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Summary: This report documents the development of a distributed control architecture for ad-
vanced distribution and control of mesh microgrids. The resulting architecture is a two-level hier-
archy in which the lowest level uses local microsource controllers to maintain microgrid transient
stability and the highest level uses a set of intelligent agents to optimally manage generator set
points and load connectivity. Simulations of the distributed control architecture suggest that it
provides a promising method for the “plug-and-play” management of mesh microgrids.

1 Introduction

Microgrids [5] are power generation/distribution systems in which users and generators are in close
proximity. This results, in general, in relatively low voltage grids (few hundred kVA). Generation
is often done using renewable generation sources such as photovoltaic cells or wind turbines. Power
generation is also accomplished through small microturbines and gas/diesel generators. Storage
devices such as battery banks represent another important power source for microgrids.

Microgrids are often connected to a main power grid through an intelligent coupling switch. This
switch can disconnect from the main grid when the power quality from that grid is no longer
acceptable. This results in the islanding of the microgrid and a major challenge involves assuring
the microgrid’s transient stability in the presence of such disconnect events.

Microgrids are often built up in an ad hoc manner. An existing microgrid may be augmented with
additional loads and generators as power needs change. It is important that such generation and
loads be added in a plug-and-play or modular manner. This means that adding the new unit does not
require a massive reconfiguration of the existing microgrid controllers. The purpose of this project
was to identify a microgrid control architecture that could be augmented in such a modular manner.

This project developed a two-layer hierarchical control architecture for mesh microgrids. The archi-
tecture consisted of low-level microsource controllers that use local terminal measurements of voltage
and current (power) to assure the entire grids transient stability. This low-level microsource con-
troller is highly modular. It was developed by R. Lasseter for the CERTS (University of Wisconsin,
Madison) microgrid. The top level of the proposed microgrid control architecture consists of a set of
supervisory agents. These “intelligent” agents monitor the global operation of the grid and use that
information to adaptively reconfigure both generation assets and load connectivity. In particular,
these agents determine the power generation set points for the distributed generation resources and
they determine whether or not it is safe for loads to connect to the microgrid. An agent is attached
to each load and generation resource. The agents communicate with each other over a wireless mesh
radio network in a way that allows them to cooperatively manage the microgrid.

The proposed distributed control concept was implemented on a Matlab/Simulink simulation of a
microgrid that was developed by P. Chapman (Univeristy of Illinois, Urbana-Champaign). Simula-
tions were done for an agent-based economic dispatch problem and a load-shedding scenario. Both
simulations suggest that the use of intelligent agents provide a feasible way of managing microgrid
operations in a plug-and-play manner.

The remainder of this report is organized as follows. Section 1 describes the mesh microgrid that was
used throughout this project. Section 2 describes the microsource controllers comprising the lowest
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level of the system hierarchy. Section 3 discusses issues associated with the use of intelligent agents
for the coordinated management of spatially-distributed systems. Section 4 describes the use of such
agents to reconnect dropped loads back to the microgrid. Section 5 describes the use of intelligent
agents to solve the “economic dispatch problem” in microgrids. Final remarks will be found in section
6. A technical appendix will be found at the end of this document. The appendix provides a more
detailed technical overview of the techniques used to implement the economic dispatch problem.
The appendix also contains a simulink report of the two simulations that were used to generate the
results in this report as well as the listing of the S-functions used in these simulations.

2 Mesh Microgrid

The mesh microgrid being used throughout this project is shown in figure 1. This system consists
of three power buses. Bus 1 is connected to the main grid through an intelligent coupler. Bus 1 is
also connected to an inductive load (4 + 0.001s) and a 15kW inverter based microsource. Bus 1 is
connected to Bus 2 and Bus 3. Bus 2 and Bus 3 are connected to each other. Bus 2 is connected
to another 15kW inverter based microsource and Bus 3 is connected to another inductive load
(4 + 0.001s). The transmission lines connecting the buses are primarily resistive loads of 0.06045
ohms. All microsources have an interval inductance of 0.00188. They are designed to maintain 120
volts at 60 Hz. The nominal requested real power setpoints are 40 percent of full capacity and the
nominal reactive power setpoints are set at 100 percent of full capacity. The main line connecting
the microgrid to the primary power grid has a shunt resistance of 10 ohms. The line resistance is
0.052 ohms with an inductance of 0.0231/ω0, where ω0 is the desired frequency of 60 Hz.
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Figure 1: Baseline Mesh Microgrid

A Matlab/Simulink simulation of the system in figure 1 was developed by Dr. P. Chapman at the
University of Illinois, Urbana-Champaign (UIUC). The resulting simulink model was based on the
CERTS [5] microgrid that was developed by Dr. R. Lasseter at the University of Wisconsin, Madison
(UWM). The UIUC simulink model (genmodel7) included the microsource inverter controls devel-
oped by Dr. Lasseter’s group. The load models were modified at the University of Notre Dame (ND)
to correctly model the way that loads are shed under frequency droops (genmodel7_load_shedding).
The Matlab/Simulink Report for this modified simulation will be found in the appendix.

This simulink model simulated the disconnect of the microgrid from the main line. This disconnect
occurs at 0.25 seconds and the entire simulation run was 1 second. In this simulation we set the load
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shedding frequency thresholds at 59.8 Hz. Figure 2 shows the response of the microsources in this
scenario. The left hand plots show the responses of generator 1. Arranged from top to bottom are
voltage, current, frequency, and power (real and reactive) as a function of simulation time. Similar
plots are seen for generator 2. The response of both loads is shown on the right hand side of the
figure. From top to bottom are shown the current and real power of load 1 and the current and real
power of load 2. The plots show that the frequency stays about 60 Hz, so that no load shedding was
observed in this baseline run. The plots show an impulse at 0.25 seconds in the generator voltage
and power as a result of the disconnect from the main grid. After the disconnect, the current and
power levels at the loads are maintained with very little disturbance, thereby indicating that the
microsource control scheme used on the CERTS microgrid is able to provide high quality power
through islanding of the microgrid.
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Figure 2: Baseline Scenario Generator Response (right - generator 2 and left - generator 1)

The microsource controllers developed by UWM for the CERTS microgrid were integrated into
the microgrid simulation by UIUC. These controllers represent the lowest level of the proposed
distributed generation control architecture. A detailed account of the microsource controllers will
be found in [4]. For the sake of completeness, the basic operation of this controller is described
below.

The inverter-based microsource consists of a D.C. source whose outputs are transformed into an
A.C. voltage through an inverter. The actions of the inverter are guided by a controller that uses
sensed feeder currents and voltages to determine how best to control the operation of the inverter.
Figure 3 shows that the output of the inverter is passed through a low pass filter to remove switching
transients to produce a three phase 480V voltage. A transformer then steps this down to 208 V (120
volts rms).

The UWM microsource controller is shown on the right hand side of figure 3. The inputs are
measurements of inverter current, load voltage and line current. The controller also takes as reference
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Figure 3: (Left) - inverter-based microsource - (Right) - UWM microsource controller

inputs the requested voltage level Ereq, the requested power set point Preq, and the desired frequency
freq (usually 60 Hz). The controller takes the measured inputs and computes the instantaneous
reactive power, Q, the voltage magnitude, E, and the real power P . These computed values are
low pass filtered. The reactive power, Q, and the requested voltage Ereq are input to the Q vs
E droop controller to determine the desired voltage level. This is compared against the measured
voltage level and the output V is then given to the gate pulse generator. Another channel in the
controller uses the measured real power and implements another droop control that balances the
system’s frequency against the requested power level, Preq. The output of the P vs frequency droop
controller is used to adjust the phase offset, δV , which is also fed into the gate pulse generator. The
output of the gate pulse generator goes directly into the inverter.

The action of this controller is, essentially, to mimic the droop controls seen in traditional syn-
chronous generators. This means that if a load begins drawing a great deal of real power, then
the line frequency will “droop” as an indicator of the extra stress on the system. The controller
automatically tries to restore that frequency to its desired levels. But it will be unable to restore
the droop if the power being pulled if the power drawn by the load exceeds the generator’s capacity.
This drop in frequency can be sensed at the load and may be used to help decide if the load should
disconnect from the microgrid. A similar scenario occurs if the load begins drawing too much reac-
tive power. In this case, there will be a droop in the voltage that can again be used by the load to
determine if it should disconnect from the grid.

3 Distributed Supervisory Control though Intelligent Agents

The mesh microgrid with its hierarchical control system constitutes what is sometimes referred to
as a multi-agent networked system. Such systems consist of two types of subsystems; a collection of
physical processes and another collection of computational or cyber processes. The physical processes
usually interact through direct physical interactions, so that these physical processes form a network.
For a microgrid, this network of physical processes consists of the microsources and loads that are
interconnected through the transmission lines. The cyber processes are sometimes referred to as
intelligent agents. These agents communicate over a digital communication network. In our case,
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the resulting network of cyber processes consists of the microcontrollers that are used to decide
generator set points.

Figure 4 illustrates the two networks comprising the multi-agent system. The network of physical
processes are shown by rectangles that are connected by the solid lines. Each rectangle represents a
physical process. The line represents the physical interaction between the processes. Each process
has a local state that is represented by a continuous-time function, xi(t). This local state evolves
according to the differential equation

ẋi(t) = fi(xi(t), x−i(t)) + gi(ui(t)) (1)

From equation 1, it is apparent that the dynamics of the ith physical process are governed by two
functions, fi, and gi. The first function, fi(xi, x−i) models the physical interconnection between the
ith process and its neighbors. The first argument of fi represents the ith agent’s local state and
the second argument represents the impact that neighboring agent states have on the ith physical
process. The interconnections embodied in fi are of a continuous nature.
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Figure 4: Multi-agent System

The other term driving the process state is given by the function, gi. This function represents the
impact that the cyber-process (agent) has on the ith agent’s local state. As shown in figure 4, an
agent is associated with each physical process. The agent generates a continuous-time control signal
ui(t) that is the argument driving the second term in equation 1. This “control” signal is a function of
the state information that is received from neighboring agents over a digital communication network.
The links of this communication network are shown as dashed lines connecting the agents in figure
4.

The agents broadcast the physical process state over a digital communication network. Because the
links are digital, messages can only be broadcast at discrete time instants. So unlike the “continuous-
time” connections driving the physical process states, the state information transmitted between
agents is a discrete-time signal. In particular, we can model these transmitted signals as a sequence
of events. Each event is an ordered pair (bi[k], x̂i[k]) for k = 0, . . . ,∞. bi[k] denotes the time when
agent i broadcasts for the kth consecutive time and x̂i[k] denotes the state information that was
broadcast at that time. This transmitted state information is the physical process’ state at time
bi[k], so that x̂i[k] = xi(bi[k]). The ith agent uses the sampled states of its neighbors, x̂−i to compute
the control input ui(t). This is done using a controller function ki so that

ui(t) = ki(x̂−i[k]) (2)
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for t ∈ [bi[k], bi[k + 1]) for all k and where x̂−i denotes the broadcast states of the ith agent’s
neighbors.

Since information is transmitted in a discrete manner between agents, the frequency with which such
transmissions occur can greatly impact how well these agents coordinate their actions. In particu-
lar, if agents communicate very infrequently, they will not have enough information to adequately
coordinate their actions. On the other hand, if communication is very frequent, then the cost asso-
ciated with maintaining such a high transmission rate may be unrealistic for a real-life system. This
is particularly true in wireless communication networks where fading and multi-user interference
can degrade a link’s throughput in an unpredictable manner. The unreliability of network commu-
nication, therefore, represents a major issue that must be addressed in the design of multi-agent
systems.

One way of addressing this issue is to find ways that balance the cost associated with data trans-
mission against the actual performance of the overall system. In particular, one can maximize
the period between successive broadcasts in a way that preserves the overall system’s performance.
This objective can be realized by conditioning the broadcast of agent information on the “impor-
tance” that information has on the system’s performance. This approach is sometimes referred to
as event-triggering [1] [6].

Event-triggering initiates broadcasting when some local ”event” occurs. The basic principle is that
agents should only broadcast when there is innovative or novel information in the local state. In
other words, the agent only broadcasts when the process is doing something unexpected. Recent
work [9] has shown that simple threshold conditions such as

‖xi(t) − x̂i[k]‖ ≷ ρ‖xi(t)‖ (3)

can be used to initiate message broadcasts in a way that preserves overall system performance while
greatly reducing the average broadcast period. The above condition triggers a broadcast when the
error between the process’ local state xi(t) and the last broadcast state x̂i[k] exceeds a threshold.
This threshold, itself, is a function of the process’ current state and a heuristic justification of this
state-dependent threshold will be found in the appendix.

The supervisory control architecture used by this project to manage mesh microgrids is a multi-
agent system similar to what’s shown in figure 4. The agents use event triggering (equation 3) to
reduce the number of broadcasts between agents. The following sections detail the event-triggered
multi-agent achitectures that were developed under this project to 1) determine generator set points
and 2) determine whether or not to reconnect a previously shed load.

4 Intelligent Load Shedding

The mesh microgrid from figure 1 was augmented with intelligent agents monitoring the quality of
the power being produced by the generators. These real-time measures of power quality were then
used to trigger the safe reconnection of previously shed loads to the microgrid. Figure 5 shows our
original mesh microgrid with additional agents that are used to control load reconnection. There
are two types of agents; power quality agents and load agents. A power quality agent is attached to
each generator and keeps track of the “quality” of the power being delivered by that generator. The
load agent is attached to each load and is used to enable the reconnection of that load to the grid.

The power quality agent monitors the quality of the microsource’s power to determine whether or not
it is same for loads to connect to the generator. There are many ways of monitoring power quality.
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Figure 5: Baseline Mesh Microgrid with Load Controls

In this scenario we developed simple nonlinear filters whose output grows when the generator power
exhibits a significant oscillation. The power quality filter consists of a differentiator with a full-wave
rectifier. We then pass this signal through a low pass filter. The result is a signal whose value
is close to zero when the measured power is not oscillating (high power quality) and whose value
is large if there are significant oscillations (i.e., poor power quality) in the generated power. The
output of this low pass filter is then passed through a hysteresis function that generates a boolean
TRUE signal when the power quality is high and a boolean FALSE signal when the power quality
is poor. Essentially, we can view the power quality agent as a boolean system that detects whether
the generator power quality is good or bad.

A power quality agent is associated with each generator, thereby producing two distinct logical
assessments of the network’s power quality. These two boolean signals are then transmitted to
the load agent. Note that the agent only needs to broadcast the signal when its changes, so the
broadcasts from the power quality agents are event-triggered. The load agent simply takes the AND
of both signals. If the output of the AND operation is TRUE, then it is safe for the load to reconnect
to the grid and the load agent issues a RESET signal to the load. If it is false then it is unsafe for
the load to reconnect to the grid and no RESET signal is issued by the load agent. The resulting
network of agents forms a distributed event-triggered detection system.

The system shown in figure 5 was implemented in the UIUC mesh microgrid simulation. The changes
involved adding the power quality agents and the load agents to the simulation. It was also necessary
to make small changes to the load models. In particular, the load model was changed so that load
1 would exhibit a ground fault at 0.5 seconds. The load models were also changed so that the load
would automatically disconnect from the grid if the frequency fell below 59.8 Hz. Once disconnected,
the load would not reconnect to the grid unless it recieved a RESET signal from the load agent,
indicating that it was safe to reconnect.

The simulation was used to test a specific load shedding scenario. Under the scenario, the microgrid
is initially connected to the main grid until 0.25 seconds, after which a disconnect occurs from the
main grid. The next event occurs at 0.5 seconds into the simulation, when load 1 exhibits a ground
fault. The ground fault causes the frequency of both loads to dip below 59.8 Hz, thereby causing
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both loads to be shed from the microgrid. The final significant event occurs at 0.7 seconds into the
simulation, when the load agents signals that it is alright for the second load to reconnect to the
grid.

This sequence of events can be observed in the plots of figure 6. Figure 6 shows simulation results for
generator 1 and the two loads. From top to bottom, the plots on the left hand side show generator
1’s rms voltage, current, frequency and power (real and reactive). From top to bottom the plots
on the right hand side show the first load’s current and real power and the second load’s current
and real power. The main disconnect at 0.25 seconds is marked by the impulse in generator 1’s
rms voltage at 0.25 seconds. Similar impulses are seen in the generator and load power plots. The
ground fault on load 2 is observed in the top left plot of the figure. This plot shows the current
drawn by load 1 and it exhibits a significant step change at 0.5 seconds. As mentioned above, this
fault causes a drop in the frequency as shown in generator 1’s frequency plot on the left hand side
of figure 6. This droop in frequency also causes load two to drop from the network which can be
seen in the current plot for load 2 on the right hand side of the figure. In this figure we see the
current drawn by load 2 drops to zero between 0.5 and 0.8 seconds. At 0.7 seconds, the second load
reconnects to the grid.
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Figure 6: Load Shedding Scenario - Generator Time Histories - Right hand plots are for loads 1 and
2. Left hand plots are for generator 1.

It is apparent that the ground fault at 0.5 seconds results in significant oscillations in generator
power (right hand side of figure 6). So for a certain interval of time after the ground fault, the
quality of the power produced by both generators is relatively poor. The power quality agent uses
a simple nonlinear filter to measure the power quality. The block diagram for this filter is shown
on the right side of figure 7. The time histories of the generator 1 and 2’s power quality are shown
in figure 7. As expected, power quality is poor when the microgrid is first switched and when the
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ground fault occurs. The bottom plot in figure 7 shows load agent 2’s RESET signal as a function
of time and as expected, load 2 is allowed to reconnect to the microgrid at about 0.7 seconds.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
x 10

4  Power Quality and abs Real Power Gen 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
x 10

4  Power Quality and abs Real Power Gen 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
 Reset Signal for Load 2

Figure 7: Load Shedding Scenario - Power Quality Agent and Load Agent Response. Right hand
block diagram is for power quality agent’s filter. Left hand plots from top to bottom are the power
quality filter output (ResetSignal) for generators 1 and 2 and the reset signal generated at the load
agent.

The simulation results shown in figures 6-7 both indicate that it is feasible to use the proposed multi-
agent approach to help manage load shedding in mesh microgrids. The simulations demonstrated
that one can use intelligent agents to automate load reconnection with a distributed network of
power quality and load agents that communicate in an event-triggered manner. While this study
confined its attention to making intelligent reconnect decisions, it is also possible to augment load
agent logic to account for mission specific priorities on various loads.

5 Intelligent Power Dispatch

The mesh microgrid from figure 1 was augmented with intelligent agents that adaptively readjust
the real power being requested of each generator. These agents coordinate their requests in order
to minimize the overall cost of operating the generators. These agents are therefore solving the
so-called economic dispatch problem [2] in a distributed manner. Figure 8 shows agents that were
added to the microgrid. There are three types of agents; power agents, price agents, and load agents.
A power agent is attached to each microsource. The power agent determines what real power levels
to be requested from the generator. A price agent is associated to a group of generators whose power
levels must be constrained to stay within operational limits. The price agent computes a shadow-
price which help power agents coordinate the selection of their individual power requests. The load
agent is an agent that monitors the quality of the power at the load and broadcasts forecasted load
power levels to the price agent.

These agents work in a coordinated manner to solve the economic dispatch problem. Neglecting line
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Figure 8: Baseline Mesh Microgrid with Price Control on Real Power

losses, the dispatch problem for the two generators in the microgrid can be stated as

minimize: C(P1, P2) =
∑2

i=1
Ci(Pi)

with respect to: P1, P2

subject to:
∑2

i=1
Pi =

∑2

i=1
PLi

0 ≤ Pi ≤ 1, (i = 1, 2)

(4)

where Pi is the power generated by the ith microsource and PLi is the power measured at the ith
load. In this case, Ci : ℜ → ℜ is the cost associated with operating the microsource at a given power
level. In the simulation, these power levels are given in “power units” (pu) that are normalized by
the maximum capacity of the microsource. In this simulation, that normalizing constant is 15 kW.
The simulations described below use a specific set of cost functions. The costs functions used were

C1(P1) = 20 + 0.1P1 + 0.1P 2
1 (5)

C2(P2) = 10 + 0.5P2 + 0.2P 2
2 (6)

The first constraint shown in equation 4 requires that the total generated power equal the total load
power. The second constraint requires that the generated power be bounded between 0 and 1 pu.

A multi-agent approach was used to solve the dispatch problem in a distributed manner. The
approach takes advantage of the fact that the dispatch problem is very similar to the network utility
maximization (NUM) problem [3]. A detailed description of the NUM problem will be found in the
appendix. To see how the NUM methodology can be applied to the dispatch problem, it will be

convenient to rewrite equation 4 as a NUM problem. Let p =
[

P1 P2

]T
denote a vector of the

requested power levels for both microsources. The dispatch problem may then be expressed as

minimize: C(p) =
∑2

i=1
Ci(Pi)

subject to: Ap ≤ c
(7)
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where we let

A =


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




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1 0
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0 −1
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0
1
0
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
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







(8)

and P =
∑2

i=1 PLi represents the maximum load power. Note that this has the same form as the
NUM problem in the appendix.

From equation 7, one can construct the associated dual problem that seeks to minimize

Cd(p) = max
p>0

[

2
∑

i=1

Ci(Pi) − λT (Ap − c)

]

(9)

As in the NUM problem, the original cost function C(p) has been augmented with the term λT (Ap−c)
to obtain equation 9. The function Cd(p) may therefore be interpreted as the cost of running the
microsouces discounted by how close the power levels p are to violating the inequality constraint
Ap ≤ c. The vector λ can be thought of as a vector of “shadow-prices” that a price agent charges
each microsource for violating one of the power constraints in equation 4.

Solving the original dispatch problem can then be done by using a gradient-following algorithm to
search for the power levels, P1 and P2, and prices, λ, such that the discounted cost in equation 9 is
minimized. One such algorithm is the dual-decomposition algorithm [7], which takes the form

Pi[k + 1] = arg max
Pi



Ci(Pi[k]) − Pi[k]
∑

j

λj [k]



 (10)

λj [k + 1] = max (0, λj [k] + γ (P1[k] + P2[k] − cj)) (11)

for i = 1, 2 and j = 1, . . . , 5. In the above equation γ is a step size that must be chosen small enough
to assure the convergence of the recursion. Note that the first equation (eq. 10) can be solved in
closed form for the quadratic cost functions that were given in equation 5-6. In particular, for these
specific cost functions it can be shown that

p[k + 1] =

[

P1[k + 1]
P2[k + 1]

]

= p[k] − γ

(

AT λ[k] +

[

.1

.5

])[

5 0
0 5/2

]

(12)

where γ is a step size that must be chosen to assure the convergence of the recursion. For these
simulations γ was chosen to be 0.01. So the solution to the dispatch problem by applying the
recursion given by equations 11 and 12.

The distributed recursion given by equations 11 and 12 are realized through agents. A price agent
is used to compute the price in equation 11. From equation 11, it should be apparent that the price
agent uses the current power request levels, P1[k] and P2[k], and the load levels, PL1 and PL2, to
compute the shadow-price. It obtains P1 and P2 from the power agent and it obtains PL1 and PL2

from the load agents. The ith power agent computes the Pi using equation 12. Due to the closed
form nature of this equation, the power agent only needs the current shadow price vector, λ, which
it gets from the price agent. The load agent uses an algorithm to forecast the predicted load power
levels, PLi. For this simulation, this forecast was obtained by simply passing the load’s measured
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power levels through a low pass (averaging) filter. Other, more sophisticated, forecasting tools could
be used by the load agent to include the effect of diurnal variations on load power.

This set of agents, therefore, are related in a manner that mirrors the functional dependencies in
equations 12 and 11. These relationships, of course, are graphically illustrated in figure 8, where the
dashed lines show that the load and power agents are all connected through the single price agent
in a star topology. The price agent, therefore, represents a single agent that is really responsible
for coordinating the decisions made by all of the power agents. This example, therefore seems to
suggest that the proposed multi-agent solution actually makes decisions in a centralized manner.
This conclusion, however, is not quite true. This example is a small microgrid consisting of two
generators and two loads that are tightly interconnected. One can easily see a larger microgrid
being composed of several interconnected service areas and for this larger microgrid, the proposed
control architecture would have a price agent associated with each service area. Therefore the multi-
agent solution being proposed here is indeed a distributed control architecture in which price agents
help coordinate the power agents within a single service area of a larger grid.

As noted in section 3, the proposed multi-agent control architecture relies on the transmission of
information over digital communication links. Since these links are digital, information is transmitted
at discrete time instants and it is important that one maximizes the period between successive
broadcasts. Maximizing broadcast period can help reduce the cost of the associated communication
infrastructure and it can result in lower message passing latency since there is less competition for
the shared communication channels. Long broadcast periods, however, can also adversely effect
the ability of agents to coordinate their actions. One must therefore bound the need to reduce the
amount of network traffic against the overall performance of the physical system. This project used
the event-triggering approach outlined in section 3 and detailed in the appendix to select the time
instants when the agents would broadcast their states to each other.

Event-triggering has an agent broadcast its local state when a condition similar to equation 3 is
about to be violated. For the price agent, the event-triggering condition is

∥

∥

∥λ(t) − λ̂[k]
∥

∥

∥ ≤ ρ‖λ(t)‖ (13)

for t ∈ [b[k], b[k+1]). b[k] denotes the kth consecutive time when the price agent broadcast its price to

the power agents. λ(t) represents the price computed at time t using equation 11 and λ̂[k] = λ(b[k])
represents the price vector that was last broadcast by the price agent. For this simulation ρ was
chosen to be 0.01. So the price agent broadcasts it current price, λ(t), when equation 13 is about to
be violated.

For the power agent, the event-triggering condition is

|Pi(t) − P̂i[k]| ≤ ρ|Pi(t)| (14)

for t ∈ [bi[k], bi[k + 1]) where bi[k] denotes the k consecutive time when power agent i broadcast its
power request level, Pi, to the price agent. In the above equation Pi(t) is the power level computed
at t using equation 12. Note that this will change each time a new price vector, λ, is received from
the price agent, so that Pi(t) is varying in a step-wise manner between consecutive broadcasts from
the power agent. P̂i[k] is the power level that was last broadcast by the ith power agent. In this
simulation the event-triggering gain, ρ was chosen to be 0.001. The power agent broadcasts its
current requested power level, Pi(t), when equation 14 is about to be violated.

Finally, the event-triggering condition for the load agent was chosen to be a simple constant threshold
|PLi(t) − P̂Li| < ρ where P̂Li is the last broadcast load power, PLi is the measured load power and
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for this simulation the threshold was chosen to be ρ = 0.01. In future implementations, PLi should
represent a forecast of the future power required by the load. In these simulations, that forecast was
obtained by low pass filtering the measured power load. Such low pass filters can be easily modified
for use as load forecasters. So the load agent broadcasts its forecasted power level, PLi(t), when
that forecast changes by a fixed amount from the previously broadcast power forecast level.

The power dispatch algorithm described above was simulated using a Matlab script under two
scenarios. The first scenario assumed that power and price agents had continuous-time access to
each other’s states. The second scenario assumed that these agents broadcast their states using the
event triggers described in equations 13-14. In both scenarios, the total load power requested P
starts at 0.8 pu and then makes a step change to 1.5 pu 1000 time steps into the simulation. The
optimal power allocations when P = .8 were computed to be P1 = .8 and P2 = 0. The optimal power
allocations when P = 1.5 were computed to be P1 = 1 and P2 = .5. Under the continuous-time
access scenario, the power setpoints and prices generated by the algorithm are shown on the left
side of figure 9. These plots show that for the chosen set of parameters the algorithm converges as
expected to the optimal values mentioned above.

The simulation results for the second scenario, along with the associated Matlab script, will be found
in figure 9. The top two plots show the power set points and prices generated by the event-triggered
algorithm. Comparing these plots to the results for the continuous-access scenario, it is seen that
event-triggering does not significantly degrade the overall algorithm’s performance since the plots
are nearly identical. The bottom two plots in figure 9 show how many agents are broadcasting at a
given time in the simulation. In this case, a single price agent was associated with each inequality
constraint. Since there are five inequality constraints, there are actually five price agents in this
simulation. What is observed in these last two plots is that all agents are broadcasting when there
is a step change in the load power forecast. So there are a lot of agents broadcasting at 0 and 10
seconds into the simulation. After the prices and power set points have settled to their optimal
values, the number and frequency of broadcasts reduces dramatically, thereby indicating that the
event-triggered dispatch algorithm reduces communication effort while still achieving the optimal
power set point allocations.

The preliminary simulation results demonstrated that the event-triggered power dispatch algorithm
would work well, but that simulation did not include the dynamics of the low-level microsource
controllers developed by UWM. The next set of simulation tasks involved integrating the proposed
power dispatch algorithm into the UIUC microgrid simulation. The resulting Matlab/simulink model
(genmodel8_price_control) is described in the simulink generated report in the appendix. The
new blocks that were added to the original UIUC model are highlighted in blue. As can be seen
in the appendix, the simulink model was augmented with new subsystems representing the power
agents, price agent, and load agents. The load subsystems in the original UIUC model were also
modified to properly model load disconnects and to provide measurement of load power to the load
agent.

The resulting simulink model was used on a scenario in which the microgrid initially starts connected
to the main grid, disconnects from the main grid at 0.25 seconds and then has load one make a step
change in its load resistance from 4 to 16 ohms at 0.5 seconds into the simulation. The objective
of the simulation was to see whether the UWM microsource controller would interfere with the
proposed multi-agent power dispatch algorithm and to evaluate the actual broadcast periods that
could be expected in the system.
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%Initiailization

x0 = rand(2,1);

A=[1 0;-1 0; 0 1;  0 -1;-1 -1];

B2 = [1;0;1;0;-1.5];

B1 = [1;0;1;0;-.8];

%initialize dual-decomp algorithm

p0 = .25.*rand(5,1);p=p0;

x=x0;xhat = x0; phat = p0; p; = p0

gam=.01;B=B1;tstop=2000;tevent = 1000;

%simulate with event-triggered updating

for i=1:1:tstop;

    if(i==tevent);

        B=B2;

    end;

    

  x = -(A'*phat+[.1;.5])./(2*[.1;.2]);

  zx = (abs(x-xhat)<=.001.*abs(x));   

  xhat = zx.*xhat + (1-zx).*x;

  

  p = max(0,p+gam.*(A*xhat-B));

  sx = (abs(p-phat)<=.01.*abs(p));    

  phat = sx.*phat + (1-sx).*p;

  upx = sum(1-sx); vpx = sum(1-zx);

end;

Figure 9: Matlab Script implementing event-triggered power dispatch and simulation results

The following figure shows the time histories of the generator’s variables. Generator 2 exhibits
similar behaviors. From top to bottom the plots on the left hand side show the rms voltage, current,
frequency, and active/reactive powers for generator 1. The main disconnnect event at 0.25 seconds
is clearly observed by the impulses that appear at 0.25 seconds. In this case, the load shedding
thresholds were set to zero to prevent load shedding when the frequency begin dropping after the
disconnect. The second event at 0.5 seconds is also marked by impulses at these times. The variations
at 0.5 seconds are caused by the power dispatch algorithm readjusting generator setpoints. The plots
show that the microgrid operated well during the main switch and during adjustments of set point
levels due to the proposed multi-agent control system.
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Figure 10: Generator time histories using event-triggered power dispatch
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The behavior of the power, price, and load agents will be seen in the plots below. This figure
consists of three groups of plots for each set of agents. The plots show the output of the agent as
well as the time between broadcasts. All of these plots show that the time between agent broadcasts
becomes longer as the system settles to its equilibrium point. So, as expected the event-triggered
power dispatch algorithm appears able to maintain satisfactory system operation while reducing the
system’s usage of the communication network.
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Figure 11: Agent Performance

The results discussed above show that a multi-agent solution to the economic dispatch problem
can be built in a way that integrates easily with the UMW microsource controllers used in mesh
microgrids. These results further indicate that the broadcast period of such agents can be effectively
increased using event-triggered methodologies, without compromising the performance of the overall
microgrid. The simulation results presented here are preliminary for they only apply to a small
microgrid. It would be useful to determine if the approach scales up well to larger microgrids.

6 Final Remarks

This report documents efforts at the University of Notre Dame to develop a multi-agent control
system architecture for a mesh microgrid. The project took an existing simulink model of a mesh
microgrid that was developed at UIUC. The microgrid model used low level microsource controllers
developed at UWM. The objective was to develop a distributed event-triggered agent based approach
to solve the economic dispatch problem and reconnect decision problem. The economic dispatch
problem tries to automatically determine generator power setpoints that meet a set of inequality
constraints of overall power usage in the microgrid. The reconnect problem seeks to find a distributed
decision making algorithm for informing loads that generated power quality is stable enough to
permit safe reconnection to the microgrid. The agent-based algorithms developed in this project
were simulated on the UIUC simulink model and preliminary results indicate that it is feasible to
integrate these agent-based control architectures into mesh microgrids such as the CERTS grid at
the University of Wisconsin Madison.

There are numerous directions for extending the accomplishments of this project. Some of these
directions are itemized below

• In the first place, the feasibility studies in the project were done on a very small microgrid. It
would be valuable to investigate how well the approach scales on larger microgrids.
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• The simulations only modeled the discrete-nature of agent broadcasts, it did not model delays
or message drops due to unreliable links. It would also be valuable to study the impact such
real-life communication issues have on overall system performance.

• The power dispatch problem addressed here only considered real power, not reactive power.
This was because the droop controls in the UIUC microgrid simulink model only implemented
the real part of UWM’s controller. It would be useful to extend the multi-agent approach to
dispatch of reactive power as well.

• The reconnect scenario considered in this project was very simple. There are numerous ways
such a scenario could be extended to consider the loss and restart of generating assets and how
this might be integrated into load reconnection.

• While simulations represent an important first step in assessing the feasibility of any approach,
it would be better to test the multi-agent architecture on a real small scale microgrid.
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Appendix A: Economic Dispatch Problem [2]

We consider a mesh connected power system that consists of generators and loads connected to a
buses that are interconnected through transmission lines. The network of buses and transmission
lines is modeled as a connected graph G = (V, E) where V = {v1, · · · , vN} is a set of N buses and
E ⊂ V × V is a set of transmission lines between buses. Figure 12 shows the graph associated with
a power distribution network consisting of five interconnected buses. We suppose there are M edges
in the network and we let eij denote the edge from bus i to bus j. We let Zij = Rij + jXij denote
the impedance of the transmission line corresponding to transmission line eij . Let I denote the
incidence matrix for graph G and define a diagonal matrix D ∈ ℜM×M whose diagonal entries are
the reactances of the M transmission lines. Then we define the weighted incidence matrix A ∈ ℜM×M

as A = DI. The set of neighbors of bus vi is denoted as Ni = {vj ∈ V | (vi, vj) ∈ E}.

source load source load

source load

source load

source load

transmission line

Bus 1 Bus 2

Bus 3
Bus 4

Bus 5

P1 , L1 P2 , L2

P3 , L3 P4 , L4

P5 , L5

Power Distribution Network

Graph of Power Distribution Network

Pi = Power Generated at Node i

Li = Load at Node i

Figure 12: Power Distribution Network and its Graph

Let ui denote the voltage of bus i. This is a complex number ui = |ui|ejθi which represents the
amplitude and phase of the signal’s primary phase. The complex power flow from bus i to bus j is
denoted as Sij and is equal to

Sij = ui

(

ui − uj

Zij

)∗

= Pij + jQij (15)

where Pij is the real power flow from node i to j and Qij is the reactive power flow from node i to
j. We can solve directly for the real power and reactive power to see that

Pij = −Pji =
|ui||uj |

Xij

sin(θi − θj) (16)

Qij =
|ui|

2

Xij

−
|ui||uj |

Xij

cos(θi − θj) (17)

Qji =
|uj |2

Xji

−
|ui||uj |

Xji

cos(θi − θj) (18)

Under normal operating conditions, we assume that |ui| ≈ |uj | and that θi − θj is small. In this case
there is reasonably good decoupling between the control of the active power Pji and the reactive
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power flow Qij . The active power flow is mainly dependent on θi − θj and the reactive power flow
is primarily dependent on |ui| − |uj |.

The DC power flow assumes that only the voltage phases, θi, vary and that this variation is small.
The Voltage magnitudes |ui| are constant and nearly equal so that the reactive power flow Qij is
negligible. As a result, the problem we’ll focus on initially only concerns the economic dispatch
of the active power flow, Pij . Furthermore, we assume that the transmission line’s resistance is
negligible so that Zij = jXij . With these assumptions, the power flow from bus i to bus j is

Pij =
1

Xij

(θi − θj) (19)

The total power flowing into bus i (which we denote as Pi) is the power generated at node i (denoted
as PGi) minus the local load (denoted as PLi) at the bus. Based on the conservation of power, this
must equal the sum of the power flowing away from bus i on the transmission lines, so that

Pi = PGi − PLi =
∑

j∈Ni

Pij =
∑

j∈Ni

1

Xij

(θi − θj) (20)

We can express this in matrix form as P = BΘ where P =
[

P1 · · · PN

]T
, Θ =

[

θ1 · · · θN

]T
,

and B is a ”weighted” Laplacian matrix for the graph, G, whose ijth element is

Bi =







∑

j∈Ni

1
Xij

if i = j

− 1
Xij

if eij ∈ E

0 otherwise

(21)

Based on our DC power flow model, we can now formulate the power dispatch problem as follows.
We assume there exists a function Ui : ℜ → ℜ for each i = 1, · · · , N which represents the ”cost”
associated with generating power at bus i. Note that we consider a very generalized notion of cost
that would, in practice, be determined by economic considerations. But we can also treat it as a
priority assignment that may be driven by formalisms that model the ”consequences” of losing power
with respect to a military mission ( see Sandia Lab Reports by Menicucci and Akhil). In general,
we assume that these ”cost” functions of convex functions. The dispatch problem is formally stated
below

minimize: U(PG) =
∑N

i=1
Ui(PGi

)
with respect to: PG

subject to: BΘ = PG − PL

PG ≤ PG ≤ PG

P ≤ AΘ ≤ P

(22)

In this case PG is a vector of the generated power and PL is a vector of the local loads on each bus.
A is the graph’s incidence matrix and B is the graph’s weighted Laplacian matrix (that were defined
above). PG and PG reprseent lower and upper limits on generated power. P and P represent lower
and upper limits on the power flows in the transmission lines. This problem seeks to find the optimal
generated power such that the total generation cost is minimized subject to the power flow equation
and physical constraints on the generation and transmission systems.
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Appendix B: Network Utility Maximization Problem [3, 7]

We’re using a distributed approach to solve the dispatch problem. What this means is that a proces-
sor will be located at each generation point within the power system. These buses will communicate
with each other over a wireless communication network and will use their local processor (computer)
to make local decisions about optimally setting their generated power PGi. This local decision will
be made on the basis of that bus’ local ”load” and power flows, as well as information receiving form
”neighboring” buses. By ”neighboring”, we mean that buses that are directly connected to the bus
through a single transmission line. The key point of the dispatch algorithm being developed is that
all decisions setting a bus’ generating power are made ”locally”. There is no ”centralized” decision
making taking place within the system.

The dispatch problem can be viewed as a variation on the network utility maximization (NUM)
problem that has been recently used in congestion control over computer networks. The NUM
problem assumes that we have N users trying to transmit their data over M links in a communication
network. Figure 13 shows such a situation where we have 2 users transmitting over 4 links.

Figure 13: NUM Problem

The formal statement of the NUM problem is as follows

maximize: U(x) =
∑

i∈S Ui(xi)
subject to: Ax ≤ c and x ≥ 0

(23)

In this case, x is a vector of the user transmission rates, A is an incidence matrix for the graph,
and c is a vector of limits on the total data flowing through each link in the network. Rather than
minimizing a cost, we seek to maximize a ”utility” function Ui. As we can see there are some
similarities between the NUM problem and the Dispatch problem. The dispatch problem seeks to
minimize total cost subject to power flow constraints at the generators and transmission lines. The
NUM problem seeks to maximize ”utility” subject to flow constraints on the link.

Since these two problems are similar, it seems that we should be able to apply recent methods for
solving such problems to the dispatch problem. In particular, recent work by Lapsley and Low have
developed a dual-decomposition algorithm that solves the NUM problem in a completely distributed
manner. This is done by first dualizing the original problem to obtain

minimize: maxx≥0

[
∑

i Ui(xi) − pT (Ax − c)
]

subject to: p ≥ 0
(24)
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This transforms the original constrained optimization problem to an unconstrained problem. The
new variable p is a Lagrange multiplier that has the ”physical” interpretation of being a (shadow)
price that the link charges users for using the link. Obtaining a solution to this dual problem also
solves the original NUM problem. The key point is to find a ”distributed” algorithm for solving this.

Dual decomposition is one such distributed algorithm for solving the NUM problem. The particular
updates used by dual decomposition are

xi[k + 1] = argmax
xi



Ui − xi

∑

j

pj



 (25)

pj [k + 1] = max

{

0, pj + γ

(

∑

i

xi − cj

)}

(26)

This update law is distributed in the sense that each user update only needs information from the
links that are used by that user and each link (price) update only needs information from the users
that are using it.

One of the key weaknesses of algorithms like dual-decomposition is that the step-size (γ) used in
updating the above equations may need to be extremely small to ensure stability of the recursion.
This has a significant consequence on the complexity of message passing over the radio network
supporting the algorithm. In particular, the stabilizing step size has already been shown to be
inversely proportional to some common measures of network complexity such as neighborhood size
and path length. This bodes ill for using algorithms such as dual-decomposition to solve truly
large-scale versions of the NUM problem.

Recently, we have found [8] that it is possible to greatly reduce the message passing complexity of
algorithms such as dual-decomposition by using an ”event-triggered” approach to message passing.
The event-triggered approach broadcasts link/user information when ”local errors” exceed a state-
dependent threshold. This approach has been shown to reduce message passing by up to two orders of
magnitude. This is shown in figure 14 where we plot the message complexity (number of transmitted
messages) as a function of the maximum neighborhood size in the network. The results clearly show
that algorithms such as dual-decomposition have a superlinear complexity whereas the complexity
of a comparable event-triggered implementation is 1-2 orders of magnitude lower.
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Figure 14: Message Complexity versus Neighborhood Size for Dual-Decomposition and Event-
triggering

Appendix C: Event-Triggered Optimization [9]

In distributed decision systems, individual agents must exchange information to better coordinate
their activities. This message passing is done over a digital communication network. While digi-
tal communication technology is extremely mature, the technology possesses fundamental physical
limitations that can greatly impact the cost and performance of the networked system. Digital com-
munication networks can only broadcast messages at discrete-time instants. These systems often
use wireless radio frequency (RF) channel that must be shared amongst several users. The possible
collisions of messages in this shared channel can greatly reduce system throughput and increase
message latency. These considerations introduce a degree of unreliability that can greatly degrade
the ability of intelligent agents to successfully coordinate their actions.

One way of addressing the reliability issue is to reduce the amount of communication required in
support of the system application. This can be done through event-triggered message passing. Under
event-triggering, each agent broadcasts its information to its neighbors when an internal error signal
exceeds a state-dependent threshold.

To clearly explain how event-triggering functions, let’s consider a collection of N dynamical agents.

Sequences of broadcast times, {Bi[k]}
|infty

k=0
and reception times, {Ri[k]}∞k=0 are associated with the

ith agent. The time instants Bi[k] and Ri[k]¡ represent the kth consecutive times when a message
was broadcast or received, respectively, by agent i. The local state of the ith agent is a function,
xi : ℜ → ℜni , where ni is the dimension of the local state. At each broadcast time, the agent
transmits its local state to its neighbors. That broadcast state is represented by the function
x̂i : ℜ → ℜni where x̂i(t) = xi(Bi[k]) for t ∈ [Bi[k], Bi[k + 1]). This means, therefore, that x̂i(t) is
the local state of agent i at the most recent broadcast time.

In many applications, the ith agent’s local state is a dynamic and may be assumed to satisfy the
following piecewise continuous differential equation

ẋi(t) = fi(xi(t)) +
∑

j 6=i

gij(x̂j(t)) (27)

for all t ∈ [Ri[k], Ri[k + 1]) and k = 0, · · · ,∞. Equation 27 describes the evolution of the local state
over the interval between two consecutive receptions of the ith agent. We usually choose the initial
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condition of this resulting state trajectory to yield a continuous trajectory when we join all of the
segments together. The function fi : ℜni → ℜni represents the ith agent’s local dynamics. The
function gij : ℜnj → ℜni models the communication induced dynamic coupling between the jth and
ith agents.

Equation 27 describes a sampled-data system in which the ith agent uses samples of its neighboring
agent’s local states to help regulate its own behavior. It is possible to characterize a broadcast
time sequence {Bi[k]}∞k=0 which guarantees that this sampled-data system is semiglobal asymptot-
ically stable. This characterization of the stabilizing broadcast sequence is obtained by treating
the sampled-data system as a “discrete” approximation to a continuously-sampled system that is
already known to be input-to-state stable (ISS). The associated “continuously-sampled” system is
described by the system equations

ẋi(t) = fi(xi(t)) +
∑

j 6=i

gij(xj(t)) (28)

for all t. Note that equation 28 differs from equation 27 with regard to the argument of the coupling
function, gij . In equation 28, the ith agent has continuous access to its neighbors’ local state.

The asymptotic stability of the discretely-broadcast system is guaranteed if the continuously-broadcast
system is input-to-state stable. In particular, this means there exists a function V : ℜn → ℜ (where
n =

∑

i ni) and class K functions (continuous and monotone increasing) αi : ℜ → ℜ and βi : ℜ → ℜ
such that

V̇ =

N
∑

i=1

∂V

∂xi



fi(xi) +
∑

j 6=i

gij(xj + ej)



 ≤
N
∑

i=1

(−αi(‖xi‖) + βi(‖ei‖)) (29)

In the above equation ei represents a disturbance that enters through the gij coupling function.

Equation 29 assures that the continuous-broadcast system (equation 28) is ISS with ISS-Lyapunov
function V . This function will become Lyapunov function for the discrete-broacast system in equa-
tion 27 if it is possible to ensure that

−αi(‖xi‖) + βi(‖ei‖) ≤ 0 (30)

for all time and all i. In particular, let the disturbance ei : ℜ → ℜni be an error signal of the form

ei(t) = x̂i(t) − xi(t) (31)

The signal ei(t) is therefore the difference between the ith agent’s current state at time t and its
state at the most recent broadcast time Bi[k]. At each broadcast time, Bi[k], this error is zero.
So one simply needs to choose the broadcast times {Bi[k]}∞k=0 to ensure that equation 31 is always
true. This can be accomplished by simply having the ith agent broadcast its local state when the
inequality in equation 30 is about to be violated. In this regard, equation 30 is a threshold test
automatically ensures that V is a Lyapunov function for the sampled-data system. So that selecting
broadcast times based on equation 30 assures the asymptotic stability of the sampled-data system.
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