-
ping a job.

Observation 2 The impact of a job’s completion status
(miss or meet its deadline) on the system performance de-
pends on the job’s current state.

The observation is quite intuitive since the completion sta-
tus bits of a long sequence of jobs determine the task
dropout process which in turn determines the task perfor-
mance. If one could offline assess for every task the impact
of missing/meeting a job’s deadline at each state on the per-
formance, this assessment together with the relative impor-
tance of the tasks can then be used online to prioritize jobs
from different tasks. However, the task performance is a
function of the task dropout process which depends on long
job-execution patterns. It is not immediately apparent how
to evaluate the changes in system performance for missing
or meeting a single job deadline at a particular state, since
this is a transient behavior. We will show how we tackle this
problem in the next subsection.

3.2 State Sensitivity

Since it is difficult to quantify transient behavior in a
dropout process, an alternative is to model the effect of tran-
sient behavior statistically. For example, consider a task’s
dropout process, DPi, is at a specific state, say X i

m. If we let
a miss from X i

m occur at some probability, the performance
of the resulting dropout process can be evaluated either ana-
lytically [15] or through statistical simulation depending on
the actual application. (This is just one step in the process of
finding the optimal dropout process.) However, having the
performance of a dropout process is not sufficient. To eval-
uate the impact discussed in the last subsection, we need to
find the performance change with respect to some deadline
miss or meet.

Recall that MC constraintMCi represents the most desir-
able dropout process. Deviations from MCi is the cause for
the performance to degrade. Therefore, changes in perfor-
mance could be measured by comparing the performance of

some dropout process with that of MCi. We are now ready
to introduce the concept of state sensitivity.

Definition 1 State sensitivity: For a given task τi and
MCi, the state sensitivity η at state X i

m ∈ MCi is

η(X i
m, θi, ε̃im) =

Gi(DP
∗

i , θ∗i) − Gi(MCi, θi)

|θ∗i − θi|
. (2)

θi is the average dropout rate of τi, ε̃im is the deviation of
the dropout probability for some dropout process at state
X i

m from that given in MCi, DP∗

i is the dropout process in-
duced by ε̃im (i.e., ε∗im = ε̃im + εim, where ε∗im and εim are
the dropout probabilities of DP∗

i and MCi, respectively),
and θ∗i is the average dropout rate of DP∗

i .

In other words, sensitivity at a certain state defined in MCi

captures the performance change of a dropout process DP∗

i

from the optimal dropout process MCi. State sensitiv-
ity measures this change (caused by a perturbation in the
dropout probability at a state) with respect to the change in
resource utilization indicated by average dropout rate.

According to the above definition, one can see that state
sensitivity reflects the impact on performance when the
dropout process of τi deviates from MCi. A larger sensitiv-
ity value at a given state means that the performance would
degrade more severely as the probability of missing a job’s
deadline at this state becomes larger than that given in MCi.
Therefore, the job should be given a higher priority. It fol-
lows then that the state sensitivity values together with task
weights can be used online to prioritize jobs in the same
priority group.

To compute η(X i
m, θi, ε̃im) offline, the key is to evaluate

Gi(DP
∗

i , θ∗i) for given ε̃im and θi values, since Gi(MCi, θi)
should already be available for a given MCi. Based on the
discussion at the beginning of this subsection, we propose
to evaluate Gi(DP

∗

i , θ∗i) as follows. For any θi, we first de-
termine one set of transition probabilities in MCi that sat-
isfy θi. (If there exist more than one such set of probabil-
ity values, we can take any set since they all result in the
same performance.) Now, for each state X i

m in MCi, we
perturb MCi by allowing the two transition probabilities at
state X i

m to change according to ε̃im while keeping the rest
of the transition probabilities fixed. The resulted dropout
probability at state X i

m is ε∗im. For each value of ε∗im, θ∗i of
DP∗

i can be easily computed. Then, the performance of the
resulting dropout process, i.e., Gi(DP

∗

i , θ∗i), can be evalu-
ated and η(X i

m, θi, ε̃im) can be readily obtained.
We use the MC constraint in Figure 1(c) to illustrate

how the above process works. We first select the initial
average dropout rate θi to be 25%. Based on the chosen
average dropout rate of 25%, we have ε1 = 20%. Take
state {01} in Figure 1(c) as an example. We now modify
the Markov Chain by setting the transition probability from
state {01} to {10} to be ε4 (the probability of of a job being

0 5 10 15 20 25 30 35 40 45 50
−500

0

500

1000

1500

2000

2500

average dropout rate θ

se
ns

iti
vi

ty

state 01 (MF state)

state 00 (MF state)

state 10 (BD state)

state 11 (BF state)

Figure 3. State sensitivity for every state in Figure 1(c).

dropped), and that to state {11} to be 1 − ε4 and leaving
others unaltered. For each selected initial average dropout
value, we have a corresponding dropout process. The sys-
tem performance of this dropout process is then evaluated
by simulating in Matlab the control model given in Fig-
ure 2(top) [15].

The state sensitivity values v.s. the average dropout rate
for every state in Figure 1(c) while setting ε̃im = 0.1 are
plotted in Figure 3. The plots clearly indicate that for the
same initial average dropout rate, different states in the MF
group have different sensitivity values, which can be used
for priority assignments. The curve for BD state deserves
special consideration. When θi is less than 16%, the sensi-
tivity of the BD state is a very small negative value. When
θi is larger than 35%, the sensitivity of the BD state is larger
than that of the BF state. Note that dropout probability of
a BD state in MC constraint is equal to 1. Unlike the sen-
sitivity of other states, the sensitivity value for a BD state
shows performance changes when more jobs in BD state
meet their deadlines. Thus the curve of BD state indicates
that we should try to finish jobs in BD states only when
there are no jobs from other groups.

One might argue that perhaps sensitivity alone is suffi-
cient for priority assignment. However, when comparing
states from different MC constraints, the sensitivity of one
type of states from one MC constraint is of no relevance to
that of another type of states from another MC constraint.
Thus, we need both group partitioning and sensitivity-based
prioritizing. A careful reader may notice that it is possible
for a dropout process to be at a state not included in the MC
constraint. In such case, the scheduler should either assign
the highest priority to or drop the very next job depending
on which action will make the dropout process go to one of
states in MCi.

3.3 State-sensitivity based algorithm

We are now ready to summarize our state-sensitivity
based scheduling approach. SSA consists of two parts: the
offline part (SSA-Offline) and the online part (SSA-online).
We summarize the two parts in Algorithm 1 and 2.

Algorithm 1 SSA-offline
Input: Task set T , for each τi ∈ T : MCi, θUB

i
(the upper bound on

θi), ε̃im

Output: Set S of (τi,X
i
m, θi, η(Xi

m, θi))
for τi ∈ T do

θi = 0
while θi < θUB

i do
decide a set of εim that satisfies MCi

compute Gi(MCi , θi)
for Xi

m ∈ MCi do
if Xi

m is a BD state in MCi then
ε∗
im

= (1 − ε̃im);
end if
if Xi

m is an MF state in MCi then
ε∗
im

= ε̃im;
end if
if Xi

m is an BF state in MCi then
ε∗
im

= ε̃im + εim;
end if
compute θ∗

i
;

evaluate Gi(DP
∗

i
, θ∗

i
);

compute η according to Equation (2);
put (τi, X

i
m, θi, η) in S;

end for
θi+ = ∆;

end while
end for

Algorithm 1 follows naturally from the discussions in
Section 3.2. The first if statement checks if state X i

m is a
BD state, e.g., state {10} in Figure 1(c). If it is, an extra
transition is introduced from X i

m to a state such that the
next job is not dropped, e.g., state {01} in Figure 1(c). The
next if statement is similar to this except that it deals with
MF states. We introduced ∆ as the quantizer to discretize
θi. The choice of ∆ value impacts the size of the set of sen-
sitivity values. Our experiments have shown that ∆=0.01 is
a reasonable choice. The choice of ε̃im should reflect how
the current dropout process deviates from MCi. In our ex-
periment we have tried different ε̃im values from 0.1 to 0.3.
The sensitivity values remain similar. Due to page limit, we
only show the scheduling results of ε̃im = 0.1.

Algorithm 2 first assigns a newly released job to one of
the three groups according to the job’s current state, X i

m.
Within each group, the priority of a job is determined by
looking up the table containing the sensitivity values. Algo-
rithm 2 is called at every job release, completion and drop.
At a job completion or drop, the work is minimal. At a
job release, the time and space complexity of algorithm 2
are O(N log(N)) and O(NMR) respectively, where N is
the number of tasks, M is the maximum number of states
among all given MC constraints, and R is the maximum
number of discrete average-dropout rate values. Usually,

Algorithm 2 SSA-online
Input: Set S of (τi,X

i
m, θi, η)∀τi ∈ T

At a scheduling point t

for each job τij either completed or dropped at t do
update Xi

m /* the state of τi’s dropout process */
update θi;

end for
for each job τij released at t do

if Xi
m is an MF (resp., BF, BD) state then

if there are other jobs in MF (resp., BF, BD) group then
look up η(Xi

m, θi) in S;
if τij is in MF (resp., BF) state then

insert τij in MF (resp., BF) group in decreasing order of η;
else

insert τij in BD group in increasing order of η;
end if

else
put τij into MF (resp., BF, BD) group;

end if
else

if dropping τij makes Xi
m a state in MCi then

discard τij ;
else

put τij at the head of MF group;
end if

end if
end for

the number of states in MC constraints is not large (less
than 10). The value R reflects a trade off between schedul-
ing overhead and scheduling quality and is application de-
pendent. Our experiments based on implementing the algo-
rithm in the QNX environment indicates that the overhead is
not significant for the control tasks considered. If the num-
ber of tasks is large, clever storage of the sensitivity table
could help reduce the overhead, which is beyond the scope
of this paper.

3.4 Grouped Fair Dropout Rate algorithm

SSA prioritizes jobs inside each priority group accord-
ing to jobs’ state sensitivities, which reflect jobs’ criticali-
ties. In scheduling tasks with MC constraints, the “fairness”
of allocating resources should also be taken into considera-
tion to achieve better overall system performance. However
such “fairness” should only be achieved under the condi-
tion that each task is following their MC constraints. To
satisfy such “fairness” and the MC constraints at the same
time, we introduce GFDR. GFDR is a purely online algo-
rithm which partitions jobs into MF, BF, BD groups like
SSA does. It also monitors the average dropout rates θi of
each task. Instead of using the state sensitivity, GFDR uses
task’s “weighted” average dropout rate (wi × θi) to priori-
tize jobs inside each group. The larger the “weighted” av-
erage dropout rate, the higher the priority. Due to the page
limit, we omit the details of GFDR. The time complexity of
GFDR is the same as that of SSA. The space complexity of
GFDR is O(N), which is much less than that of SSA.

4 Experimental Results

In this section, we first present our simulation setup and
the results obtained for randomly generated tasks. To fur-
ther assess the applicability of our scheduling approach, we
have also implemented our algorithms in a real-time OS.
The experimental setup and results are shown next.

4.1 Simulation

Our goal of simulation is to evaluate the effectiveness of
SSA and GFDR. A discrete-event simulator was developed
to simulate job execution as well as the online scheduler.

In the experiments, we randomly generated a large num-
ber of task sets, each of which contains 5, 10 or 20 tasks.
The period of each task was randomly selected from a uni-
form distribution between 2 to 50 time unit, and the dead-
line of each task was set to be the same as its period. The
execution time of every task was also randomly generated.
In each task set, some of the tasks are associated with the
MC constraint given in Figure 1(c) (referred to as MC-1),
which is the optimal dropout process for the NCS model
in Figure 2(top). Other tasks are associated with the MC
constraint in Figure 1(b) (referred to MC-2), which is the
optimal dropout process of an “inverted pendulum” con-
trol system [14]. The performance of a task is measured
by the output signal power and lower signal power means
better performance. We assume that each task is equally
important to the overall system performance when the out-
put signal of each task is below some upper bound. If the
output signal power of any task in the task set is above the
bound, the whole system is considered unacceptable. This
assumption reflects the importance of coordination among
the tasks. For example, in an airplane, every individual con-
trol task must be stable. If any of the individual control task
became unstable, the airplane would malfunction and might
even crash. The upper bound in our experiment is set to the
stable boundary of the two underlying control systems. For
each task in a task set, we recorded the completion status of
1 million jobs and used Matlab Simulink to compute
the underlying control task performance based on the com-
pletion status. Then we applied equation (1) to determine
the overall system performance.

To evaluate the effectiveness of SSA and GFDR, it is
necessary to identify algorithms against which SSA and
GFDR should be compared. The algorithms, MDA, DDA
and FDA, in [16] are natural choices. For completeness,
we also compare our algorithms with other two algorithms,
WHSA and FDR, which are possible alternatives. WHSA
(weakly hard system scheduling algorithm) [7] is one of the
most powerful and efficient scheduling algorithms for tasks
with windowed based constraint. It partitions jobs into two
priority groups online to ensure certain dropout patterns.
FDR (fair average dropout rate) scheduling algorithm uses

M
D

F
W1

W2
R

G
S

0
0.2

0.4
0.6

0.8
1

0

100

200

300

Scheduler type

(a) Group1

Overall power

of

 ta
sk

 se
ts

M
D

F
W1

W2
R

G
S

0
0.2

0.4
0.6

0.8
1

0

100

200

300

Scheduler type

(b) Group2

Overall power

of

 ta
sk

 se
ts

Figure 4. Histograms illustrating overall output sig-
nal power for task sets with utilization between 1.0-1.2
(group1) and 1.2-1.4 (group2). On the “scheduler type”
axis, “M”, “D”, “F”, “w1”, “w2”, “R”, “G”, “S” represent
MDA, DDA, FDA, WHSA1, WHSA2, FDR, GFDR and
SSA respectively. Each “slice” of the “scheduler type” axis
is a histogram of task sets’ overall output signal powers re-
sulted from using that type of scheduler.

the current average dropout rate as task priority, i.e., a task
with higher average dropout rate gets a higher priority. FDR
aims at ensuring fair usage of resource by tasks in terms of
average dropout rates when the system is overloaded. To
compare with WHSA, we need to represent the MC con-
straints by window-based constraints for WHSA to use. The
rationale in choosing the constraints is that they should be
as “close” to the corresponding MC constraints as possible.
For constraint MC-1, we may use either 〈2, 4〉 (completing
two consecutive jobs in any 4-job window) or (2,4) (com-
pleting any two jobs in any 4-job window). For MC-2, (2,3)
(completing any two jobs in any 3-job window) is the most
appropriate window based constraint. In the experimental
results, WHSA1 employs 〈2, 4〉 for MC-1 and (2,3) for MC-
2, and WHSA2 uses (2,4) for MC-1 and (2,3) for MC-2.

Figure 4(a) and (b) plot the distribution of the overall
output signal power (weighted sum of the normalized out-
put signal power of each task) of two groups of task sets for
each scheduling algorithm. Each group contains 250 task
sets, and each task set consists of 5 tasks. In group1, each
task set’s utilization (or the load it presents to the system) is
between 1.0 and 1.2. And in group2 it is between 1.2 and

1.4. Experimental results for task sets with other numbers
of tasks and other utilization are omitted due to space limit.
From Fig. 4, one can observe that the overall output sig-
nal power values of task sets scheduled by GFDR and SSA
tend to be lower, while those of other algorithms tend to be
larger. (Recall that for the control tasks in the experiments,
lower output signal power indicates better performance.) If
the overall output signal power of a task set equals 1, it in-
dicates that the output signal power of some task is beyond
the upper bound and the system is considered to be unstable
(unacceptable). In both groups of task sets, GFDR and SSA,
unlike other schedulers, rarely result in unstable systems.
The better performance of GFDR and SSA can be attributed
to the fact that both of them employs the 3-way partitioning
scheme to enforce the MC constraints. Fig. 4 also show that
as the task set’s utilization (system load) increases, GFDR
and SSA still manage to result in good performance while
the performance of other schedulers degrades much faster.
In fact, when the system load is larger than 1.2, the perfor-
mances due to other schedulers are rarely acceptable (less
than 1% of total number of task sets).

To examine the performance difference due to GFDR
and SSA, we plot the stable task set percentage and the aver-
age overall output power at heavier system loads (task set’s
utilization is larger than 1.4) in figure 5(a) and (b). From
figure 5, one can see that SSA indeed is better than GFDR.
Figure 5(a) shows that as the system load increases, the
stable task set percentage of GFDR decreases much faster
than that of SSA. For example, when the utilization is be-
tween 1.6 and 1.7, SSA doubles the stable task set percent-
age achieved by GFDR. In figure 5(b), one can see that the
average overall output signal power due to SSA is also bet-
ter than that of GFDR. For the group of task sets whose
utilization is between 1.6 and 1.7, the improvement is up
to 33%. The better performance of SSA can be attributed
to the careful offline analysis which leads to a more effec-
tive scheduling decision online. Note that state sensitivity
is a function of average dropout rate θ. Therefore, SSA also
takes the “fairness” into consideration.

4.2 Implementation in a real-time OS

Though the simulation results indicate the superiority of
SSA and GFDR, it is important to assess the applicability
of SSA and GFDR in practical situations. Towards this
goal, we have implemented all the scheduling algorithms
discussed in the previous subsection in a real-time operat-
ing system, QNX4.25 [13].

Figure 6 gives an overall view of our experimental
setup. The SSA-online, GFDR and other priority assign-
ment schemes are implemented as a process whose priority
is lower than QNX system tasks but higher than applica-
tion tasks. It is invoked whenever a new job is released.
The application models a networked control system con-

1.4~1.5 1.5~1.6 1.6~1.7 1.7~1.8 1.8~1.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

system load

sta
be

l ta
sk

 se
ts

pe
rce

nta
ge

GFDR
SSA

1.4~1.5 1.5~1.6 1.6~1.7 1.7.~1.8 1.8~1.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

system load

av
er

ag
e o

ve
ra

ll p
ow

er
 of

 ta
sk

 se
ts

GFDR

SSA

Figure 5. GFDR vs SSA.

CPU

 QNX system scheduler (priority driven, preemptive)p
rio

rity
 2

0
−

2
2

assig
n
m

en
t p

ro
cess)

(d
ecid

ed
 b

y
 th

e p
rio

rity

p
rio

rity
 <

=
1
7

p
rio

rity
 1

8

(control plant model)

process 2

Control plant

(control plant model)

process 5

Control plant

Control process 5
(control algorithm and

 feedback loop model)

Control process 2
(control algorithm and

 feedback loop model)

(control plant model)

process 1

Control plant

(scheduling algoritym)

Prirority assignment
process

Control process 1
(control algorithm and

 feedback loop model)

Figure 6. Experimental setup based on QNX.

sisting of five control tasks which run at the application
level. Each control task performs the necessary computa-
tion for the plant to be controlled. In addition, it simulates
the delay, assumed to be a random number, incurred by the
network. Instead of directly connecting the computer with
physical control plants (such as motors), we have used five
processes to model the five plants. Use of computer models
for physical plants allows us to monitors plant behavior in
detail. Moreover, this step is necessary for validating con-
trol algorithms and avoiding any potential damage to phys-
ical plants. Each control plant model is implemented as a
process that simulates the runtime behavior of the respec-
tive physical plant. Three of the control plant processes
model the control system in Figure 2(top), while the rest
two model “inverted pendulum” control system [14]. Each
control-plant process runs at a certain frequency dictated
by the physical plant and has a priority level equal to the
system tasks in order to ensure adequate monitoring of the
control-plant behavior.

We implemented all the scheduling algorithms discussed

in Section 4.1 in the above setup. For each algorithm, we
ran more than 20 experiments (for different network delay
values). Each experiment took several hours so that each
control plant model could release at least 100,000 jobs (the
period of each control plant is between 20 ms and 500 ms).
The “output signal power” of each control-plant process
was then collected and used to compute the overall sys-
tem performance. All experiments were carried out on a
266 MHz Pentium II. Due to space limit, we omit these
simulation results. The experimental results again indicate
that GFDR and SSA outperform other priority assignment
schemes. We have also simulated the systems in this study
with our discrete-event simulator and the results obtained
agree well with the data collected here. The experiments
confirm that our scheduling approaches are indeed appli-
cable for realistic control tasks and their overhead can be
readily tolerated.

5 Conclusion and future work
In this paper, we address the scheduling problem of a

FRTS containing tasks associated with MC constraints. We
present two heuristic scheduling approaches that exploit
the unique features of MC constraints. SSA combines of-
fline analysis with online priority assignment to ensure that
overloaded systems degrade gracefully without excessive
scheduling overhead. The introduction of the state sensitiv-
ity concept allows us to quantify the deviation of a stochas-
tic process from another one and thus derive an effective
priority assignment scheme. GFDR is a simple heuristic
algorithm to balance tasks’ performance under MC con-
straints. Simulation results show that both our approaches
outperform others significantly and that SSA outperforms
GFDR under heavy system load. Implementation of our ap-
proaches in a real-time operating system environment fur-
ther validates the work. As future work, we intend to study
approaches based on admission control to handle MC con-
straints. We would also like to derive performance guaran-
tees for systems with MC constraints.

References

[1] T.F. Abdelzaher, K. Shin and N. Bhatti “Performance guar-
antees for Web server end-systems: a control-theoretical
approach,” IEEE Trans. on Par. & Distr. Sys., Vol.13, No.1,
2002, pp. 80-96.

[2] A. Atlas and A. Bestavros, “Statistical rate monotonic
scheduling,” Real-Time Systems Symposium, 1998.

[3] A. Atlas and A. Bestavros, “Slack stealing job admission
control scheduling,” Technical Report BUCS-TR-1998-
009, Boston University, Computer Science Dept., 1998.

[4] S. Baruah, G. Korean, D. Mao, B. Mishra, A. Raghunathan,
L. Rosier, D. Shasha and F. Wang, “On the competitiveness
of on-line real-time task scheduling,” Real-Time Systems,
Vol. 4, 1992, pp. 125-144.

[5] S. Baruah, J. Haritsa and N. Sharma, “On-line scheduling
to maximize task completions,” Real-Time Systems Sympo-
sium, 1994, pp. 228-237.

[6] G. Bernat, A. Burns and A. Llamosi “Weakly hard real-
time systems,” IEEE Trans. on Computers, Vol. 50, No. 4,
2001, pp. 308-321.

[7] G. Bernat, R. Cayssials “Guaranteed On-Line Weakly-
Hard Real-Time Systems,” Proceedings of Real-Time Sys-
tems Symposium, 2001,pp. 25-34

[8] G. Bernat and A. Burns, “Combining (n,m)-hard deadlines
and dual priority scheduling,” Real-Time Systems Sympo-
sium, 1997, pp. 46-57.

[9] M. Hamdaoui and P. Ramanathan, “A dynamic priority as-
signment technique for streams with (m,k)-firm deadlines,”
IEEE Trans. on Computers, 1995, 44, pp. 1443-1451.

[10] G. Koren and D. Shasha, “Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips,” Real-Time
Systems Symposium, 1995, pp. 110-117.

[11] Aloysius K.Mok, Weirong Wang, “Window-contrainted
Real-Time Periodic task Scheduling”, Proceedings of Real-
Time Systems Symposium, 15-24, 2001.

[12] C. Lee, J. Lehoczky, R. Rajkumar and D. Siewiorek, “On
quality of service optimization with discrete QoS options,”
Real-time Technology and Applications Symposium, 1999.

[13] http://www.qnx.com.

[14] http://www.engin.umich.edu/group/ctm/examples
/pend/invpen.html.

[15] Q. Ling and M.D. Lemmon, “Soft real-time scheduling of
networked control systems with dropouts governed by a
Markov chain,” American Control Conference, June 2003.

[16] D. Liu, X. Hu, M.D. Lemmon, Q. Ling “Firm real-time
system scheduling based on a Novel QoS constraint,” Real-
Time Systems Symposium, 2003,pp. 386-396

[17] C. Lu, j.A. Stankovic, S.H. Son and T. Gang, “Feedback
control real-time scheduling: framework, modeling, and al-
gorithms,” Real-Time Systems, Vol.23, No.1-2, July-Sept.
2002, pp.85-126.

[18] R. Rajkumar, C. Lee, J. Lehoczky and D. Siewiorek, “A re-
source allocation model for QoS management,” Real-Time
Systems Symposium, 1997.

[19] R. Rajkumar, C. Lee, J. Lehoczky and D. Siewiorek, “Prac-
tical solutions for QoS-based resource allocation prob-
lems,” Real-Time Systems Symposium, 1998.

[20] P. Ramanathan, “Overload management in real-time con-
trol applications using (m,k)-firm guarantee,” IEEE Trans.
on Par. & Distr. Sys., 1999, 10(6), pp. 549-559.

[21] T.-S. Tia, et. al. “Probabilistic performance guarantee for
real-time tasks with varying computation times”, Real-
Time Technology and Applications Symposium, 1995,
pp. 164-173.

[22] R. West and K. Schwan, “Dynamic window-constrained
scheduling for multimedia applications,” International
Conference on Multimedia Computing and Systems, 1999.

