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Abstract

In a biometrics scenario, gallery images are enrolled into the database ahead of the matching step, which gives us the opportunity to
build related data structures before the probe shape is examined. In this paper, we present a novel approach, called ‘‘Pre-computed Voxel
Nearest Neighbor’’, to reduce the computational time for shape matching in a biometrics context. The approach shifts the heavy com-
putation burden to the enrollment stage, which is done offline. Experiments in 3D ear biometrics with 369 subjects and 3D face biomet-
rics with 219 subjects demonstrate the effectiveness of our approach.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Since its introduction by Chen and Medioni [1] and Besl
and McKay [2], the Iterative Closest Point (ICP) algorithm
has been widely used for 3D shape matching [1,3–5]. It has
been used in a wide range of application areas, including
the integration of range images [6,7] and alignment of CT
and MR images [8]. Here, we are specifically interested in
3D shape matching for biometrics [9–13]. The ICP algo-
rithm is known to be computationally expensive. With
two clouds of points, source S (probe) and target T (gal-
lery), the complexity of a typical single ICP iteration is
O(NS log (NT)) using a k-d tree data structure [9] in
the expected case, where NS is the number of points in
the source and NT is the number of points in the target.
The ICP algorithm iteratively finds the minimum distance
between two surfaces. With NI iterations, the overall com-
plexity is O(NI · NS · log (NT)) [2]. Therefore, matching
high-resolution images of both source and target leads to
a heavy computational load. A fast ICP implementation
is crucial for practical use in biometrics.
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Using shapes sensed by a 3D scanner is a major recent
trend in biometrics [9–14]. A scan yields a 3D surface that
can be used as a representation of the subject. In this paper,
we illustrate our approach using both 3D ear and 3D face
shapes. There are two types of images in a biometric appli-
cation, gallery and probe. The gallery images are those that
have been enrolled and whose identities are known to the
system, while the probe images are those that need to be
matched against the images in the gallery. In a recognition
scenario, one probe is matched against all the images in the
gallery, and the algorithm returns the match with the min-
imum error distance. In a verification scenario, one probe is
matched against just one gallery entry, the one enrolled for
the claimed identity. In recognition or verification experi-
ments, enrollment occurs once and is followed by many
instances of recognition.

One special characteristic of a biometrics application is
that all gallery images are enrolled into the database before
the matching takes place. Probe images are introduced into
the system for matching. Taking advantage of the fact that
the gallery images are enrolled prior to matching, we pro-
pose a novel method to accelerate the ICP matching. Our
new method is called the ‘‘Pre-computed Voxel Nearest
Neighbor’’. The idea is to voxelize a volume which can
hold the 3D gallery surface, and for each voxel to
rithm for ICP-based 3D shape biometrics, Comput. Vis. Image
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pre- compute its distance to the 3D gallery surface and save
this for future use.

In Section 2, we review several fast ICP approaches.
Then in Section 3 we give details of our approach. Section
4 addresses the applicability of our approach by using the
ear and face biometrics, and experimental results are pre-
sented and analyzed. Finally, Section 5 discusses further
refinements and possible future directions.

2. Literature review

In biometrics applications, 3D shape is used by many
researchers in face biometrics [11–13,15–18], has also been
used in ear biometrics [9,10], and has also been used in
hand biometrics [14].

There have been a number of efforts to speed up ICP
matching. One line of work is focused on fast algorithms
for computing the nearest neighbor. The use of the k-d tree
data structure appears to be the standard method in this
area [19,2]. Cleary and co-workers analyzed the ‘‘Elias’’
algorithm for searching nearest neighbor in the n-dimen-
sional Euclidean space [20]. They claimed that by using
the ‘‘Elias’’ algorithm, the number of search points is inde-
pendent of the total number of points on the surface.

In [21], Greenspan et al. proposed a novel nearest neigh-
bor algorithm for small point sets. They report that ‘‘Elias’’
is much faster than a plain k-d tree, and that the ‘‘spherical
constraint’’ method improves the speed still further. Zinßer
et al. analyzed the performance of the nearest neighbor
algorithm for ICP registration [22]. Their work is not lim-
ited to range images or triangle meshes, but also can be
used with 3D point sets generated by structure-from-
motion techniques.

Benjemaa [23] proposed a multi-z-buffer technique to
accelerate the ICP algorithm. All points are projected in
a z-buffer to perform the local search, and they claimed
that this space partition speeds up the search for point-
to-projection correspondences. But in order for the multi-
z-buffer technique to work properly, the two surfaces need
to be sampled with a high and uniform density.

Another line of work in this area looks at different sub-
sample strategies to reduce computation time. One strategy
is using multi-resolution approaches; that is, start with a
coarse point set and use progressively finer point sets as
the algorithm proceeds. The idea of the average distance
between points in the current resolution in comparison to
the average distance between matched points is the stan-
dard way to automate the switching between resolutions
[24].

In [3], Gelfand et al. describe the importance of the qual-
ity of the point pairs. In the presence of noise or miscalibra-
tion in the input data, it is easy to create poor
correspondences between pairs of points. Therefore, the
least-squares technique might lead to wrong pose, or make
it difficult for the algorithm to converge. They propose a
technique to decide whether a pair of meshes has good
quality by measuring the covariance matrix between two
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meshes which have been sparsely and uniformly sampled.
This technique tries to avoid the unstable movement
between two surfaces by sampling the features from the
input data which are the best constraint for this kind of
movement.

In [25], Rusinkiewicz and Levoy discussed the variants
of ICP which affect all phases of the algorithm. They list
most of these variants, and evaluate their effects on the
speed with which the correct alignment is reached. Also
in the paper, they proposed a combination of ICP variants
optimized for high speed.

Researchers have also looked at mixing the two lines of
work, having some multi-resolution mixed with some con-
strained search for nearest neighbor. Jose and Hügli pro-
posed a solution that combines a coarse to fine multi-
resolution approach with the neighbor search [26]. The
multi-resolution approach permits to successively improve
the registration using finer levels of representation and the
neighbor search algorithm speeds up the closest point
search by using a heuristic approach. They claim this tech-
nique reduces the time complexity of searching from O(N
log(n)) to O(N), while preserving the matching quality [27].

Research related to ICP is also prominent in the graph-
ics community. Leopoldseder et al. used d2-tree to store a
local quadratic approximant of the squared distance func-
tion to a surface [28]. Mitra et al. consider a general frame-
work for matching two shapes represented by point clouds,
in which the point-to-point and point-to-plane versions of
ICP can be considered special cases [29]. Cheng et al. con-
sider a method to fit a subdivision surface to an unorga-
nized point cloud dataset [30]. However, none of these
efforts are undertaken in a biometrics context. Also, while
Leopoldseder and Mitra use a subdivision of 3D space,
they still use a tree search to find the closest point corre-
spondence between two point sets, rather than reducing it
to an indexing operation as in this paper.

3. Fast ICP matching for 3D shapes

The most time consuming part of the ICP algorithm is
that for each point on the probe surface, the algorithm
needs to find the closest point on the gallery surface. By
using these pairs of corresponding points, the ICP algorithm
iteratively refines the transforms between two surfaces,
finding the translation and rotation to minimize the
mismatch.

This search for a closest point on the gallery surface is
initially done using a k-d tree, as described in [9], and each
search takes O(log NG), where NG is the number of the
points on the gallery surface. Our goal is to reduce this
search time to a constant value. The main idea is that if
we can pre-compute the distance from any point in the
3D space to the gallery surface, and use it when needed,
then the search time for a closest point is a constant.

Our ‘‘Pre-computed Voxel Nearest Neighbor’’ approach
is illustrated on the application of matching 3D surfaces for
biometric recognition. At the time of enrollment, the
rithm for ICP-based 3D shape biometrics, Comput. Vis. Image



Fig. 2. Close look of voxels and example distance between voxel and
gallery surface. (P1 is the center of the voxel 1 and the closest point on the
gallery surface to P1 is P1 0. P2 is the center of the voxel 2 and the closest
point on the gallery surface to P2 is P2 0).
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gallery 3D shape sits in a 3D volume that we think of as a
set of voxels, shown in Fig. 1. In our experiment, the vol-
ume size depends on the size of the biometric source, face
or ear. A detailed explanation is given in next section.
Fig. 1 illustrates how the voxelization is done.

Placing the enrolled 3D surface into a voxelized volume,
each point on the gallery surface falls into a voxel. A given
voxel can be empty or hold one or more points from the
gallery surface. If a probe surface is placed into this vol-
ume, every point on the probe surface should also fall into
some voxel if the volume size is big enough. Suppose that
there is a point P1 on the probe surface that lies in the voxel
V1 in the volume. P2 which lies in voxel V2 is the point on
the gallery surface which is closest to P1. The distance
between two points P1 and P2 can be approximated by
the distance between the center of the two voxels V1 and
V2 with the precision of the voxel size, shown in Fig. 2.

In the ICP algorithm, given an enrolled surface in the
volume, different probe surfaces attempt to find the mini-
mum distance error to the enrolled surface. Here, the gal-
lery surface is fixed, but the position of points on the
probe surface varies within the volume from iteration to
iteration. If all the points from the probe are within the vol-
ume which holds the gallery surface, each point should be
in some voxel. For a given point P on the probe surface,
suppose we know that its closest point on the gallery sur-
face is P 0 and voxel Vp is the voxel this given point is in.
The distance between P and P 0 is approximately equal to
the distance between P 0 and the center of the voxel Vp, with
the precision of the voxel size. Each voxel in the data struc-
ture can index a distance value pre-computed at enrollment
of the surface. Therefore, given the position of one point,
the index of the voxel can be calculated easily.
3.1. Volume size

The initial experiments used a volume around the 3D
shape corresponding to the max size of the object. For an
ear, the volume size is set to 8 cm wide, 10 cm tall and
8 cm deep. For a face, the volume size is set as 10 cm wide,
14 cm tall and 7 cm deep. The volume is subdivided into
voxels. The voxel size is related to the precision of the
Fig. 1. Voxelization of 3D Ear Data. In order to show it clearly, we present it
and in step 2 each small voxel is subdivided into 8 even smaller voxels. And cont
(To implement this idea, we subdivide the volume once using a fixed voxel siz
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3D scanner. There is no point in making the voxelization
a finer scale than the effective average depth resolution of
the scanner. In our case, the average depth resolution of
the Minolta Vivid 910 is no better than 0.5 mm. If the size
for each voxel is 0.05cm · 0.05cm · 0.05cm, we have
160 · 200 · 160 = 5.12M voxels per volume for an ear.
The fixed volume size is usually larger than 3D objects in
the volume, and the reason that it has extra space is that
we need to consider the orientation of the 3D objects. Even
though the width of the ear is usually small, the overall
crossing will be large if the ear is rotated along the z axis
instead of straight up. Unfortunately much space is wasted
for fixed volume. Thus, we reduce the volume size by
applying principal component analysis (PCA) on the 3D
point cloud for the ear to give it a standardized pose.

Principal components analysis is used for computing the
dominant variances representing a given data set. As we
apply PCA on the 3D data, it yields three eigenvectors,
the first eigenvector is the direction of greatest variation
in the data, the second eigenvector is the direction of sec-
ond greatest variation, and the third eigenvector is the third
greatest variation. And all eigenvectors are orthogonal to
each other. According to our 3D shape data, the greatest
variation is related to the height of the 3D shape, the sec-
ond one to the width, and third one to the depth of the
data. After obtaining these three eigenvectors, a new coor-
dinate system ½V T

x V T
y V T

z � is generated, each Vi is a vector.
If we project the old 3D points into the new system, the
ranges along these three new axes represent the size of a
box enclosing the 3D shape.
from coarse to fine. In step 1 the volume is subdivided into 8 small voxels,
inue this subdivision until the size of each voxel is smaller than a threshold.
e).

rithm for ICP-based 3D shape biometrics, Comput. Vis. Image
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½X 0Y 0Z 0� ¼ ½XYZ� � ½V T
x V T

y V T
z � ð1Þ

Width ¼ maxðX 0Þ �minðX 0Þ ð2Þ
Height ¼ maxðY 0Þ �minðY 0Þ ð3Þ
Depth ¼ maxðZ 0Þ �minðZ 0Þ ð4Þ

Fig. 3 illustrates the steps of this procedure. When com-
pared to the width, height, and depth in Figs. 3(a) and
(c), the overall size of the bounding box of the new 3D
shape is smaller. For the ear experiment, the overall file size
can be reduced by a factor of 10. With a smaller file size to
save the information, it requires less memory to build and
read the data. Therefore, this reduces the building time,
and sometimes it also reduces the matching time when
swapping is needed in the old approach.

In our experiments, a uniform voxel size is used. Using a
non-uniform voxel size could result in a smaller data struc-
ture. However, if a non-uniform voxel size is used, then the
accuracy of the pre-computed correspondence and distance
that is stored for each voxel will effectively vary with the
voxel size. Consider that if one large voxel replaces a neigh-
Fig. 3. Steps to calculate the volume size. In part (b), a new coordinate syst
according to the direction of the largest variance in the dataset, X 0 to the seco
every old point onto new coordinate system.
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borhood of nine smaller voxels, then every probe point that
falls in that larger voxel will index to the same pre-comput-
ed corresponding point and distance. The accuracy of the
distance and correspondence will be coarser.
3.2. Implementation

To implement our strategy of pre-computed voxel near-
est neighbor, we compute ahead of time for each voxel in
the 3D space, it’s closest point on the gallery 3D shape.
The first step is to place the 3D surface into a volume
whose center is the center of the 3D surface. The position
of the gallery surface center x, y and z are defined as follow-
ing: xcenter ¼ xmaxþxmin

2
, ycenter ¼

ymaxþymin

2
, zcenter ¼ zmaxþzmin

2
. Fig. 4

shows a volume holding both gallery and probe. For each
voxel element in the volume, we use a k-d tree to find the
closest point on the gallery surface to that voxel’s center.
Once the point is found, the index of the point is stored
as the value of the voxel element. A data structure VoxelEl-

ement[Width][Height][Depth] is used to represent the subdi-
em is generated from eigenvectors of the covariance matrix, where Y 0 is
nd, and Z 0 to the third. Part (c) shows the new 3D shape after projecting

rithm for ICP-based 3D shape biometrics, Comput. Vis. Image



Fig. 4. Gallery and probe images show in the same volume. Each voxel in the volume corresponds to a point index on the gallery surface.
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vision of 3D space into voxels, and the value of width,
height and depth comes from 4. The value of VoxelEle-

ment[x][y][z] is the index of the gallery point, which is clos-
est to the point (x,y,z). We store the index of the point
instead of the point position to save space. Pre-computed
results are saved to a file which can be read into memory
when needed.

Then, computing the closest neighbor for a current posi-
tion of the probe surface is simply indexing into the voxel
data structure. Thus, constant computational time instead
of O(log NG) is achieved. This is blazingly fast in compar-
ison to any of the other nearest neighbor finding methods,
but of course it is offset by the size of the storage required.
Furthermore, since the access time is constant, we can use
the finest resolution for the gallery image, which avoids the
computation expense of using the point-to-surface
approach [1]. Fig. 4(a) shows an example with probe sur-
face matching to gallery surface.
4. Experiments

In order to evaluate the efficiency of this method, we
compare the recognition rate, space and running time
between the original algorithm and our proposed
approach.

We present results using ear range data from 369 sub-
jects and face range data from 219 subjects, and each sub-
ject has two images taken on two different date. For each
subject, the earlier 3D images are used for the gallery,
and the later 3D images are used as probes. The detailed
description of the ear and face extraction from raw image
can be found in [31,32]. For the ear experiment, the gallery
images use the full resolution, and the probes are subsam-
pled by every 4 rows and every 4 columns. The average
number of points is 5500 for a gallery ear shape, and 400
for a probe ear shape. And for the face experiments, both
gallery and probe images are subsampled by every 4 rows
and every 4 columns. The average number of points on a
gallery and a probe surface are 4000 and 3000, respectively,
for face shapes. In addition, different voxel sizes are tested,
and comparison results are presented. The system runs on
Please cite this article in press as: P. Yan, K.W. Bowyer, A fast algo
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dual-processor Pentium Xeon 2.8 GHz machines with
2 GB RAM, and the implemetation is written in C++.

4.1. Voxel size

Three voxel sizes are examined using the same dataset
for both ear and face biometrics. For the ear experiments,
they are 1 mm3, 0.5 mm3 and 0.25 mm3. For the face exper-
iments, they are 2 mm3, 1 mm3 and 0.5 mm3. The reason
for using different voxel size for ear and face is because
the gallery face images are subsampled by every 4 columns
and rows. Before the matching procedure takes place, we
build the volume for every gallery ear/face. For each voxel
in the volume, a k-d tree structure is used to find the closest
point on the gallery and we save the results on the disk. In
order to utilize our method, we read one voxelized gallery
data structure into memory and match it against all the
probes. Therefore, our recognition experiment has two
processes, offline building and online matching. Tables 1
and 2 illustrate the time requirement for each process.

For the ear experiments, all the images are acquired
using a Minolta Vivid 910 with the ‘‘Tele’’ lens, and the
subject sat approximately 1.5 m away from the sensor.
Within that distance range, the sensor has a depth accuracy
of approximately 0.55 mm. According to our results, going
to a finer voxel size from 0.5 to 0.25 mm does not yield
much in term of increased accuracy, yet, it requires signif-
icantly more storage space and longer time to process.
Even though the access time is a constant value, when
the number of voxels is too big, it will exceed the size of
available memory, and force the algorithm to use swap
space, which will slow down the computation. If we
increase the voxel size from 0.5 to 1 mm, the reading time
drops, the matching time is at the same level, and the per-
formance drops by around 0.3%, which is not statistically
significantly different from the smaller voxel size. For the
face experiments, the image acquisition is the same. But
since the gallery images are subsampled by 4 · 4, there is
no statistically significant difference in performance for
voxel size variations.

Fig. 5 compares the original ICP algorithm and our pre-
computed ICP on the ear dataset. We compared voxel
rithm for ICP-based 3D shape biometrics, Comput. Vis. Image



Table 1
Ear biometrics: Different parameters affected by voxel size

Voxel size (mm) Building time (per ear) (s) Reading time (per ear) (s) Matching time (1 against 369) File size (369 Images) (s) Performance

1 10–50 0 15–25 127 M 97.0% (1)
0.5 30–200 1 20–30 1009 M 97.3% (2)
0.25 100–500 1–5 20–30 7.8 G 97.3% (3)

At 0.1 level of significance, there is no statistically significant difference between (1), (2) and (3). Times are given as a range; for example 15–25 s. This is an
approximate range for min to max time required across 369 possible probes, any one of which can be matched against 369 gallery images.

Table 2
Face biometrics: Different parameters affected by voxel size

Voxel size (mm) Building time (per face) (s) Reading time (per face) (s) Matching time (1 against 219) File size (219 Images) (s) Performance

2 25–35 0–1 80–90 983 M 93.6% (1)
1 150–160 5–6 80–90 15 G 94.1% (2)
0.5 1500–1600 35–45 80–95 63 G 93.2% (3)

At 0.1 level of significance, there is no statistically significant difference between (1), (2) and (3).
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Fig. 5. Ear experiments: How does voxel size affect building time, matching time, rank-one recognition rate and geometric performance.

Table 3
Ear biometric: Run time vs. Gallery size for both original ICP and pre-
computed ICP

Gallery size Original ICP (s) Pre-computed
ICP (s) (voxel = 0.5 mm)

10 5 3
50 20 7

100 35 10
200 75 15
300 106 25
369 150 30
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building time, matching time and recognition performance
and mean-square distance of the final aligned point sets for
voxel sizes from 0.25 to 5 mm. Fig. 5(b) demonstrates that
pre-computed ICP is much faster than the original ICP.
When the voxel size increases, the matching time decreases.
But once the voxel size increases up to 1.5 mm, there is little
reduction in matching time. Fig. 5(a) shows that the voxel
building time drops dramatically when the voxel size is
increased from 0.25 to 1 mm, while the performances stays
at essentially the same level. After the voxel size increased
beyond 1.5 mm, the building time can be almost ignored.
The performances of the pre-computed ICP keeps better
than 95% recognition rate even when the voxel size is
increased up to 4 mm. In order to demonstrate the quality
of the final mean-square distance as a function of the voxel
size, Fig. 5(d) shows an example from a correct match pair.
Please cite this article in press as: P. Yan, K.W. Bowyer, A fast algo
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As the voxel size increases, the mean-square distance
increases approximate linearly.

Table 3 illustrates how execution time increases when
gallery size gets larger for both original ICP and pre-com-
rithm for ICP-based 3D shape biometrics, Comput. Vis. Image
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puted ICP. When the gallery size is small, there is no
advantage to the voxel approach. However, for very large
galleries the voxel approach yields an enormous improve-
ment in speed. Here, we suppose all the gallery images
can be kept in the memory. In a real biometrics applica-
tion, some or all of the gallery might be kept in memory
all the time.

5. Improvement

As we stated in the previous section, the most time con-
suming part of the ICP algorithm is closest point searching.
There are two common ways to find the closest point,
point-to-point and point-to-surface. A detailed comparison
between them for a biometric application can be found in
[9]. The point-to-point approach is fast, and accurate when
all the points on the probe surface can find a good closest
point on the gallery surface. But if the gallery is subsam-
pled or coarse in the original, the point-to-point approach
loses accuracy. On the other hand, the greatest advantage
of the point-to-surface approach is that it is accurate
through all the different subsample combinations. But this
behavior comes at a substantial computational expense.
Our voxel algorithm can shift the computation burden to
offline, therefore if the gallery images are not in a fine res-
olution, the point-to-surface method for pre-computed dis-
tance should be able to yield better performance without
increasing the running time for the recognition. This is
proved by the experimental results. By using point-to-sur-
face method for pre-computing, the ear recognition rate
is improved from 97.3% to 98.7%, and the face recognition
rate is improved from 94.1% to 96.4%. The improvement is
more obvious in the face recognition experiment, which
also demonstrates that the point-to-surface method is more
accurate than point-to-point method when the gallery
images are coarse.

6. Summary and discussion

The main contribution of this paper is the ‘‘Pre-comput-
ed Voxel Closest Neighbor’’ strategy to improve the speed
of the ICP algorithm for use in biometrics. This technique
is aimed at a particular application in human identification.
The idea is based on the possibility of computing the data
structure before the matching procedure taking place.

Different voxel sizes are examined, and the performance
and running time are compared with the results from the
original ICP algorithm. Our experimental results verify
the performance of our approach on our 369 subjects data-
set for ear biometrics, and 219 subjects dataset for face bio-
metrics. The online matching time drops significantly when
we use the pre-computed results from the enrolled 3D
shape offline computation. Our results demonstrate that
for very large galleries the voxel approach yields a dramatic
improvement in speed. In real biometric security applica-
tions, the number of persons in the gallery could easily
be in the thousands or larger.
Please cite this article in press as: P. Yan, K.W. Bowyer, A fast algo
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The 2D and 3D image data sets used in this work are
available to other research groups. See the web page
www.nd.edu/cvrl for the release agreement and details.
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