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ABSTRACT

This paper presents a method for combining classifiers that uses estimates of each
individual classifier’s local accuracy in small regions of feature space surrounding
an unknown test sample. An empirical evaluation using five real data sets confirms
the validity of our approach compared to some other Combination of Multiple
Classifiers algorithms. We also suggest a methodology for determining the best
mix of individual classifiers.

1 Introduction

There are two basic approaches a Combination of Multiple Classifiers (CMC) algorithm may
take: classifier fusion, and dynamic classifier selection. In classifier fusion algorithms, indi-
vidual classifiers are applied in parallel, and their outputs are combined in some manner to
achieve a “group consensus”. Dynamic Classifier Selection attempts to predict which single
classifier is most likely to be correct for a given sample. Only the output of the selected
classifier is considered in the final decision.

Previous classifier fusion algorithms include the majority vote [1, 2], the Borda count [3],
unanimous consensus [3, 2|, thresholded voting [2], polling methods which utilize heuristic
decision rules [4, 5], the “averaged Bayes classifier” [2], logistic regression to assign weights to
the ranks produced by each classifier [3], Dempster-Shafer theory to derive weights for each
classifier’s vote [2, 6], and methods of multistage classification [7].

For dynamic classifier selection, a method of partitioning the input samples is required.
For example, partitions can be defined by the set of individual classifier decisions [8], according
to which classifiers agree with each other [3], or even by features of the input samples. Then,
the “best” classifier for each partition is determined using training or validation data. For
classification, an unknown sample is assigned to a partition, and the output of the best
classifier for that partition is used to make the final decision.

The objective of this work is to present a general method of improving accuracy in CMC



systems. We begin with descriptions of our proposed algorithm and three other CMC algo-
rithms which were implemented for comparison. We then present experimental procedures

and results for five different sets of data from various real applications.

2 Algorithms for Comparison

We have selected two previously published algorithms [8, 9] for direct comparison to our

proposed algorithm. We also implemented a modified version of one of these algorithms.

2.1 The Proposed Approach: DCS-LA

We term our approach to CMC as Dynamic Classifier Selection by Local Accuracy, or DCS-
LA. The basic idea is to estimate each classifier’s accuracy in local regions of feature space
surrounding an unknown test sample, and then use the decision of the most locally accurate
classifier. In our implementation “local regions” are defined in terms of the K-nearest neigh-
bors in the training data. We examine two methods for estimating local accuracy. One is
simply the percentage of training samples in the region that are correctly classified. We shall
refer to this as the overall local accuracy. Another possibility is to estimate local accuracy
with respect to some output class. Consider a classifier that assigns a test sample to class C;.
We can determine the percentage of the local training samples assigned to class C; by this

classifier that have been correctly labeled. We shall refer to this as the local class accuracy.

2.2 The Behavior-Knowledge Space Approach

The Behavior-Knowledge Space (BKS) algorithm has recently been proposed in connection
with an application for recognizing handwritten numerals. Behavior-Knowledge Space is an
N-dimensional space where each dimension corresponds to the decision of one classifier. Each
classifier can assign a sample to one of M possible classes. Each unit of a BKS represents a
particular intersection of individual classifier decisions. Thus, the BKS represents all possible
combinations of the individual classifier decisions. Each BKS unit accumulates the number of

training samples from each class. For an unknown test sample, the decisions of the individual



classifiers index a unit of BKS, and the unknown sample is assigned to the class with the most

training samples in that BKS unit!®.

2.3 The Classifier Rank Approach

Sabourin et al. [9] present an algorithm which has some similarities to our DCS-LA approach.
One variation of their algorithm selects the classifier that correctly classifies the most con-
secutive neighboring training samples (relative to the unknown test sample). The selected
classifier is said to have the highest “rank”. Although they do not associate their algorithm
with the concept of local accuracy, their notion of classifier rank certainly has this flavor. We

will refer to this algorithm as the Classifier Rank method.

2.4 A Modified Classifier Rank Approach

In terms of our work, the Classifier Rank algorithm presented in [9] uses what we would
describe as an overall local accuracy estimate. An obvious alternative would be to use local
class accuracy. Given a test sample assigned to class C; by a classifier, local accuracy for the
classifier is estimated as the number of consecutive nearest neighbors assigned class C; which

have been correctly labeled. We refer to this algorithm as Modified Classifier Rank.

3 Empirical Comparison on ELENA Data Sets

From the ELENA project?, we selected four data sets representing real applications: iris_CR,
phoneme_CR, satimage CR, and texture_CR. The CR notation indicates that each database
was preprocessed by a normalization routine in which each feature is centered and reduced to
unit variance. These four databases are summarized in the first four rows of Table 1.

We randomly partition each data set into two equal halves, keeping the class distributions

similar to that of the full data set. Initially, one set is used as training data for the individual

Tn the event that a tie exists in a BKS unit, we select the output of the most globally accurate classifier.

2The ELENA project is a resource of databases and technical reports designed for testing and benchmarking
machine-learning classification algorithms. All the databases, their preprocessing, and a technical report
describing them in detail are available via anonymous ftp at: fip.dice.ucl.ac.be in the directory pub/neural-
nets/ELENA /databases.



Table 1: Summary of the data sets used in CMC experiments.

Number | # of Features | # of Inputs After | Number
Data Set of Classes Available Feature Selection | of Samples
iris_CR 3 4 4 150
phoneme CR 2 5) 5) 5,404
satimage CR 6 36 5to9 6,435
texture_.CR 11 40 8 to 11 5,500
mammography 2 63 5to 15 47,923

classifiers and the CMC algorithms. This includes any feature selection and classifier-specific
parameter optimization. The classification accuracy is then evaluated using the other set.
Next, the roles of the two sets are reversed. Accuracy is reported as the average of the two

results.

3.1 Individual Classifiers

For this round of experiments, up to five individual classifiers are used in the various CMC
algorithms, two parametric and three non-parametric. They are: Linear Bayesian, Quadratic
Bayesian, IK-Nearest Neighbor (IK-NN) with the Euclidean distance metric [10], a fully con-
nected backpropagation artificial neural network (ANN) with sigmoid activation functions
[11], and the C4.5 decision tree implementation [12].

For a CMC approach to be of practical use, it should improve on the best individual
classifier, given that the individual classifiers have been reasonably optimized with regards
to parameter settings and available feature data. In our work, an earnest effort is made to
optimize each individual classifier with respect to selecting “good” values for the parameters
which govern its performance. For brevity, we will omit the details. For the K-NN classifier,
a value of K must be determined. For ANNs, the numbers of hidden layers and hidden nodes
in a layer must be selected. The parameters for the C4.5 decision tree algorithm are selected
based on our previous experience with this classifier. The Bayesian classifiers do not require

any sort of parameter selection or optimization.



If each individual classifier is not given the opportunity to select from all features, then
the comparison of CMC algorithms to individual classifiers is biased. Table 1 lists the number
of features actually used for each data set after applying a feature selection algorithm. The
number and specific features actually used depends on the individual classifier. Since the
iris and the phoneme data already have a small dimensionality, all features are used by all

classifiers in experiments with these two data sets.

3.2 DCS-LA Implementation and Application

The DCS-LA algorithm uses the training data, which may be different for each classifier, and
the class assignments made by each classifier. Given an unknown sample, it is first labeled by
all the individual classifiers. If all classifiers agree, there is no need to estimate local accuracy.
When the individual classifiers disagree, local accuracy is estimated for each classifier, and
the decision of the classifier with the highest local accuracy estimate is selected.
Occasionally, two (or more) classifiers with conflicting decisions will have the highest local
accuracy estimates. Tie-breaking is handled by choosing the class that is selected most often
among the tied classifiers. If a tie still exists, the classifier(s) with the next highest local
accuracy will break the tie in the same manner as before. Determining the appropriate size
for a local region is part of designing the DCS-LA approach. We ran experiments for various
region sizes ranging from K = 1 to K = 51 using the Euclidean distance metric (since the

feature values have been normalized).

3.3 Results

Results for the individual classifiers and the CMC algorithms for the ELENA data sets are
summarized in Table 2. We also show the results for an “Oracle” which chooses the correct
class if any of the individual classifiers did so. This is a theoretical upper bound for all CMC
algorithms discussed in this work. Of course, the best individual classifier is a lower bound
for any meaningful CMC algorithm.

For the iris data, the Oracle is no better than the Linear Bayes. The upper and lower

Ot



Table 2: Classification accuracy for individual classifiers and several CMC algorithms on four
real data sets. The best individual and CMC results for each data set are bold.

Method of Data Set

Classification iris.CR ‘ phoneme_CR ‘ satimage CR ‘ texture_CR
K-Nearest Neighbor 92.00% 87.76% 87.79% 97.78%
Neural Network 95.33% 79.21% 83.98% 94.85%
C4.5 Decision Tree 92.67% 83.92% 83.50% 88.09%
Quadratic Bayes 95.33% 75.41% 85.78% 99.04%
Linear Bayes 97.33% 73.00% 83.31% 97.42%
Oracle 97.33% 97.22% 95.64% 99.85%
DCS-LA: Local Class Acc. - 88.49% 89.38% 99.25%
DCS-LA: Overall Accuracy - 87.64% 88.57% 99.16%
Classifier Rank - 87.31% 87.88% 98.85%
Modified Classifier Rank - 88.75% 88.96% 98.47%
Behavior Knowledge Space - 85.68% 86.75% 99.05%

performance bounds are identical, and there is no point in using a CMC algorithm. For the
phoneme data, the Modified Classifier Rank algorithm performed marginally better than the
DCS-LA algorithm using local class accuracy. The other CMC algorithms failed to improve
upon the performance of the K-Nearest Neighbor classifier. Results for the satimage data
show the DCS-LA algorithm with local class accuracy to be the best CMC algorithm while
the BKS algorithm again fails to improve upon the best individual classifier. For the texture
data, the DCS-LA algorithm using local class accuracy is best, while the Classifier Rank and
Modified Classifier Rank methods degrade performance.

This initial set of experiments permits us to make a couple of interesting observations.
First, the DCS-LA algorithm using local class accuracy is the only CMC algorithm that
showed some performance improvement for all data sets (excluding the iris data for which it
was not possible to improve upon the Linear Bayes classifier). Second, local class accuracy was
better than overall local accuracy for the DCS-LA algorithm in all cases. Also, the Modified
Classifier Rank method, which uses local class accuracy, generally outperformed the Classifier

Rank method, which uses overall local accuracy.



3.4 Altering the Classifier Mix

To test the extent to which the CMC results depend on the mix of individual classifiers, we
ran the DCS-LA algorithm for all possible combinations of four out of five classifiers on the
three ELENA data sets for which CMC is beneficial. Results are summarized in Table 3.

Table 3: Classification accuracy for the DCS-LA algorithm using all possible combinations of

four classifiers as input. KNN = K-Nearest Neighbor, ANN = Artificial Neural Network, LB
= Linear Bayes, and QB = Quadratic Bayes.

Classifiers Used as Input Data Set

to DCS-LA: Local Class Acc. | phoneme_CR ‘ satimage CR ‘ texture_CR
KNN, ANN, C4.5, QB 88.60% 89.39% 99.05%
KNN, ANN, C4.5, LB 88.64% 89.31% 98.84%
KNN, ANN, LB, QB 87.78% 89.28% 99.34%
KNN, C4.5, LB, QB 88.60% 89.02% 99.31%
ANN, C4.5, LB, QB 86.81% 88.68% 99.04%

The DCS-LA algorithm outperforms the best individual classifier in all cases. Even more
interesting, there exists a combination of four classifiers that is slightly superior than the
combination of five classifiers for all three data sets. This tells us that some strategy should
be used when selecting the mix of classifiers to use as input to a CMC algorithm.

Not surprisingly, removing the best individual classifier from the combination of five classi-
fiers results in the biggest drop in performance for all three data sets. Also note that removing
the single worst classifier results in better performance than the combination of five classifiers
in all cases. These results suggest that a sequential backwards search might be an effective
technique [13]. The results of a sequential backwards search for the ELENA data sets are
shown in Table 4. As redundant or detrimental classifiers are removed from the mix, perfor-
mance gradually improves. Eventually, we begin removing useful classifiers, and performance

gradually drops off.



Table 4: Results of a sequential backwards search technique for selecting a mix of individual
classifiers to use as input for the DCS-LA algorithm.

Classifiers Used as Input Data Set

to DCS-LA: Local Class Acc. | phoneme_CR ‘ satimage CR ‘ texture_CR
All 5 Classifiers 88.49% 89.38% 99.25%
Best 4 Classifiers 88.60% 89.39% 99.34%
Best 3 Classifiers 88.62% 88.94% 99.33%
Best 2 Classifiers 88.66% 88.61% 99.16%
Best Individual Classifier 87.76% 87.79% 99.04%

4 Empirical Comparison with ROC Analysis

Our next round of experiments uses a data set from an application in mammogram image
analysis [14], summarized in the fifth row of Table 1. Unlike the ELENA data sets, this
feature data did not undergo normalization preprocessing. We use well known ROC analysis

techniques for performance evaluation.

4.1 ROC Analysis

The accuracy of a classifier (in a 2-class problem) can be characterized by a plot of the clas-
sifier’s true positive detection rate versus its false positive rate, called a receiver operating
characteristic (ROC) curve. The Area Under the ROC Curve (AUC) is an accepted way of
comparing overall classifier performance [15, 16]. Hanley and McNeil [17] describe methods to
determine if the observed difference between two AUCs is statistically significant. These stan-
dard statistical methods compare AUCs over the full range of TP rates. Our empirical ROC
results only cover a portion of the full range, and so AUCs must be expressed as conditional
probabilities prior to applying the methods of Hanley and McNeil.

First, the AUCs over the range of interest are estimated using the trapezoid rule for the
discrete operating points. The area under a portion of an ROC curve can be expressed as a

conditional probability via the following transformation:

A

. (1)

AUC = —2
ve P, — TP
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where A, is the area under the ROC curve computed between TP rates TP and T'F%. The

formula for the z statistic is

_AUC, — AUG,

T )
SEl_ + SEQA

where AUC, and AUC5 are the two estimated AUCs, and SE; and SFE, are the estimated

z

standard errors of each AUC. We use a two-tailed test for statistical significance. The null
hypothesis is that the two observed AUCs are the same. The alternate hypothesis is that the
two AUCs are different. A critical range of z > 1.96 or 2 < —1.96 (a level of significance
a = 0.05) indicates that the null hypothesis can be rejected.

A conservative estimate of the standard error of an AUC value (from [17]) is:

0(1—0) 4 (na —1)(Q1 — 0%) + (ny — 1)(Q2 — 6?)

nanyn

SE(AUC;) = \/ (3)

where ()1 and (), are two distribution-specific quantities, € is the “true” area under the ROC
curve, and n4 and ny are the number of abnormal and normal samples, respectively. The

estimate AUC; is used as an estimate of . The quantities ()1 and (), are expressed as functions

of 6:
26?2

4
146 (4)

Q1 and Q2 =

2.9

Each of the individual classifiers is usually able to generate operating points running from
0% to 100% with fairly small increments between consecutive points. To generate a single
operating point for a CMC algorithm, the individual classifiers are all set to approximately
the same level of sensitivity, and the CMC is executed. This procedure is repeated with the
individual classifiers set to other sensitivity levels, resulting in a series of operating points for
each CMC algorithm. The ROC curves generated for each CMC algorithm will not cover the
full range of TP rates. Therefore, in a test for statistical significance, two ROC curves are

compared only over the range of TP rates that are common to both curves.

4.2 DCS-LA Implementation and Application

For the mammography data, results of a CART decision tree classifier [18] were available in

addition to those of the other five classifiers that were used for the ELENA data sets. For the



most part, feature selection, classifier parameter optimization, and the DCS-LA implementa-
tion are done same as before. One exception is that the Mahalanobis [10] distance metric is
used for the K-Nearest Neighbor classifier and the DCS-LA algorithm since the data has not
been normalized.

Also, we would like to investigate the effect of setting the individual classifiers to various
sensitivity levels prior to applying CMC. We tested all CMC algorithms with the individual
classifiers set to 6 different TP rates: 70%, 75%, 80%, 85%, 90%, and 95%. If a classifier could
not be set exactly to the desired TP rate desired, it was set as close as possible. As before,
we ran experiments for various region sizes ranging from K = 1 to K = 51 for each of the 6

levels of individual classifier sensitivity.

4.3 Results

We show only those results obtained when the first half of the data set is used as training
data. Nearly identical results were obtained for the experiments which utilized the other half

of the data set in the training capacity.
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Figure 1: A) Partial ROC curves for 6 individual classifiers, and their AUCs. B) Composite
ROC curve for the individual classifiers, and the ROC curve for an Oracle classifier.

10



Figure 1A shows partial ROC curves® plotted for all 6 individual classifiers. The best
individual classifier is KNN if the overall AUC is considered. However, there is no single
best classifier across all TP rates. As a benchmark for useful CMC performance, we consider
a composite ROC curve consisting of the “best” parts of the individual ROC curves. The
composite ROC is a lower bound for practical CMC performance. We also plot ROC curves
for an Oracle classifier, the theoretical upper bound on CMC performance. The composite
and Oracle ROC curves are shown in Figure 1B.

A comparison of the ROC curves generated by the DCS-LA algorithm using both methods
of local accuracy estimation shows that local class accuracy is superior to overall local accuracy.
The difference in AUCs, however, is not statistically significant (z = 1.44 for TP rates ranging
from 78% to 94%). Further ROC analysis of the DCS-LA algorithm with various local region
sizes shows that regions defined by K = 10 generally seem to result in the best performance
for this data set.

Figure 2 compares the composite ROC curve with the results for DCS-LA using local class
accuracy. We also show the results of the Behavior Knowledge Space, Classifier Rank, and
the Modified Classifier Rank algorithms. To be fair, only the best single value of K (10) is
used in the plot for the DCS-LA results. Thus, the ROC curves for all four CMC algorithms
are composed of 6 operating points each.

The DCS-LA algorithm is better than the best individual classifier at all times. The
difference between the AUCs, computed over the range of common TP points (from 82%
to 93%), for DCS-LA ROC curve and the Composite ROC curve is statistically significant
(z = 3.51). The Modified Classifier Rank method performs nearly as well as DCS-LA at lower
sensitivities, but less so at higher levels. It is significantly better than the best individual
classifier (z = 2.71) over the common TP range (82% to 88%). The Classifier Rank method
provides improvement, though not statistically significant, at some levels of sensitivity. As

with our initial set of experiments, the Behavior Knowledge Space method is not able to

3Partial ROC curves are plotted in order to focus on a region of interest. In a medical application such as
ours, high sensitivity levels are required.
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improve upon the performance of the optimized individual classifiers. The DCS-LA method
performed significantly better than the Behavior Knowledge Space method (z = 4.91 for TP
rates ranging from 84% to 92%), and the Classifier Rank method (z = 3.81 for TP rates

ranging from 82% to 91%).
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Figure 2: The composite and Oracle ROC curves for the 6 individual classifiers compared
to the results for the DCS-LA, Behavior Knowledge Space, Classifier Rank, and Modified
Classifier Rank methods.

Table 5 shows the results of the CMC algorithms when the individual classifiers are set (as
close as possible) to a TP rate of 80%. The DCS-LA algorithm uses local class accuracy with
K = 10. The number of times each individual classifier was selected by the DCS-LA algorithm
is also shown. In this example, the DCS-LA algorithm finds operating points with higher TP
rates and lower FP rates than points obtained by any individual classifier. All classifiers agree
on the class assignment for a majority of the test samples (89.5%), and therefore any of the
CMC algorithms are actually executed a relatively small percentage of the time. The number
of times an individual classifier is selected by the DCS-LA algorithm seems closely correlated
to the overall accuracy of the classifier. Results at other sensitivity levels show the same

general trends.
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Table 5: CMC results with individual classifiers set to TP rates as close to 80% as possible.
All classifiers agree for 22,552 of the samples, or about 89.5% of the time.

Method of Set at Overall # times classifier
Classification (TP rate, FP rate) | Accuracy | selected by DCS-LA
Neural Network (80.1, 0.85) 95.3% 1287
K-Nearest Neighbor (79.8, 0.87) 95.2% 425
CART decision tree (80.5, 1.11) 95.1% 444

C4.5 decision tree (78.4, 0.57) 95.1% 287
Quadratic Bayes (80.0, 1.84) 94.4% 125
Linear Bayes (80.2, 1.97) 94.4% 67

Oracle (94.7, 0.11) 98.8% -
DCS-LA: Local Class Acc. (87.7, 0 55) 97.0% -
Behavior Knowledge Space (89.7, 1.42) 96.8% -
Classifier Rank Method (82 6 0.56) 96.0% -
Modified Classifier Rank (85.5, 0.46) 96.7% -

In general, since the DCS-LA algorithm is attempting to lower the total number of mis-
classifications, it generates operating points which make the appropriate TP/FP trade-off in
order to drive the owerall error rate down. Consider when all the individual classifiers are
set to lower sensitivities (approximately less than 90%). Given the number of test samples
per class, it is possible to misclassify fewer total samples by trading off a higher TP rate
for a corresponding higher FP rate. By contrast, when we set all classifiers to TP rates of
approximately 95%, the DCS-LA algorithm usually generated an operating point with a TP
rate lower than 95%. In this situation, trading off the lower TP rate for the corresponding
lower FP rate resulted in fewer total classification errors, and therefore an improved overall

accuracy.

5 Summary and Conclusions

We have shown that even if all the individual classifiers have been optimized, dynamic classifier
selection by local accuracy is still capable of improving overall performance significantly. By
contrast, simple voting techniques, and even a recently proposed CMC algorithm, were not

able to show any significant improvement when the individual classifiers were sufficiently
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optimized. At times, some of the other CMC algorithms actually hurt performance. The
proposed DCS-LA algorithm was always capable of improving performance.

In this work, we have attempted to address some issues relevant to the construction of
a multiple classifier system which have not previously received attention. First, we have
made efforts to optimize the individual classifiers with respect to the available feature data.
Certainly it would be preferable to use a single classifier as opposed to a combination of several
classifiers if the performance of the two systems is equivalent. Second, we have suggested a
systematic procedure for determining if certain classifiers are redundant or detrimental, and
could therefore be removed from the mix of individual classifiers prior to CMC. The end result
is improved performance, and faster execution time. Finally, we observed the effect of varying
the sensitivity of the individual classifiers on the CMC algorithm.

The benefits of a CMC approach may be limited when there is a very small amount of
training data, or when the classification accuracy of an individual classifier is sufficiently high.
Thus, we believe the greatest potential for CMC algorithms is for large data sets with data

distributions that are too complex for most individual classifiers.
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