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Abstract. This paper studies the existence of solutions to a class of
hybrid automata in which the underlying continuous dynamics are rep-
resented by inhomogeneous linear time-invariant systems whose inputs
are controls that can be determined by the user. The principal result of
the paper is a procedure that searches for global periodic non-terminating
solutions of systems having a single cycle.

1 Introduction

A controlled hybrid automaton is a hybrid automaton [Alu93] [Lyn96] whose un-
derlying continuous-state dynamics are modeled as inhomogeneous differential
equations. In particular, we restrict our attention to continuous-dynamics repre-
sented by linear time-invariant (LTI) systems of the form ẋ(t) = Ax(t) + Bu(t)
where A ∈ "n×n, x(t) ∈ "n, B ∈ "n, and u(t) ∈ ". The scalar u(t) is the con-
trol input at time t ∈ " and it is selected by the system designer. In this paper,
we further restrict our attention to systems with only a single cycle. This paper
presents preliminary work examining conditions under which non-chattering and
non-terminating solutions exist for the controlled hybrid automaton. The prin-
cipal result is a gradient-following algorithm that provides a systematic means
of searching for global periodic non-terminating solutions of systems with single
cycles.

The remainder of the paper is organized as follows. Section 2 defines the
controlled hybrid automaton and defines the sense in which a hybrid trajectory
satisfies such a system. Section 3 outlines conditions for the existence of local
non-chattering solutions. Section 4 outlines conditions for global periodic non-
terminating system trajectories. Final remarks are found in section 5.

2 Controlled Hybrid Automata

A controlled hybrid automaton is a labeled digraph characterized by the 4-tuple
(N, A, !N , !A). N is a set of nodes in the directed graph (represented graphically
as open circles). The set of nodes is usually taken as a subset of the positive
integers. A ⊂ N × N is a set of directed arcs between nodes. The arc (i, j) from
node i to node j is graphically represented as an arrow that starts at node i and
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terminates at node j. The ordered pair (N, A) is the finite automaton associated
with the hybrid system. The map !N : N × "n×n × "n associates a pair of
real vectors with the node. In particular, the label !N (i) = (Ai, Bi) associates a
real matrix Ai ∈ "n×n and a real matrix (vector) Bi ∈ "n with the ith node.
Associated with node i is the following inhomogeneous differential equation,

ẋ(t) = Aix(t) + Biu(t) (1)

where x(t) ∈ "n and u(t) ∈ ". Equation 1 is called the modal equation of the
ith node. The map !A : A → P("n) maps an arc a1 ∈ A onto a collection of
vectors in "n. In particular, if arc a1 is labeled as

!A(a1) = {v11, v12, · · · , v1p1}

then we can associate with a1 a special subset Γ (a1) ⊂ "n that is called the
guard of the arc. The guard is defined to be the convex hull of the points in the
collection !A(a1). By the standard representation theorems for convex sets, we
therefore know that Γ (a1) can be characterized as

Γ (a1) =

{

x =
p1
∑

i=1

λ1iv1i :
p1
∑

i=1

λ1i = 1 , λ1i ≥ 0 , v1i ∈ !A(a1)

}

From the above equation it should be clear that the vectors in !A(a1) are the
extreme points (vertices) for convex polytope Γ (a1).

Remark: In this paper we’ve adopted the convention of representing guards
as convex combinations of vertices, rather than as feasible regions bounded by
hypersurfaces.

A controlled hybrid trajectory z : " → X×N×U is a function mapping a real
number τ ∈ " onto the ordered triple (x(τ), i(τ), u(τ)) where x(τ) ∈ X ⊂ "n

is called the the continuous state, i(τ) ∈ N is called the discrete state, and
u(τ) ∈ U ⊂ " is the control. It is assumed that X is a closed connected subset
of "n and it is assumed that U is a compact subset of ".

A time instant τ ∈ " is said to be regular if z is continuous at τ . ( In
this case, we assume that N is equipped with a discrete metric d(i, j) = 1 if
i '= j and is zero if i = j). If τ is not a regular point, then it is called a switching
instant. Controlled hybrid trajectories with a finite number of switching instants
in any closed time interval are said to be non-chattering. A controlled trajectory
with an infinite number of switching instants is said to be non-terminating. The
trajectory is said to be local if its maximum interval of existence has the form
[τ0, τ0 + T ) and T is finite. The trajectory is said to be global if its maximum
interval of existence of [τ0,∞).

A controlled hybrid trajectory z : [τ0, τ0 + T ) → X ×N ×U is said to satisfy
the controlled hybrid automaton (N, A, !N , !A) with initial condition x0 ∈ X
and i0 ∈ N at time τ0 ∈ " if and only if
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– x(τ0) = x0, i(τ0) = i0, and u(τ0) ∈ U .
– For all closed intervals [τa, τb] containing no switching instant, there exists

a j ∈ N , an absolutely continuous [Aub84] trajectory x : [τa, τb] → X ,
and a measurable control u : [τa, τb] → U such that i(τ) = j and ẋ(τ) =
Ajx(τ) + Bju(τ) for all τ ∈ [τa, τb].

– At any switching instant, τs ∈ ", there exists a j and k in N such that
(j, k) ∈ A, limτ→τ−

s
i(τ) = k, and x(τs) ∈ Γ ((j, k)).

Such trajectories are also said to be solutions of the hybrid automaton. A system
that can generate non-chattering solutions will be said to be non-Zeno. A system
that can generate non-terminating solutions will be said to be deadlock-free.

Remark: Note that switching can occur anywhere within the guard set.
Consider a controlled trajectory z defined over [τ0, τ0 +T ) with discrete state

trajectory i : [τ0, τ0 + T ) → N . The sequence of discrete states associated with i
can be denoted by the string σ ∈ N∗ where N∗ is the Kleene closure of N . We
refer to σ as the trajectory’s event sequence. By the pumping lemma [Dav83] , we
know any finite length event sequence can be decomposed as σ = usv such that
the event sequence usnv (for any positive n) is accepted by the finite automaton
(N, A) associated with our system. This means that the sequence s represents
a cycle of events. If there exist trajectories such that the hybrid automaton can
execute this cycle repeatedly, then we say that the hybrid automaton is deadlock-
free with respect to s. A key issue in the study of hybrid automata (whether
or not they are controlled) concerns the deadlock-freedom of such systems. This
issue is, in essence, a question concerns the existence of global non-terminating
solutions to hybrid automata.

3 Local Non-chattering Solutions

Figure 1 shows a cyclic controlled hybrid automaton. Assume that the initial
continuous state at time τ0 is x0 and that the initial discrete state is i0 = 1. In
this section, we briefly examine conditions ensuring the existence of a T > 0 such
that there exists a controlled hybrid trajectory z over the interval [τ0, τ0 + T )
that is a solution to the controlled hybrid automaton. In this section, we consider
two distinct cases. The first case occurs when x0 is not in Γ ((1, 2)). The second
case occurs when x0 ∈ Γ ((1, 2)).

The following results are a routine application of viability theory [Aub84]
and are presented here for the sake of completeness. See [Aub84] for a precise
statement of the definitions and theorems cited below.

Let’s assume that x0 /∈ Γ ((1, 2)). Since the guards are closed sets, this means
that x0 belongs to an open set so we can enclose x0 in an open neighborhood
Bε(x0) that is contained completely within the complement of the two guards.
Over this neighborhood we can define a set valued mapping F : X → P("n)
that takes the value

F (x) = {A1x + B1u , u ∈ U} (2)
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1 2(A1 , B1 ) (A2 , B2 )

Γ(1,2)={v11 , v12 , … , v1p  }

Γ(2,1)={v21 , v22 , … , v2p  }

1

2

Fig. 1. cyclic controlled hybrid automata

at x. Since U is compact, we know that F (x) will be an upper semi-continuous
(USC) convex-valued map and we can use the USC Existence Theorem to infer
that there exists a δ > 0 and an absolutely continuous x : [τ0, τ0 + δ) → X
that satisfies the differential inclusion ẋ ∈ F (x). By the Measurable Selection
Theorem we can infer the existence of a measurable u over the same interval.
Since there are no switching instants over this time interval, we know that i(τ) =
1 for all τ ∈ [τ0, τ0 + δ). This particular case, therefore, has a hybrid trajectory
satisfying the system.

The other major case of interest occurs when x0 ∈ Γ ((1, 2)). Let’s first con-
sider the case when x0 ∈ Γ ((1, 2)) and x0 /∈ Γ ((2, 1)). We consider the set
valued map, F (x), of equation 2. Since x0 may lie on the boundary of Γ ((1, 2)),
we cannot enclose x0 in an open neighborhood over which F is defined. How-
ever, F is upper semicontinuous and provided we can ensure that F satisfies the
tangential condition [Aub84], then we can use the Viability Theorem to ensure
the existence of of an absolutely continuous solution to the differential inclusion
ẋ ∈ F (x) that is viable in Γ ((1, 2)). Finally, the Measurable Selection Theorem
ensures the existence of the desired Lebesgue measurable control, u.

Now let’s consider the case when x ∈ K = Γ ((1, 2)) ∩ Γ ((2, 1)) Consider a
set valued map, F , that takes the value

F (x) = {Aix + Biu : u ∈ U, i = {1, 2}}

at point x0 ∈ K. Since K is compact, then x0 may lie on the boundary of K and
cannot be enclosed in an open neighborhood over which F is defined. Morever,
F may not be upper semicontinuous over K. Therefore we cannot use the USC
Existence Theorem to establish the existence of local trajectories. However, the
convex hull co(F (x)) of F (x) is clearly convex valued and Lipschitzean on K.
Moreover, if we can ensure that the tangential condition holds, then the Vi-
ability Theorem ensures the existence of an absolutely continuous solution to
ẋ ∈ co(F (x)) that is viable in K. The Relaxation Theorem can then be used
to infer the existence of absolutely continuous solutions to the original differen-
tial inclusion ẋ ∈ F (x). As before, an application of the Measurable Selection
Theorem ensures the existence of a Lebesgue measurable u for this selected tra-
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jectory x. Finally, since x is absolutely continuous, we know that each closed
interval has a finite number of switching instants in which the discrete state
changes value thereby establishing that the trajectory is non-chattering. We’ve
therefore established the existence of a local non-chattering solution provided
the tangential condition found in the viability thoerem is satisfied.

4 Global Nonterminating Solutions

A global nonterminating solution to a controlled hybrid automaton is a hy-
brid trajectory that exists over [τ0,∞) and that generates an infinite number of
switching instants. This section studies the existence of global non-terminating
periodic trajectories for the cyclic controlled hybrid automaton in figure 1. This
hybrid automaton consists of two nodes (1 and 2) and two arcs. The ith node
is labeled with the system (Ai, Bi) and arcs (1, 2) and (2, 1) are labeled with
vertex collections V1 = {v11, v12, · · · , v1p1} and V2 = {v21, v22, · · · , v2p2}, re-
spectively. The ith guard associated with the arc entering the ith node denoted
as Γi = co(Vi).

Consider one of the modal systems (i = 1 or 2)

ẋ(t) = Aix(t) + Biu(t) (3)

where x(t) ∈ "n, Ai ∈ "n×n, Bi ∈ "n, and u(t) ∈ ". We say a state v ∈ "n

is reachable from a state w ∈ "n if there exists a time T > 0 and a measurable
control u : [τ0, τ0+T ] → U such that the controlled trajectory x : [τ0, τ0+T ] → X
satisfies equation 3 with x(τ0) = w and x(τ0 +T ) = v. The set of all points from
which v is reachable is called the preset of v and will be denoted as pre(v). The
preset of a subset Γ ⊂ X is denoted as pre(Γ ) and is defined by the equation
pre(Γ ) =

⋃

v∈Γ pre(v). A necessary and sufficient condition [Ant97] for w to lie
in the preset of v is that there exist a T > 0 such that

eAiT w − v ∈ R(Ci) (4)

where

Ci =
[

Bi AiBi A2
i Bi · · · An−1

i Bi

]

(5)

is called the controllability matrix for the ith modal system. The range space of
Ci is denoted as R(Ci) and we assume it has a dimension of ri. In the following
discussion, Ei is a matrix of dimension n × ri (i = 1, 2) whose columns are
standard basis vectors for the subspace R(Ci).

Remark: Note that this reachability condition applies when the control u
can be unbounded (as is the case in so-called impulsive controls).

Remark: Note that the term reachability is used in a somewhat different
sense that what is found in traditional algorithmic verification [Alu95]. Tradi-
tional hybrid automata have homoegeneous modal equations and as a result
pre(v) for a fixed transition time T consists of a single point. In view of equation
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4, it is apparent that the introduction of the control extends the preset of v to
a set formed from affine varieties of the controllability subspace.

We assume an initial condition x0 ∈ X and i0 = 1. The question to be
answered is whether there exists a control u and a pair of switching times T1

and T2 such that a hybrid trajectory z is a solution of the system over the interval
[τ0,∞) and such that z generates an infinite sequence of switching instants

τ0, τ11, τ21, τ21, τ22, · · · , τij , · · ·

where τij is the jth switching instant out of mode i, τ2j − τ1j = T1, and τ1,j+1 −
τ2j = T2. In other words, the hybrid trajectory z is nonterminating and periodic
in time.

By our definition of a solution to a controlled hybrid automaton, we know
that the continuous state at each switching instant must lie in the appropriate
guard set. In other words x(τij) ∈ Γi for all j and i = 1, 2. Since the guards
are convex polytopes, the switching instants x(τij) can be represented as convex
combination of the form

x(τ1j) =
p1
∑

i=1

λ1iv1i

x(τ2j) =
p2
∑

i=1

λ2iv2i

where λij ≥ 0 for i = 1, 2 and all j and where
∑pj

i=1 λij = 1 for j = 1, 2.
Therefore if we are to have a nonterminating behavior, we know that x(τ2j)
must be reachable from x(τ1j) in time T1 and x(τ1,j+1) is reachable from x(τ2j)
in time T2. From equation 4, this condition is satisfied if there exist vectors
β1 = [β11, β12, · · · , β1r1 ]T and β2 = [β21, β22, · · · , β2r2 ]T such that

0 =
r1

∑

i=1

β1ie1i + eA1T1

p1
∑

i=1

λ1iv1i −
p2
∑

i=1

λ2iv2i (6)

0 =
r2

∑

i=1

β2ie2i −
p1
∑

i=1

λ1iv1i + eA2T2

p2
∑

i=1

λ2iv2i (7)

1 =
p1
∑

i=1

λ1i (8)

0 ≥ λ1i , (i = 1, . . . , p1) (9)

1 =
p2
∑

i=1

λ2i (10)

0 ≥ λ2i , (i = 1, . . . , p2) (11)

We reframe equations 6, 7, 8, and 10 as the matrix vector equation

c = Sη (12)
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



02n×1

1
1



 =









E1 0n×r2 eA1T1V1 −V2

0n×r1 E2 −V1 eA2T2V2

01×r1 01×r2 11×p1 01×p2

01×r1 01×r2 01×p1 11×p2

















β1

β2

λ1

λ2









(13)

=
[

GT FT
]

[

z
y

]

(14)

where V1 = [v11, v12, · · · , v1p1 ], V2 = [v21, v22, · · · , v2p2 ] (matrices whose columns
are the guard vertices) , c = [0n×1 | 12×1]T , η = [zT ,yT ]T , z = [β1, · · · , βr]T ,
and y = [λT

1 , λ
T
2 ]T .

Remark: The vectors λ1, λ2, β1, and β2 satisfying equations 6 to 11 char-
acterize affine spaces which are mutually reachable from each other. Note that
these solutions provide an explicit characterization of mutually reachable pre-
sets in terms of the vertices of the guards. This explicit representation of the
presets of the system is the reason why the guards were represented as convex
combinations of vertices.

By the theorem of the alternative [Baz93], a necessary and sufficient condition
for equations 6 to 11 to have a non-negative solution is that there exist no vector
x such that

Gx ≤ 0 , Fx = 0 , cT x > 0 (15)

The solution to equation 15 can be checked by solving the associated linear
program

maximize : cTx
subject to : Gx ≤ 0

Fx = 0 (16)

Solutions to the above problem have a special form due to the fact that Gx
forms a polytopic cone whose apex is at the origin. Figure 2 shows the possi-
ble situations that can occur with this linear program. The figure shows that
solutions to this linear program are either unbounded and positive or bounded
and equal to zero. If the solution is x = 0, then the alternative problem in
equation 15 has no solution since cT x = 0. This means that equation 12 has a
non-negative solution and we can infer that for the fixed time T that the guard
Γ is reachable from co(W). If an unbounded solution occurs then equation 12
has no non-negative solutions and we can infer that for the given T , the guard
Γ is not directly reachable from co(W).

Remark: A feasible solution at x = 0 implies that the specified cycle exists
between the two guard sets and an unbounded solution implies that a cycle does
not exist with the specified transition times T1 and T2. Note that the existence of
an unbounded solution does not imply that the guards don’t support a recurrent
cycle, for there may be other transition times for which the cycle exists and it
may be possible that the guards support a cycle in which the transitions are not
necessarily periodic.
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The alternative problem’s linear program must have a solution 
lying in the null space of F will either be unbounded or lie at 
the apex of the cone formed by the equation Gx < 0.

Fx=0 Fx=0Gx<0

Gx<0

zero feasible solution unbounded solution

c’ c’

Fig. 2. The Alternative Problem’s Linear Program

If the linear program in equation 16 returns an unbounded solution, then
it may be possible to adjust the transition times T1 and T2 to force a solution
at x = 0. From duality theory [Baz93], we know that if the primal problem in
equation 16 is unbounded, then its dual is infeasible. The infeasibility of the dual
can be readily checked by examining the Lagrange multipliers associated with
the inequality constraints of the primal problem. These Lagrange multipliers are
generated by any primal-dual linear programming algorithm. They represent
part of the solution to the dual problem and are used to help assess how close
a linear programming algorithm is to being finished. If these multipliers are
negative, then the dual is infeasible and we can immediately conclude that the
guard does not support a cycle at the specified transition times.

The preceding observation suggests a simple heuristic method for adjusting
the times T1 and T2 in order to force the dual problem to be feasible. Let νk de-
note the kth Lagrange multiplier associated with the linear program’s inequality
constraints. We define a performance measure associated with a specific pair of
times (T1, T2) as

J((T1, T2)) = minkνk (17)

This measure identifies the smallest Lagrange multiplier and uses it as a measure
of how close the dual problem is to being feasible. The obvious strategy is to
perturb the current transition times T1 and T2, observe the change in J and then
select a new set of times that will increase J . We continue in this manner until
J becomes positive.

This idea was tested using the following, very simple, search strategy. First
initialize the search by selecting a set of times T1 and T2. The search is then
executed by the following steps.
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1. Perturb (T1, T2) by a small adjustment δ > 0 and solve the linear program
(equation 16) for points (T1, T2), (T1, T2 + δ), and (T1 + δ, T2), .

2. If any of these linear programs are feasible, then the system supports a
periodic solution and we’re finished.

3. If all of these linear programs are infeasible, then the Lagrange multipliers
for each problem are used to compute costs J((T1, T2)), J((T1 + δ, T2)), and
J((T1, T2 + δ)).

4. Select a new set of times, (T ′
1, T

′
2) according to the following rule,

T ′
1 =







T1 + δ, if J((T1, T2)) < J((T1 + δ, T2))
T1 − δ, if J((T1, T2)) > J((T1 + δ, T2))
T1, otherwise

T ′
2 =







T2 + δ, if J((T1, T2)) < J((T1, T2 + δ))
T2 − δ, if J(T1, T2)) > J((T1, T2 + δ))
T2, otherwise

5. Set T1 = T ′
1, T2 = T ′

2 and return to step 1.

What this algorithm does is attempt to solve a nonlinear optimization problem
using a gradient-following strategy. The preceding steps describe the master
algorithm that uses the results of the linear program in equation 16 to select a
set of better times.

Remark: In the procedure we’ve chosen, of course, there are no guarantees
that this search will terminate as it is currently unclear how the times, T1 and
T2 are related to the problem’s Lagrange multipliers. Nonetheless, this search
program provides what seems to be a very pragmatic method for testing for the
existence of global solutions and if it does terminate, then we know for certain
that the cycle is live.

The following example illustrates the proposed search algorithm. Consider
the cyclic hybrid automaton shown in figure 1 where the nodes are labeled as

!N (1) =
([

0 4
1/4 0

]

,

[

4
1

])

!N (2) =
([

0 −10
−1/10 0

]

,

[

10
1

])

The arcs are labeled with vertex collections

V1 =
{[

−2
0

]

,

[

−3
0

]

,

[

−3
1

]}

V2 =
{[

2
0

]

,

[

3
0

]

,

[

3
1

]}

A MatLab script was written to implement the master program given above and
this script was used to search for a global non-terminating solution of our hybrid
automaton. The lefthand plot in figure 3 illustrates the results of this search.
The x-axis shows the times T1 and T2 whereas the y-axis shows the value of the
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Fig. 3. Performance Measure J versus Switching Intervals and Simulation Re-
sults

cost J((T1, T2)). The search starts with T1 = T2 = 1. This starting point is in
the middle of the x-axis. The intermediate values of J computed by the master
algorithm are shown by the solid and dotted line trajectories (the dotted line
for T1 and the solid line for T2). We see that the master algorithm computes
a monotone sequence of times in which T2 is decreasing and T1 is increasing.
After a finite number of iterations the master program has identified the times
T2 = 0.29 and T1 = 1.7 as points whose linear programs have non-negative
Lagrange multipliers. These points, therefore, are feasible and characterize a
global non-terminating periodic cycle for this system.

The master algorithm allows us to assert that a global periodic solution to
this system exists. The intermediate results of the algorithm also allow us to
characterize the switching sets and we can actually identify some of the control
strategies, u, that enforce this periodic solution. This additional information is
contained in all non-negative solution vectors λ1 and λ2 satisfying our system
Sη = c. The set of all solutions can be parameterized as η ∈ ηp0 +null(S) where
ηp0 is a particular solution to the inhomogeneous equation c = Sη. Note that
this implies that the mutually reachable sets in the guards are affine sets. It
was our parametrization of the guard as a convex combination of vertices that
allowed us to obtain such a simple and explicit representation of these sets. For
the example above, we can readily identify these sets in which the particular
solution is ηp0 =

[

0 −1.94 1.39 −1.10 0.71 0 0.048 0.95
]T and the null space of

S is spanned by the columns of the matrix

N =

























−0.9237 0
0.1380 −0.4162
0.1820 −0.3445
−0.2321 0.1920
0.0501 0.1525
−0.1536 −0.6431
0.1144 0.4389
0.0393 0.2042
























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Let’s now look at the controls required to enforce the nonterminating cycle.
We first look at a pair of specific switching points in the guards and then identify
an open loop control enforcing a periodic trajectory between these points. One
specific set of switching points for our example system is

x(τ1) = V1λ1 =
[

−2.6569 0.6569
]

x(τ2) = V2λ2 =
[

3 0.9903
]

The existence of a control driving the system between these two points is guaran-
teed by the termination of our master program. What is this open loop control?
We have many choices and one obvious choice is the minimum energy control
strategy. The minimum energy control u(t) that transfers the first modal system
from the initial state x(τ1) to target state x(τ2) satisfies the condition

x(τ2) − eA1T1x(τ1) ∈ R(C1)

is given by

u1(t) = BT
1 eAT

1 (T1−t)η1

where η1 is the solution of the equation

W1(0, T1)η1 = x(τ2) − eA1T1x(τ1)

W1(0, T1) is the controllability Gramian of (A1, B1). For the system at hand the
solution is

u1(t) =
2eT1

e2T2 − 1
β1e

−t = 0.3349e−t

Similarly the minimum energy solution for the second mode is

u2(t) =
2e−T2

1 − e−2T2
β2e

t = −0.9758et

The hybrid automaton’s trajectory with this minimum-energy control is shown in
the righthand plot in figure 3. This figure shows the state space for our system.
The two triangular regions in this plot represent the guards. For the specific
choice of points x(τ1) and x(τ2), we use the control u(t) identified above to
compute the state trajectory between these points. The solid line in figure 3
shows the resulting controlled trajectory.

It is, of course, possible to obtain other controls realizing this cycle. For in-
stance, an “impulsive” control strategy can be employed, in which we impulsively
drive the system state along an affine variety of the controllable subspace and
then allow the system to relax into the guard. (In other words we let u(t) be an
impulse function of specified magnitude). The lefthand plot of figure 4 illustrates
the state trajectory generated by this control law. As in figure 3, we are looking
at the system’s state space. The triangular regions represent the guards and the
solid lines denote the state trajectory generated by the impulsive control.
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Fig. 4. Impulsive simulation results and sweeping out the viability kernel

For a specific pair of times, our master algorithm identifies all states in the
guards that are mutually reachable from each other. If we were able to iden-
tify a range of feasible switching times, then it should be possible to identify
larger subsets of the guard that are mutually reachable from each other. The
complete set of states in the guards that are mutually reachable from each other
(under any control strategy) is sometimes referred to as the viability kernel. Our
algorithm, therefore, provides a means of approximating the viability kernel.
Note that this is an under approximation to the viable set (as opposed to the
over-approximation computed by model checking algorithms [Alu95]). For our
specific example, we were able to identify a range of times over which periodic
solutions could be guaranteed. This range was computed to be. 1.7 < T1 < 3.75
and .1059 < T2 < .29. The set of points swept out by these various times is
shown in the righthand plot of figure 4. We’ve compared this set to the actual
viability kernel for this system and the specified bounds appear to provide a
close approximation to the actual viability kernel.

Remark: The failure of the master program to find any feasible solution
does not guarantee that a global solution doesn’t exist. How quickly we find a
feasible solution clearly depends upon the type of search strategy the master
program uses and depends on our initial guess.

Remark: Our approach focuses on identifying periodic global solutions and
obviously it may be possible that this is overly restrictive. For instance, it may
be possible that only chaotic trajectories exist between the two guards, or that
a more complex periodic behavior exists between the two guards.

Remark: The preceding discussion focused on establishing non-terminating
solutions to a rather simple hybrid automaton. This problem was chosen as a
canonical problem in the sense that its solution may provide a foundation upon
which to establish the existence of global solutions to more complex systems. How
might this be done? This is the topic of another paper, but we can speculate on a
possible strategy based on prior results on the role of cycles in hybrid automata
[He98] [Zhi98]. Essentially, the argument runs as follows. From the pumping
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lemma, we know that the logical behavior generated by any automaton can be
broken down into a concatenation of fundamental cycles. This paper, essentially,
is proposing a pragmatic way for determining whether a given fundamental cy-
cle is viable. Moreover, our algorithm computes an under-approximation to the
cycle’s viability kernel that can be very good (as shown in our example). Let’s as-
sume we can determine controls guaranteeing all fundamental cycles are viable.
Given a specific concatenation of cycles in the system, we then look at the inter-
section of viable sets of contiguous cycles (actually look at the approximations
computed using the methods in this paper). If this intersection is non-empty,
it should be possible to determine control strategies enforcing the viability of
arbitrary concatenations of fundamental cycles and thereby ensure the viability
of the entire complex system. As noted above, whether or not this approach will
work is still under study.

5 Conclusions

Controlled hybrid automata are automata in which a user-determined input con-
trol signal can be used to help supervise overall system behavior. In this paper,
we assumed the modal systems were linear and time invariant with polytopic
guards formed from the convex combination of vertices. This paper studied the
existence of solutions to this class of hybrid system. A routine application of
Viability theory was used to characterize the existence of local trajectories. This
paper presented a necessary and sufficient condition for the existence of a global
periodic non-terminating trajectory with specified switching intervals. This re-
sult was used to propose a gradient following search strategy for determining
a set of switching intervals ensuring a global nonterminating trajectory. The
proposed method also provides an under-approximation of the cycle’s viability
kernel that could be used in extending this work to more complex switching
systems. A distinguishing feature of this study is the explicit use of the open
loop control signal u(t) as a means of enforcing a cycle’s viability.

This work is preliminary in that there are still a number of open questions
that need to be answered. There is uncertainty over the performance of the pro-
posed search algorithm. It should be noted, however, that such gradient follow-
ing heuristics often work extremely well on real-life problems, so this approach
may still be a pragmatic approach to hybrid system verification. Another open
issue concerns the conservatism imposed by confining our search to periodic
non-terminating solutions. While this might appear to be very restrictive on the
surface, it must be realized that the proposed approach can actually identify a
set of periodic solutions and that other non-periodic solutions might be seen as
limiting points of this set. Another interesting issue brought up by this paper
is the explicit use of control. Traditional analyses of hybrid systems assume no
control and the verification process can be seen as a ”take it or leave it” analysis
that provides little guidance on determining how ”close” a system is to being vi-
able. The use of control advocated in this paper may provide the system designer
with a more sophisticated approach to verification in which control becomes a
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necessary component in system design. Finally, this paper has focused on hybrid
systems containing only one cycle. This simple problem is viewed as a necessary
starting place for the analysis of more complex hybrid systems and the details
of this later analysis will be the subject of future papers.
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